40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 268 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  8772   Thu Jun 27 19:17:03 2013 manasaUpdateLSCXarm ALS out-of-loop noise

Measured frequency noise is ~10Hz/rtHz @100Hz. 

Measure the out-of-loop noise of Xarm ALS:

1. The X-arm was locked for IR using PDH error signal.

2. 'CLEAR HISTORY' of the phase tracker filters.

3. Measured the power spectrum of the phase tracker output. I have used the newly created calibrated channel "PHASE_OUT_DQ. So the phase tracker output now reads in Hz.


The measurement was done with beat note frequency at ~40MHz. The flat noise level of 10Hz/rtHz from 20-100Hz (in plot 2) is not good. We should investigate as to what sets this noise level. The spike at 60Hz is because the 60Hz frequency comb filter was not enabled.

I plan to the following to get a clearer outlook
1. Connecting the beat box to an RF source and measure the noise levels for a range of frequency inputs to the beatbox.
2. Measure the noise at C1:ALS-BEATX_FINE_I_IN1 (before the antiwhitening filters) and check whether the new whitening filters has done anything good with respect to minimizing the DAQ noise.


Attachment 1: ALS_OoL.pdf
Attachment 2: ALS_OoL1.pdf
  8779   Fri Jun 28 02:12:21 2013 manasaUpdateLSCPRMI + X arm ALS

X arm stabilized using ALS while PRMI stayed locked

[Rana, Lisa, Jenne, Manasa]

Attachment 1

Time series : ALS enabled at t = 0 and disabled at t = 95s


What we did:
1. Jenne will elog about ASC (POP QPD) updates.
2. Found the beat note between Xarm green and PSL green.
3. Stabilized arm fluctuation by enabling ALS servo.
4. Scanned the arm for carrier resonance by ramping on the offset and set the offset such that we had IR resonating (TRX fluctuated between 0.1 and 0.8 counts).
5. Disabled the ALS servo and locked PRMI using AS55 for MICH and REFL33 for PRCL.
6. Enabled ALS.

Enabling ALS to detune the arm out of resonance kept PRMI locked  (currently for a span of few tens of seconds). However we could not see PRMI locked as stably compared to when the arms are misaligned. Everytime the offset was set IR to resonate, the PRMI was kicked out of lock.

Also there is some leakage at the arm transmission when PRMI was locked. The leakage was visible at ETMX transmission as flashes in different higher order modes indicating the not-so sufficient ALS stability. The leakage sets an offset at TRX measuring 0.01-0.05 counts.

To do list:
The ALS_OFFSETTER1 has to be calibrated in FSR. We were giving random offsets to do the offset scan.

Installed a filter before ETMXT camera to remove the refl green. (Note to myself: The filter needs to go on a better mount/adapter).

  8794   Wed Jul 3 10:39:25 2013 manasaUpdateIOOMC aligned and WFS enabled

I found WFS had been left disabled from sometime yesterday. I don't see anyone mentioning  when and why they had turned OFF the WFS servo.

I aligned MC and turned ON the WFS servo. MC is back.

  8807   Mon Jul 8 21:46:31 2013 manasaUpdateGreen LockingBeatbox

[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

  8818   Wed Jul 10 02:10:41 2013 manasaUpdateGreen LockingBeatbox gets a makeover


[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

 The beatbox output showed high frequency oscillations during the troubleshooting process yesterday. I removed the beatbox from the rack. With no RF inputs, just powering the beatbox showed these high frequency oscillations at the beatbox output. This confirms that these oscillations are from the op-amp AD829JR. I replaced these with low noise OP27G. Also I removed the AD829JR that were soldered to the frequency divider and comparator which are not being used. Output buffer U10 was also removed.

After replacing with OP27G, I rechecked the beatbox with and without the RF input. There were no more high frequency contaminations and beatbox seemed to behave as it is supposed to when a frequency modulated RF input is fed. I put the beatbox back on the rack and did  a quick recheck.

Before (top) and after (bottom) pictures




  8820   Wed Jul 10 11:27:02 2013 manasaUpdateGreen LockingX arm beatnote found

I found the beat note for X arm. I did not change anything this morning (to the best of my knowledge). Hooking up the spectrum analyzer, I could find the beatnote signal at the PD RF output, after the amplifier and also at the MON port of the beatbox. I still don't know what changed from the last night set of trials

  8824   Thu Jul 11 00:30:27 2013 manasaUpdateGreen LockingX arm ALS post-beatbox makeover

I ran a series of diagnostics on the X arm ALS to look at how the beatbox behaves after the makeover.

Diagnostic tests run:
1. X arm ALS in-loop spectrum
2. X arm ALS out-of loop spectrum
3. X ALS scan of the X arm cavity

The noise suppression looks better after the makeover at the lower frequencies. To suppress the noise at high frequencies, we would have to add more whitening filters.

Attachment 1: XALS_inloop.pdf
Attachment 2: XALS_scan.pdf
Attachment 3: ALS_outloop.pdf
  8826   Thu Jul 11 07:34:42 2013 manasaUpdateLSCYarm held nicely on IR resonance with ALS, PRMI+arm attempt


We knew that the Yarm was well aligned, since our IR resonance was > 0.98, but it had been a while since we had aligned the X arm. 

 The X arm was locked with TRX>0.98 earlier last night while I was measuring the out of loop noise of the phase tracker.

  8835   Fri Jul 12 12:30:47 2013 manasaUpdateGeneral Halogen illumination cables disconnected


Alex and Steve,

Old halogen chamber illuminator cabling disconnected and potenciometer board removed at 1Y1 in order to give room for pd calibration fibre set up.

 During the process, they had also removed the power cable to the ITMY camera. Steve and I fixed this...so the camera is back.

  8837   Fri Jul 12 12:51:16 2013 manasaUpdateLSCPRMI + ALS automation


We talked about how it should be automated.

We'll gradually offload the switching works on scripts.

 Here is the list of automations that we need to work on for less hectic PRMI+ALS trials.

1. Enable/Disable ASC when PRMI is locked/unlocked.

2. Smooth transfer from REFL33/AS55 to REFL165 when PRMI is locked.

3. Change actuation from the ITMs to BS and PRM after PRMI lock.

4. Enable ALS.

5. IR resonance scan using ALS.

  8841   Fri Jul 12 23:13:32 2013 manasaUpdateGreen LockingALS sensor noise

[Annalisa, Koji, Manasa]

In order to improve the ALS stability we went ahead to check if we are limited by the sensor noise of ALS.

What we did:
RF signals similar to the beatnote were given at the RF inputs of the beatbox.
The frequency of the RF signal was set such that I_OUT was zero (zero-crossing point of the beatbox).
We measured the noise spectrum of the phase tracker output.


Plot 1: X ALS noise spectrum
Plot 2: Y ALS noise spectrum


The X arm ALS noise is not limited by the sensor noise...which means we shoudl come up with clever ideas to hunt for other noise sources.
But this does not seem to be the case for the Y arm ALS. The Y arm part of the beatbox is noisy for frequencies < 100Hz.

After looking into the details and comparing the X and Y arm parts of beatbox, it looks that amplitude of the beat signal seem to affect the Y arm ALS noise significantly and changes the noise spectrum.

To do:
Investigate the effect/limitations of amplitude of the beatnote on the X arm and Y arm beatbox.

Attachment 1: X_ALS_0712.pdf
Attachment 2: Y_ALS_0712.pdf
  8858   Tue Jul 16 15:22:27 2013 manasaUpdateCDSFront ends back up

c1sus, c1ioo, c1iscex and c1iscey were down. Why? I was trying to lock the arm and I found that around this time, several computers stopped working mysteriously. Who was working near the computer racks at this time???

I did an ssh into each of these machines and rebooted them sudo shutdown -r now

But then I forgot / neglected/ didn't know to bring back some of the SLOW Controls computers because I am new here and these computers are OLD. Then Rana told me to bring them back and then I ignored him to my great regret. As it turns out he is very wise indeed as the legends say.

So after awhile I did Burtgooey restore of c1susaux (one of the OLD & SLOW ones) from 03:07 this morning. This brought back the IMC pointing and it locked right away as Rana foretold.

Then, I again ignored his wise and very precious advice much to my future regret and the dismay of us all and the detriment of the scientific enterprise overall.

Later however, I was forced to return to the burtgooey / SLOW controls adventure. But what to restore? Where are these procedures? If only we had some kind of electronics record keeping system or software. Sort of like a book. Made of electronics. Where we could LOG things....

But then, again, Rana came to my rescue by pointing out this wonderful ELOG thing. Huzzah! We all danced around in happiness at this awesome discovery!!

But wait, there was more....not only do we have an ELOG. But we also have a thing called WIKI. It has been copied from the 40m and developed into a thing called Wikipedia for the public domain. Apparently a company called Google is also thinking about copying the ELOG's 'find' button.

When we went to the Wiki, we found a "Computer Restart Procedures" place which was full of all kinds of wonderous advice, but unfortunately none of it helped me in my SLOW Controls quest.


Then I went to the /cvs/cds/caltech/target/ area and started to (one by one) inspect all of the targets to see if they were alive. And then I burtgooey'd some of them (c1susaux) ?? And then I thought that I should update our 'Computer Restart Procedures' wiki page and so I am going to do so right now ??

And then I wrote this elog.


  8878   Fri Jul 19 12:00:12 2013 manasaUpdateGreen LockingALS Y performance with the new whitening filter


(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

 Path to data (retreived using getdata)


  8879   Fri Jul 19 12:02:18 2013 manasaUpdateLSCPRMI+Y arm ALS success!

Data retrieved using getdata (30 minutes trend) saved at


  8880   Fri Jul 19 12:23:34 2013 manasaUpdateCDSCDS FE not happy

I found CDS rt processes in red. I did 'mxstreamrestart' from the medm. It did not help. Also ssh'd into c1iscex and tried 'mxstreamrestart' from the command line. It did not work either.

I thought restarting frame builder would help. I ssh'd to fb. But when I try to restart fb I get the following error:

controls@fb ~ 0$ telnet fb 8088
telnet: connect to address Connection refused



  8894   Mon Jul 22 21:23:04 2013 manasaUpdateGeneralVent preparation - In progress

[Gautam, Manasa]

Green steering mirrors have been swapped with PZT mirrors at the X end table. We aligned the green to the X arm.

X arm green transmission +PSL green  ~ 0.95

That's better than before the swap...woohooo

  8899   Tue Jul 23 03:43:32 2013 manasaUpdateGeneralVent preparation - In progress

There seems to be an unexplained oscillation in X arm cavity transmission for IR when the cavity is locked using the POX error signal.

Their origin is not related to the oplevs because the oscillation does not exist when LSC is OFF and the arms are controlled only by the oplevs and OSEMs.

  8923   Thu Jul 25 13:54:35 2013 manasaUpdateGeneralPR3 clamped and Y arm is back flashing

[Jenne, Annalisa, Manasa]

After yesterday's flipping of PR3, we lost our input pointing. Koji spent a few hours last night but couldn't restore the Y arm. I did my set of trials this morning which also didn't help.

So Jenne and I went ahead and requested Steve to get the ETMY door off.

We set the tiptilts TT1 and TT2 to the slider values from yesterday and started aligning the PR3 to hit the center of ITMY.
When we were hitting close to the center of ITMY, we decide to use the tip-tilts because the movement of PR3 was coarse at this point.
We used TT1 to get the beam to the center of ITMY and TT2 to get the beam at the center of ETMY. We did this iteratively until we were at the center of both the ITMY and ETMY.
We then went to fix IPANG.
The IPANG steering mirror on the BS table was steered to hit the center of the steering mirrors at the ETMY table. We aligned the beam to the IPANG QPD on the green endtable. The steering mirror on the BS table was then steered to misalign the beam in pitch by an inch at the last IPANG steering mirror. This should fix the IPANG clipping we have everytime we pump down.
We closed the chambers with light doors and saw IR flashing in the arm cavity. Koji is now trying to lock the cavity with IR.

  8929   Fri Jul 26 22:45:14 2013 manasaUpdateGeneralVent progress

[Koji, Manasa]

The arms were brought back to resonance after yesterday's vent work.
DCPD gains were changed (TRX gain from -0.002 to -0.04; TRY gain changed from 0.002 to 0.04) to lock the arm with low power. 
X arm and Y arm were locked for IR.

We then decided to align IPANG because the input pointing seemed good - the right time to fix IPANG. The IPANG spot at the last in-vac steering mirror was aligned to be an inch low in pitch.
We then aligned SRC. SR2 and SR3 were adjusted to center the beam at SRM. SRM was aligned to the retro-reflected beam until we saw flashes. But this position of SRM is not at the good OSEM range. We should correct the SRM suspensions. We postponed this activity for next week and went ahead to look at the status of the AS beam.
Looking through the window and using IR viewer were not convincing enough. We will have to get the access connector out on Monday to do the AS alignment.
We then closed the chamber with light doors and locked the arm cavities again. We brought SRC and PRC to resonance and saw strong flashes at the BS_PRM camera. 
To do:
SRM need to be moved in order to remove the big bias in yaw
SRM OSEMS need to be adjusted
Access connector should come out
AS needs to be aligned satisfactorily
ITMX oplev steering mirrors in vacuum should be checked.
  8937   Tue Jul 30 11:30:55 2013 manasaUpdateGeneralITMX oplev


[Koji, Manasa, Sujan]

The ITMX oplev was also checked from the windows without removing the door.
The beam is actually hitting the right positions of the steering mirror and the test mass
although there are lots of stray beams because of the BS oplev and some halo assciated with the ITMX He-Ne laser(!?).

[Steve, Gautam, Manasa]

While we checked the ITMX oplev situation yesterday, we found that the beam hitting the ITM and the in-vacuum steering mirrors had  a halo around them. We used the set of irides in the path of the ingoing beam and cut the stray light around the beam. This reduced the intensity of the halo around the mirrors. We noticed that the halo accounted for 2000 counts of 6500 at the oplev QPD. We tried changing the laser and this did not make the situation any better.

Also there are a couple or more strong stray beams from the BS oplev.

I suspect that the BS oplev leakage is messing with the ITMX oplev. Why?? We have been seeing the breathing of transmitted beam from the X arm cavity and the shadow sensor readings have been bigger than usual since the last vent (when we changed the BS oplev path). Also, the ingoing oplev beam is close to clipping at the PR2 stack.

I think it would be best to open the ITMX chamber and modify the in-vac steering mirror layout of the oplev.

  8939   Tue Jul 30 15:38:24 2013 manasaUpdateGeneralITMX oplev


I wonder what optics is causing the halo on the oplev beam.
It this comes from any uncoated lens (or similar) it should be identified.

We identified this to be coming from the uncoated concave lens that we have right after the He-Ne laser which should also be replaced in addition to the other problems with the oplev.

  8941   Tue Jul 30 18:56:31 2013 manasaUpdateGeneralITMX chamber vented/Closing plan


We removed the ITMX heavy door to fix the oplev situation. 

My Plan for closing:

Today: I will work on the ITMX oplev situation today and go through the vent close-up checklist as far as I can get.
Tomorrow: We will do the final alignment check tomorrow with the light doors. The access connector and heavy doors should go in place late afternoon.
Thursday: We will start pumping down early in the morning on Thursday.

  8944   Wed Jul 31 00:59:58 2013 manasaUpdateGeneralITMX chamber vented/Closing plan

My Plan for closing:

Today: I will work on the ITMX oplev situation today and go through the vent close-up checklist as far as I can get.

[Alex, Sujan, Manasa]

The ITMX oplev steering mirrors were laid out such that they were out of the way of the BS oplev leakage. But the halo associated with the He-Ne laser does exist even now. I conclude that this is something that can be dealt with after we pump down as well. So I did not change the ITMX oplev optics on the POX table.

BS, PRM, ITMY and SRM oplevs were aligned and centered.

We want to do IPANG and IPPOS alignment when the IFO is aligned satisfactorily and right before we put the heavy doors.

The arms were aligned and ASS'd before I went in to fix the oplevs. I haven't done anything but deal with the oplevs tonight. So I am being lazy by assuming the alignment is still good and calling it a night.

Tomorrow: We will do the final alignment check for the arms, PRC and SRC with the light doors on. Check IPANG and IPPOS. The access connector and heavy doors should go in place late afternoon.
Thursday: We will start pumping down early in the morning on Thursday.

  8948   Wed Jul 31 21:12:05 2013 manasaUpdateGeneralPump down called off

[Koji, Manasa]

We missed to check that we had the green transmitted to the PSL after flipping the SRC and PRC folding mirrors.
There is no green transmission reaching the PSL even after locking the arms to green.

We should fix this tomorrow. The BS heavy door should come off.

Steve! Do not start pump down tomorrow !

  8958   Thu Aug 1 22:49:31 2013 manasaUpdateGeneralGreen status after PR3 flipping investigated

[EricQ, Koji, Manasa]

We opened the BS chamber to check the status of the green beams. The X green has 3 steering mirrors before they hit periscope1 and the Y green transmits through all the optics giving no way to steer it.

We agreed to start fixing the Y green. The wedge angle of PR3 is steering the transmitted beam away in both pitch and yaw. Since we are restricted only to yaw movement (done by moving the periscope), we want he wedge angle to be oriented in the yaw as well.

Right now, the wedge is oriented at about 20-30 deg off (The mark on the side of the mirror does not indicate the wedge). So we see a pitch as well as yaw misalignment in the transmitted beam. The pitch misalignment is making the beam fall off the mirrors in periscope2. 

We have decided to get the wedge angle set right for PR3 and redo the alignment for IR. Once we are aligned for the IR, we will modify the green layout.

  8965   Mon Aug 5 18:02:34 2013 manasaUpdateGeneralClose up list checked
  • Center beam on all AS optics

    • We must get images right before closing, right after closing, etc.
  • Make sure REFL is clear
    • dither PRM, see motion on AP tables
  • Make sure AS is clear
    • dither BS/ITM, see motion on AP tables
  • Using IPANG/POS pick-off mirrors, center beams on:
    • IPPOS
    • IPANG (aligned low in pitch)
  • Check green alignment in the arms and make sure the transmitted green reaches the PSL table.
  • Check all OpLevs centered, in and out of vacuum

    [Jenne, Manasa]

    IPANG needed to be re-aligned today. Heavy doors are in place and bolts tight (torque 25 & 45).

    Steve! We are ready for pump down!

    I will check the IFO alignment once again early tomorrow morning before Steve starts pumping down.






  8969   Tue Aug 6 07:52:58 2013 manasaUpdateGeneralReady to pump down

I did an alignment check of the IFO before we start pumping down.

Arms were locked. PRM and SRM were aligned. Green was aligned to the arms for reference during the pump down.

Steve! It's a GO!

MC spot positions:




Oplevs were all centered yesterday and haven't drifted much. So I left them as is.


QPDs (IPPOS aligned from yesterday.


  8986   Thu Aug 8 11:18:46 2013 manasaUpdateComputer Scripts / ProgramsUnused scripts in ASS moved

I was receiving missing path error when I was trying to measure the MC spot positions. Jenne pointed out that Koji had moved all the unused scripts in scripts/ASS to /scripts/ASS/OBSOLETE yesterday and in the process one of the scripts that the MC spot position measurement script calls for (MeasureSpotPositions.py) must have also been moved to the OBSOLETE directory. I moved the script to /scripts/ASS/MC so that we know the script is being used and also changed its path in the main script.

  9000   Mon Aug 12 21:27:03 2013 manasaUpdateCDSc1iscex needs help

I started to modify the c1asx model to reduce the RFM model from hitting its max time.
Instead of bringing in ASS, I have modified ASX to do everything and only the clock signals to ITMX pitch and yaw are now going through RFM. RFM is still hitting 62usec and I suppose that is because of the problems with c1iscex.

c1iscex not happy

Cause and symptoms

While restarting the models, c1iscex crashed a couple of times because of some errors and had to be powercycled. The models were modified and they seem to start ok.
But it looks like there is something wrong with c1iscex since the models were started. The GPS time is off and C1:DAQ-DC0_C1X01_CRC_SUM keeps building up even for c1x01 which was left untouched.

Trial treatments

1. Since c1x01 ans c1spx were not touched,c1scx and c1asx were killed and we tried to start the other models. This did not help.
2. Koji did a manual daqd restart which did not help either.

We are leaving c1iscex as is for the time being and calling Jamie for help.

P.S. While making the models, I had created IPCx_PCIE blocks in c1iscex which do not exist. I changed them to RFM and SHMEM blocks. This did not allow me to compile the model and was only spitting errors of IPCx mismatch. After some struggle and elog search I figured out from an old elog that eventhough the IPCx blocks are changed in the model, the old junk exists in the ipc file in chans directory. I deleted all junk channels related to the ASX model. The model compiled right away.

  9008   Tue Aug 13 21:09:03 2013 manasaUpdateGreen LockingArms ready for ALS

I aligned both the X and Y end green to the arms.

The transmitted green were aligned at the PSL table green optics to the beat PDs.
Beat notes were retrieved.
To do:
1. Check Y arm ALS with previous performance.
2. Troubleshoot X arm ALS.
3. Edit the automation scripts for ALS.
4. Modify ALS model to talk to LSC instead of suspension models.
  9014   Thu Aug 15 12:30:17 2013 manasaUpdateGreen LockingLost beat notes

[Koji, Nic, Manasa]

Update from last night.

Koji and I realigned the green optics on the PSL to start working on the ALS.

We set on a beat note search. We couldn't find the beat note between any of the arm green transmission and the PSL green. All we could see was the beat between the X arm and the Y arm green leakage.

Since we had the beatnote between the 2 green transmission beams, we decided to scan the PSl temperature. We scanned the SLOW actuator adjust of PSL; but couldn't locate any beat note. The search will continue again today.

  9015   Thu Aug 15 19:05:07 2013 manasaUpdateGreen LockingALS out of loop noise

Beat notes were recovered for both the arms.

I locked the arms to IR using PDH and measured the ALS out of loop noise at the phase tracker output.

The Y arm has the same 300Hz/rtHz rms. The X arm rms noise measures nearly the same as the Y arm in the 5-500Hz region (X arm has improved nearly 10 times after the last whitening filter stage change  old elog ).

The noise in the ALSX error signals could be related to the bad alignment and conditions at the X end.

Attachment 1: ALS_OutLoop.pdf
  9033   Mon Aug 19 16:18:56 2013 manasaUpdateGreen LockingXend green aligned

ASX scripts for PZT dither have been fixed appropriately. Script resides in scripts/ASX.

You can run the scripts from the ASX medm screen now.

  9065   Mon Aug 26 19:31:22 2013 manasaUpdateSUSPRM, ITMY watch dogs

PRM and ITMY were found with their watchdogs shutdown this afternoon (cause unknown). I re-engaged them.

  9066   Mon Aug 26 19:54:15 2013 manasaUpdateCDSc1als model modified

I had made changes to the c1als model a couple of weeks ago. I had removed all the beat_coarse channels that had existed from pre-phase tracker era.

Also, I forgot to elog about it then. This dawned on me only when I found that c1als isn't working the way it should right now.


  9070   Tue Aug 27 15:44:08 2013 manasaUpdateCDSIssues with ALS fixed

I figured out the problem with ALS from yesterday. While the model was just fine, the medm screens were not checked if they were reading the correct channel names. 

The channel names of the ALS input matrix elements had changed when the coarse channels were deleted from the c1als model. So the error signals were not reaching the servo modules as expected. This is why I was not able to make sense as to what the ALS was doing. 

All is fixed now and should be back to normal

  9079   Wed Aug 28 05:21:58 2013 manasaUpdateCDSCDS svn commits not happening

I am responsible for missed svn commits with als and asx. I have committed them.

But I have not modified anything with ioo in the last few weeks.


  9080   Wed Aug 28 06:17:15 2013 manasaUpdateComputer Scripts / Programsalias for MATLAB2010

Although Matlab 2013 has not been causing any visible trouble so far, it takes a while to startup.

I have added alias 'ml10' to bash to start Matlab 2010 from the terminal for convenience.

  9081   Wed Aug 28 06:26:28 2013 manasaUpdateComputer Scripts / ProgramsASS req and snap files edited

[From yesterday] ASS for X arm was behaving slightly funny over the last couple of days. ASS could not correct the BS misalignment. Jenne pointed out that the LSC output matrix on the ASS medm screen set itself to zeroes whenever we ran the ASS_dither_ON script. I checked the burt request file: ASS_DITHER_ON.req  in /opt/rtcds/caltech/c1/scripts/ASS and found that the LSC output matrix channels were not added to it. I added these channels for both the X and Y arm. Following this, I also edited the corresponding snap file as well. This should now set the LSC matrix to the right values everytime we run the script.

  9082   Wed Aug 28 07:33:51 2013 manasaUpdateLSCMICH locking

I wanted to measure the OLTF of MICH.

What I did:
1. Ran LSC offsets script to zero all the offsets.

2. Restored the IFO configure settings for locking Michelson (locked on AS55Q).

3. MICH wouldn't lock on these settings.

4. The MICH servo was hitting its limits (10000 counts). I checked the filter module. After a little bit of looking into things, I disabled FM3 (0,0:5,5), FM4 (1:10) and FM7 (1:5). FM3 and FM7 were filter modules that were switched ON at the trigger. I set these to manual. Enabling any of the filters (FM3, FM4, FM7) caused MICH to lose lock.

5. MICH gain was changed from -20 to -30. MICH locked with ASDC suppressed to 0.01 counts. I looked at the power spectrum of C1:LSC-MICH_OUT on dtt. //edit: Manasa// The plot (uncalibrated) now shows MICH_OUT power spectrum with MICH PSL shutter closed, free-running MICH and loop-enabled MICH.

6. I then wanted to measure the OLTF of MICH using dtt. A channels were set to C1:LSC-MICH_IN1/C1:LSC-MICH_IN2 and excitation given through C1:LSC-MICH_EXC. But I have not been able to get any good coherence for the measurement as yet.

Attachment 1: MICH.pdf
  9102   Wed Sep 4 16:08:22 2013 manasaUpdateSUSMC2 tickler turned OFF

 [Jenne, Manasa]

While we were trying to relock the MC after Jenne put back the RF box, we found there was some mysterious motion in MC2. After spending time trying to figure out where this was coming from, the source was found to be at LOCKIN2 of MC2 suspension "The MC TICKLERthat was left enabled. This was turned OFF and MC locked just fine after that.


EDIT JCD:  The Tickler should be disabled, if the autolocker is disabled.

  9105   Wed Sep 4 20:47:15 2013 manasaUpdateLSCCalibrated in-loop MICH noise

To estimate in-loop MICH noise:

(a) Calibrate MICH_ERR:

1. Lock the arms for IR using POX11 and POY11.
2. Misalign the ETMs.
3. Obtain the average peak-to peak (bright to dark fringe) counts from the time series of AS55_Q_ERR. I measured this to be d = 6.358 counts.
4. This gives the calibration factor for AS55_Q_ERR [Calibration factor = 2*pi*d/1064/10^-9 = 3.7546x10^7 counts/m]

(b) In-loop MICH noise:

1. Lock MICH using AS55_Q.
2. Since LSC input matrix sets MICH_IN1 = 1* AS55_Q_ERR, the power spectrum measured using dtt and calibrated using the calibration factor from step 4 in (a) gives us the calibrated in-loop MICH noise.

The plot below shows the in-loop MICH noise and the dark noise (measured by closing the PSL shutter):

Compared with old measurements done by Keiko elog 6385 the noise levels are much better in the low frequency region below 100 Hz.
(No, no, no... this is not an apple-to-apple comparison: KA)

Attachment 1: MICH_noise.pdf
  9137   Wed Sep 18 11:29:43 2013 manasaUpdateCDSDataviewer cannot connect to fb

Masayuki pointed out that dataviewer wasn't connecting to the fb this morning.

When I started dataviewer from the terminal I obtained the following error:

controls@pianosa:~ 0$ dataviewer
Can't find hostname `fb:8088'
Can't find hostname `fb:8088'; gethostbyname(); error=1
Warning: Not all children have same parent in XtManageChildren
Warning: Not all children have same parent in XtManageChildren
Warning: Not all children have same parent in XtManageChildren
Warning: Not all children have same parent in XtManageChildren
Warning: Not all children have same parent in XtManageChildren
Error in obtaining chan info.
Can't find hostname `fb:8088'
Can't find hostname `fb:8088'; gethostbyname(); error=1

I checked the CDS FE status screen and it looks normal. I could ping the fb and ssh to it as well.

I restarted fb to see if it made any difference. telnet fb 8088

It hasn't helped. Anything else that can be done??


  9170   Fri Sep 27 16:02:23 2013 manasaUpdateGreen LockingY arm ALS phase tracking loop gain changed

[Masayuki, Manasa]

While trying to lock the arms using ALS we found that the locks were not very stable and the in-loop noise was higher than seen before.

I looked into things and checked the out-of loop noise for ALS and found that the Y arm ALS noise (rms) was higher than the X arm.

To troubleshoot, I measured the OLTF of the phase tracking loop. While X arm was healthy, things weren't looking good for the Y arm. Sadly, the Y phase tracking loop gain was set too high with a phase margin of -2 degrees. We brought down the gain from 300 to 150 and set the phase margin close to ~55 degrees.

X arm Phase tracker loop:
UGF = 1.8 K Hz
Phase margin = 50 degrees

Y arm Phase tracker loop:
UGF = 1.6 KHz
Phase margin = 55 degrees

Attachment 1: outofloop.pdf
Attachment 2: PTX_OLTF.pdf
Attachment 3: YPT_OLTF_after1.pdf
Attachment 4: YPT_OLTF_before.pdf
  9171   Fri Sep 27 20:28:10 2013 manasaUpdateGreen LockingALS servo

[Masayuki, Manasa]

I. ALS servo loops
After fixing things with the phase tracking loop, we checked if things were good with the ALS servo loops.
We measured the OLTF of the X and Y arm ALS servo loops. In both cases the phase margin was ~20 degrees. There was no room to set enough phase margin. So we looked at the servo filters. We tried to modify the filters so that we could bring enough phase margin, but could not get at it. So we put back the old filters as they were.

 attachment1: OLTF of the ALS XARM and YARM control loops

attachment2: Current phase budget. FM4 and FM10 are the boost filters.

II. ALS in-loop noise
Also, I found that the overall noise of the ALS servo has gone up by about two orders of magnitude (in Hz/rtHz) over the whole range of frequencies for both the arms from the last time the measurements were made. I suspect this could be from some change in the calibration factor. Did anybody touch things around that could have caused this? Or can somebody recollect any changes that I made in the past which might have affected the calibration? Anyways, I will do the calibration again.



Attachment 1: OLTF.pdf
Attachment 2: phase_badget_xarm_ALS.pdf
  9176   Mon Sep 30 17:55:45 2013 manasaUpdateGreen LockingX and Y arm transmission needs to be decoupled

[Masayuki, Manasa]

We wanted to lock both the arms using ALS and get IR to resonate while arms are held using ALS. The X arm was locked using ALS and offsetter2 was used to scan the arm and find IR resonance. The Y arm was locked using ALS. But as the Y arm was brought closer to IR resonance, the X arm ALS loses lock. (attachment 1)

We believe that this comes from the X and Y transmission not being well separated at the PSL table. The PBS is not sufficient to decouple them (A strong beatnote ~35dB between the X and the Y arm green lasers can be seen on the spectrum analyzer).

Decouple the X and Y arm transmitted beams at the PSL table. I am trying to find a wedged mirror/window that can separate the 2 beams at the PSL table before the beat PD (sadly the laseroptik HR532nm optics have no wedge)


Attachment 1: scan2.png
  9178   Mon Sep 30 23:56:19 2013 manasaUpdateGreen LockingALS autolocker flowchart

[Masayuki, Manasa] 

Flowchart for ALS autolocker. The error signal thresholds will be decided by trial and error.


  9195   Thu Oct 3 09:01:06 2013 manasaUpdateGreen LockingALS high frequency noise

 As I was trying to solve the 2 arm ALS problem, I found the Y arm ALS not so stable AGAIN :( . I measured the in-loop noise of the X arm as ~400Hz/rtHz (60 picometers).

I went ahead and checked the out of loop noise of the ALS and found there is some high frequency noise creeping in above 20Hz for the Y arm ALS (blue curve). I checked the UGFs and phase margins of the phase tracker loops and found they were good (UGF above 1.4KHz and phase margins between 40 and 60 degrees).

So the suspect now is the PDH servo loop of both the arms which has to be checked.

Attached is the out-of loop noise plots of X and Y arm ALS.

Attachment 1: ALS_outloop.pdf
  9198   Thu Oct 3 13:54:25 2013 manasaUpdateGreen LockingALS out-of loop noise

We found the PDH servo gain for Y arm green was set at 2 (too low). The gain was set to 8.6 (based on earlier OLTF measurement elog 8817).

The ALS out-of loop noise was remeasured. We also measured the out-of loop noise of each arm while the other arm had no green (shutter closed). There doesn't seem to be any difference in the noise (between green and orange for Y arm and red and pink for the X arm) except that the noise in the X arm was slightly low for the same conditions (blue and red)  when measurement was repeated.

TRANSLATION by Jenne:  We first locked both X and Y for IR using the LSC, and X and Y for green using the analog PDH servos.  We measured the _PHASE_OUT_Hz calibrated error signals for both X and Y in this configuration - this gives us the out of loop noise for the ALS system, the Green and Blue traces in the plot.  We then closed the X end shutter, and measured the Y arm's error signal (to check to see if there is any noise contribution from the suspected X-Y cross beatnote).  Then, we closed the Y end shutter, relocked the Xarm on green's 00 mode, and measured the X arm's error signal.  We weren't sure why the Pink curve was smaller than the Blue curve below a few Hz, so we repeated the original measurement with both arms dichroic.  We then got the Red curve.  So, we should ignore the blue curve (although I still wonder why the noise changed in such a short time period - I don't think we did anything other than unlock and relock the cavity), and just see that the Green and Gold curves look similar to one another, and the Red and Pink curves look similar to one another.  This tells us that at least the out of loop noise is not affected by any X-Y cross beatnote.

Attachment 1: ALS_outloop.pdf
  9219   Tue Oct 8 00:21:01 2013 manasaHowToGreen LockingALS arm stabilization

Step by step procedure for stabilizing arms using ALS servo:

The procedure is the same for both the arms. 

0. Check that the ALS arm servos are turned OFF and not sending any signals to the ETM suspensions. 

1. Find the beat note by varying the laser temperature (moving the slider for SLOW_SERVO2_OFFSET).
Tip: It is easier to have the arms locked using IR PDH while searching for the beat note. Also check the stability of the MC. Unstable MC will cause the PSL temperature to drift and thereby affect the beat frequency.

2. Once you have the beat note, check if the beat amplitude is ~ -15 to -20 dBm. If the amplitude is small, then the alignment needs to be fixed (either the green input pointing at the end tables or the PSL green alignment). This is important because the UGF of the phase tracking loop (should be above 1KHz) changes with the amplitude of the beat note.
Also the beat frequency should be < 100 MHz; preferably below 80 MHz.

3. Disable IR PDH locking if you had used it while searching for the beat note. 

4. Press CLEAR HISTORY button for the phase tracker servo. Check if the phase tracking loop is stable (phase tracker servo output counts should not be ramping up). If the phase tracker is not stable, check the servo gain and phase margin of the loop.

5. Turn OFF all filters in the ALS arm servo filter module except for FM5 (phase compensation filter). With ALS arm servo gain set to zero, enable the arm servo and allow ALS control signals to be sent to the ETM suspensions.

5. Open dtt and look at the power spectrum of the ALS error signal (C1:ALS-BEAT?_FINE_PHASE_OUT_HZ). 

6. Set ALS arm servo gain +/- 0.1 to check the sign of the servo gain. Wrong sign of gain will make the loop unstable (beat note moving all over the frequency range on the spectrum analyzer). If this happens, set the gain to zero immediately and clear history of phase tracker servo. If you have set the correct sign for gain, the servo will stabilize the beat note frequency right away. 

7. Once you know the correct sign of the servo gain, increase the gain in steps while simultaneously looking at the power spectrum of error signal on dtt (it is convenient to set dtt measurements to low bandwidth and exponential measurement settings). Increase the gain until you can see a slight bump close to the UGF of the ALS servo (>100Hz). 
There have been times when this servo gain was in a few hundreds; but right now it varies from +/- 10-20 for both the arms. So we are stepping up gain in steps of +/- 2.

8. Enable filters (FM2, FM3, FM6, FM7, FM8). Wait to see the rms noise of the error signal go down (a few seconds).

9. Enable boost filter (FM10). There also exists a weaker boost filter (FM4) which we don't use any more. 


1. Beat frequency changes affect both the servo gain and sign of gain. So if you lose stability of ALS servo at any point, you should go through all the steps again.

2. At any point if the ALS arm servo becomes unstable (which can happen if the MC loses lock or if the beat frequency was too high ), change the servo gain to zero immediately. Turn OFF all the filters except for FM5 (if they were enabled) and reset phase tracker servo (CLEAR HISTORY button in the phase tracker filter module). Masayuki has written the down script that does all this. The script will detect arm servo loop instability by continuously looking at the feedback signal. Details about the script can be found here

Here is a cheat sheet that can give you an idea of the SLOW SERVO2 offset range to scan in order to find the beat note:

PSL temperature  X offset   Y offset
31.58                     5278       -10890
31.52                     5140       (not recorded)
31.45                     4810       (not recorded)
31.33                     4640       -10440
31.28                     4500       -10340

ELOG V3.1.3-