ID |
Date |
Author |
Type |
Category |
Subject |
12423
|
Thu Aug 18 15:16:09 2016 |
Steve | Update | SUS | SOS sus wire is in |
Stress Relieved 0.0017" Music Wire CFW P/N: CFW2035025, Made 08-17-2016
|
Old 2003 |
New 2016 |
|
GBL |
358.9 |
240.610 |
grams |
UTS |
357,061 |
229,603 |
PSI |
YTS |
343,211 |
177,371 |
PSI |
ELONG |
2.38 |
0.8 |
% |
HEAT |
10622 |
10622 |
|
GBL (grams breaking load )
UTS (ultimate tensile strength)
YTS (yield tensile strength)
ELONG (elongation)
Quote: |
0.0017" OD., 500ft steel music wire ordered. Pictures of the existing roll are below. It will be on 8" OD. spool too.
|
|
Attachment 1: 0.0017new.jpg
|
|
12379
|
Fri Aug 5 09:38:12 2016 |
Steve | Update | SUS | SOS sus wire ordered |
0.0017" OD., 500ft steel music wire ordered. Pictures of the existing roll are below. It will be on 8" OD. spool too.
|
Attachment 1: 0.0017.jpg
|
|
Attachment 2: 0.0017spec.jpg
|
|
12409
|
Mon Aug 15 14:29:32 2016 |
Steve | Update | SUS | SOS sus wire ordered |
The wire will arrive in 1-2 weeks. It is a new production. Brad Snook of Ca Fine Wire was suprised that we are still using the 13 years old wire. Oxidation is an issue with iron contained steel wire.
He would not give me a shelf life time on it. He recommended to check the strenght of it before usage. It passed with safety factor of 2 just recently.
In the future we'll store the new spool in oxigen free nitrogen environment..
Quote: |
0.0017" OD., 500ft steel music wire ordered. Pictures of the existing roll are below. It will on 9" OD. spool too.
|
|
12410
|
Mon Aug 15 14:34:33 2016 |
ericq | Update | SUS | SOS sus wire ordered |
We have indeed seen numerous tarnished/rusty points along the wires, and just tried to choose lengths free of any of these. I wonder if this can explain the brittleness/ease with which we've been breaking it. My feeling is that we should use the newer wire if feasible. |
12419
|
Wed Aug 17 22:09:04 2016 |
rana | Update | SUS | SOS sus wire ordered |
Not really true that it passed. That's just an arbitrary margin. Best to throw away all the old wire. We have no quantitative estimate of what the real torque should be. Its just feelings.
Quote: |
The wire will arrive in 1-2 weeks. It is a new production. Brad Snook of Ca Fine Wire was suprised that we are still using the 13 years old wire. Oxidation is an issue with iron contained steel wire.
He would not give me a shelf life time on it. He recommended to check the strenght of it before usage. It passed with safety factor of 2 just recently.
In the future we'll store the new spool in oxigen free nitrogen environment..
|
|
10821
|
Fri Dec 19 18:08:46 2014 |
Jenne | Update | CDS | SOS!!! HELP!! EPICS freeze 45min+ so far! |
[Jenne, Diego]
The EPICS freeze that we had noticed a few weeks ago (and several times since) has happened again, but this time it has not come back on its own. It has been down for almost an hour so far.
So far, we have reset the Martian network's switch that is in the rack by the printer. We have also power cycled the NAT router. We have moved the NAT router from the old GC network switch to the new faster switch, and reset the Martian network's switch again after that.
We have reset the network switch that is in 1X6.
We have reset what we think is the DAQ network switch at the very top of 1X7.
So far, nothing is working. EPICS is still frozen, we can't ping any computers from the control room, and new terminal windows won't give you the prompt (so perhaps we aren't able to mount the nfs, which is required for the bashrc).
We need help please! |
10822
|
Fri Dec 19 19:21:04 2014 |
diego | Update | CDS | SOS!!! HELP!! EPICS freeze 45min+ so far! |
Quote: |
[Jenne, Diego]
The EPICS freeze that we had noticed a few weeks ago (and several times since) has happened again, but this time it has not come back on its own. It has been down for almost an hour so far.
So far, we have reset the Martian network's switch that is in the rack by the printer. We have also power cycled the NAT router. We have moved the NAT router from the old GC network switch to the new faster switch, and reset the Martian network's switch again after that.
We have reset the network switch that is in 1X6.
We have reset what we think is the DAQ network switch at the very top of 1X7.
So far, nothing is working. EPICS is still frozen, we can't ping any computers from the control room, and new terminal windows won't give you the prompt (so perhaps we aren't able to mount the nfs, which is required for the bashrc).
We need help please!
|
[EricQ]
EricQ suggested it may be some NFS related issue: if something, maybe some computer in the control room, is asking too much to chiara, then all the other machines accessing chiara will slow down, and this could escalate and lead to the Big Bad Freeze. As a matter of fact, chiara's dmesg pointed out its eth0 interface being brought up constantly, as if something is making it go down repeatedly. Anyhow, after the shutdown of all the computers in the control room, a reboot of chiara, megatron and the fb was performed.
[Diego]
Then I rebooted pianosa, and most of the issues seem gone so far; I had to "mxstream restart" all the frontends from medm and everyone of them but c1scy seems to behave properly. I will now bring the other machines back to life and see what happens next. |
10823
|
Fri Dec 19 20:32:11 2014 |
diego | Update | CDS | SOS!!! HELP!! EPICS freeze 45min+ so far! |
[Diego, Jenne]
Everything seems reasonably back to normal:
Notes:
- the machines in the control room have been rebooted;
- the c1iscey frontend now behaves;
- I saw on nodus, which remained up and running the whole time, a bunch of nfs: server chiara is not responding, timed out messages, belonging to the freezing time; it may be that the sync option for the nfs share is too resource demanding, or some other network issue;
- the FSS was doing strange stuff and the MC couldn't recover the lock; the MCautolocker script wasn't running because of the lock loss of the MC and the lack of communication between the machines; so we did a sudo initctl start MCautolocker on megatron and recovered the MC too.
|
10961
|
Fri Jan 30 11:37:20 2015 |
manasa | Frogs | Treasure | SP table madness ends |
SP table has been a mess because Q and I had let our SURF leave without cleaning up.
I cleaned up the SP table, put things back where they belong and did some sorting. I will put back the optomechanics where they belong sometime later.
For now, check out the SP table next time you are looking for a Y1 or lens or BS.


|
2485
|
Fri Jan 8 10:03:04 2010 |
Alberto | Omnistructure | LSC | SPOB shutter was closed |
This morning I found that there was no light on the SPOB PD. I went looking at the photodetector and I found that the shutter in front of it was closed.
I switched the shutter driver from n.c. to n.o. which had the effect of opening it.
I guess we inadvertently closed the shutter with Rana when last week we were tinkering with the ITMY camera. |
16610
|
Fri Jan 21 11:24:42 2022 |
Anchal | Summary | BHD | SR2 Input Matrix Diagonalization performed. |
The free swinging test was successful. I ran the input matrix diagonalization code (/opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/sus_diagonalization.py) on theSR2 free-swinging data collected last night. The logfile and results are stored in /opt/rtcds/caltech/c1/Git/40m/scripts/SUS/InMAtCalc/SR2 directory. Attachment 1 shows the power spectral density of the DOF basis data (POS, PIT, YAW, SIDE) before and after the diagonalization. Attachment 2 shows the fitted peaks.
Free Swinging Resonances Peak Fits
|
Resonant Frequency [Hz] |
Q |
A |
POS |
0.982 |
340 |
3584 |
PIT |
0.727 |
186 |
1522 |
YAW |
0.798 |
252 |
912 |
SIDE |
1.005 |
134 |
3365 |
SR2 New Input Matrix
|
UL |
UR |
LR |
LL |
SIDE |
POS |
1.09
|
0.914
|
0.622
|
0.798
|
-0.977
|
PIT |
1.249
|
0.143
|
-1.465
|
-0.359
|
0.378
|
YAW |
0.552
|
-1.314
|
-0.605
|
1.261
|
0.118
|
SIDE |
0.72
|
0.403
|
0.217
|
0.534
|
3.871
|
The new matrix was loaded on SR2 input matrix and this resulted in no control loop oscillations at least. I'll compare the performance of the loops in future soon.
|
Attachment 1: SR2_SUS_InpMat_Diagnolization_20220121.pdf
|
|
Attachment 2: SR2_FreeSwingData_PeakFitting_20220121.pdf
|
|
8916
|
Wed Jul 24 13:41:13 2013 |
Jenne | Update | SUS | SR2 flipped |
[Jenne, Annalisa]
SR2 is flipped, and reinstalled. We did that before lunch, and we're about to go in and work on SR3 and PR3.
EDITS / Notes:
I set dog clamps to have a reference position of where the tip tilt was, then I removed SR3 from the chamber. Once out, I followed the same procedure I used for PR2 during the last vent - I removed the whole suspension (top mount, wires, optic) from the cage, and laid it down flat. Then I loosened the set screw which pushes on the teflon nudge, removed the mirror, inspected it, and put it back in, with the HR side facing the back side of the ring. Then I replaced the suspension system in the cage, and put the mirror back into the chamber.
When I loosened the teflon nudge at the top of the mirror holder ring, the optic seemed to fall down a tiny bit. I think this implies that the HR surface of the optic did not used to be parallel to the front face of the mirror holder ring. When I put the suspension back onto the cage, the pitch balancing was very bad. We checked the level of the table that I had the cage on, and it was miraculously pretty level, so I did the pitch balancing out of the chamber.
Also, during my quick inspection of the mirror (not thorough, just using room lights), I noticed a small fleck of lint near the edge of the optic on the HR surface. The HR surface is now on the outside of the SRC, but we should still blow at the optic with the ionized nitrogen to get it off.
I did not think to check the fine-tuning alignment of SR2....Koji did that after lunch (which I will elog about in a separate elog).
|
8918
|
Wed Jul 24 15:07:54 2013 |
Koji | Update | SUS | SR2 flipped |
After the first flipping, X/Y arms were aligned and locked. Then the ASS aligned the arms. |
16609
|
Thu Jan 20 18:41:55 2022 |
Anchal | Summary | BHD | SR2 set to trigger free swing test |
SR2 is set to go through a free swinging test at 3 am tonight. We have used this script (Git/40m/scripts/SUS/InMatCalc/freeSwing.py) reliably in the past so we expect no issues, it has a error catching block to restore all changes at the end of the test or if something goes wrong.
To access the test, on allegra, type:
tmux a -t SR2
Then you can kill the script if required by Ctrl-C, it will restore all changes while exiting.
|
8924
|
Thu Jul 25 14:02:53 2013 |
Jenne | Update | SUS | SR3, PR3 flipped |
Yesterday afternoon, I went back into the BS chamber, and flipped both PR3 and SR3. Now all of the recycling cavity folding mirrors have been flipped.
For PR3, I followed the same procedure as SR2, setting a reference position, removing the optic, flipping it, etc. When I put it back in, I realized that since this has a 41 degree angle of incidence, the beam going to the BS had translated north by ~1cm. After some fiddling, Koji pointed out that the 2 degree wedge probably had a more significant effect than just the HR surface having moved back a small amount. Anyhow, we adjusted PR3 such that we were going through the BS aperture, as well as the ITMY aperture.
During the flip of PR3, Annalisa and I noticed that the arrow on the barrel of the LaserOptik mirrors also indicates the thickest part of the wedge. This is opposite of our SOS optics, where the arrow's position on the barrel indicates the thinnest part of the wedge. For both PR3 and SR3, I kept the arrow on the same side of the optic as it was originally.
I then flipped SR3, following again the same procedure. PR3 I had done a tiny bit of pitch rebalancing, although I think it was unneccessary, since it is within what we can do with the poking/hysterisis method. SR3 I did not do any pitch rebalancing. With PR3 aligned at least to the ITM, Koji and I aligned SR3 and SR2 so that the AS beam was hitting the center of all the SRC optics. We also adjusted the steering mirrors after the SRM to get the beam centered on PZT3, the last optic on the BS table, which launches the beam over to the OMC chamber. We scanned around a bit by turning the PZT's knobs, but we were unable to see the AS beam on the camera.
|
9376
|
Wed Nov 13 18:32:04 2013 |
Nic, Evan | Update | ISS | SR560 ISS loop |
We have implemented an SR560-based ISS loop using the AOM on the PSL table. This is a continuation of the work in 40m:9328.
We dumped the diffracted beam from the AOM onto a stack of razor blades. This beam is not terribly well separated from the main beam, so the razor blades are at a very severe angle. Any alternatives would have involved either moving the AOM or attempting to dump the diffracted beam somewhere on the PMC refl path. We trimmed the RF power potentiometer on the driver so that with 0.5 V dc applied to the AM input, about 10% of the power is diverted from the main beam.
We ran the PMC trans PD into an AC-coupled SR560. To shape the loop, we set SR560 to have a single-pole low- pass at 300 Hz and an overall gain of 5×104. We take the 600 Ω output and send it into a 50 Ω feed-through terminator; this attenuates the voltage by a factor of 10 or so and thereby ensures that the AOM driver is not overdriven.
The AOM driver's AM input accepts 0 to 1 V, so we add an offset to bias the control signal. The output of the 50 Ω feedthrough is sent into the 'A' input of a second SR560 (DC coupled, A − B setting, gain 1, no filtering). Using a DS345 function generator, a 500 mV offset is put into the 'B' input (the function generator reads −0.250 V because it expects 50 Ω input). The 50 Ω output of this SR560 is sent into the AOM driver's AM input.
A measurement of suppressed and unsuppressed RIN is attached. We have achieved a loop with a bandwidth of a few kilohertz and with an in-loop noise suppression factor of 50 from 100 Hz to 1 kHz. This measurement was done using the PMC trans PD, so this spectrum may underestimate the true RIN. |
Attachment 1: psl_aom_overhead.jpg
|
|
Attachment 2: aom_driver.jpg
|
|
Attachment 3: loop_on_settings.jpg
|
|
Attachment 4: fxn_gen.jpg
|
|
Attachment 5: 40m_iss.pdf
|
|
9380
|
Wed Nov 13 20:02:12 2013 |
Nic, Evan | Update | ISS | SR560 ISS loop |
Quote: |
We have implemented an SR560-based ISS loop using the AOM on the PSL table. This is a continuation of the work in 40m:9328.
We dumped the diffracted beam from the AOM onto a stack of razor blades. This beam is not terribly well separated from the main beam, so the razor blades are at a very severe angle. Any alternatives would have involved either moving the AOM or attempting to dump the diffracted beam somewhere on the PMC refl path. We trimmed the RF power potentiometer on the driver so that with 0.5 V dc applied to the AM input, about 10% of the power is diverted from the main beam.
We ran the PMC trans PD into an AC-coupled SR560. To shape the loop, we set SR560 to have a single-pole low- pass at 300 Hz and an overall gain of 5×104. We take the 600 Ω output and send it into a 50 Ω feed-through terminator; this attenuates the voltage by a factor of 10 or so and thereby ensures that the AOM driver is not overdriven.
The AOM driver's AM input accepts 0 to 1 V, so we add an offset to bias the control signal. The output of the 50 Ω feedthrough is sent into the 'A' input of a second SR560 (DC coupled, A − B setting, gain 1, no filtering). Using a DS345 function generator, a 500 mV offset is put into the 'B' input (the function generator reads −0.250 V because it expects 50 Ω input). The 50 Ω output of this SR560 is sent into the AOM driver's AM input.
A measurement of suppressed and unsuppressed RIN is attached. We have achieved a loop with a bandwidth of a few kilohertz and with an in-loop noise suppression factor of 50 from 100 Hz to 1 kHz. This measurement was done using the PMC trans PD, so this spectrum may underestimate the true RIN.
|
A small followup measurement. Here are spectra of the MC trans diode with and without the ISS on. The DC value of the diode (in counts) changed from 17264.2 (no ISS) to 17504.3 (with ISS), but I didn't account for this change in the plot.
There is a small inkling of benefit between 100Hz and 1kHz. Above about 100Hz, the RIN is suppressed to about the noise level of this measurement. Below 100Hz there is no change, which probably means that power fluctuations are introduced downstream of the AOM, which argues for an outer-loop ISS down the road.
Atm #2 is in units of RIN. |
Attachment 1: ISS_560_rot.pdf
|
|
Attachment 2: ISS_560cal.pdf
|
|
9392
|
Fri Nov 15 10:31:45 2013 |
Steve | Update | ISS | SR560 ISS loop connection |
Quote: |
Quote: |
We have implemented an SR560-based ISS loop using the AOM on the PSL table. This is a continuation of the work in 40m:9328.
We dumped the diffracted beam from the AOM onto a stack of razor blades. This beam is not terribly well separated from the main beam, so the razor blades are at a very severe angle. Any alternatives would have involved either moving the AOM or attempting to dump the diffracted beam somewhere on the PMC refl path. We trimmed the RF power potentiometer on the driver so that with 0.5 V dc applied to the AM input, about 10% of the power is diverted from the main beam.
We ran the PMC trans PD into an AC-coupled SR560. To shape the loop, we set SR560 to have a single-pole low- pass at 300 Hz and an overall gain of 5×104. We take the 600 Ω output and send it into a 50 Ω feed-through terminator; this attenuates the voltage by a factor of 10 or so and thereby ensures that the AOM driver is not overdriven.
The AOM driver's AM input accepts 0 to 1 V, so we add an offset to bias the control signal. The output of the 50 Ω feedthrough is sent into the 'A' input of a second SR560 (DC coupled, A − B setting, gain 1, no filtering). Using a DS345 function generator, a 500 mV offset is put into the 'B' input (the function generator reads −0.250 V because it expects 50 Ω input). The 50 Ω output of this SR560 is sent into the AOM driver's AM input.
A measurement of suppressed and unsuppressed RIN is attached. We have achieved a loop with a bandwidth of a few kilohertz and with an in-loop noise suppression factor of 50 from 100 Hz to 1 kHz. This measurement was done using the PMC trans PD, so this spectrum may underestimate the true RIN.
|
A small followup measurement. Here are spectra of the MC trans diode with and without the ISS on. The DC value of the diode (in counts) changed from 17264.2 (no ISS) to 17504.3 (with ISS), but I didn't account for this change in the plot.
There is a small inkling of benefit between 100Hz and 1kHz. Above about 100Hz, the RIN is suppressed to about the noise level of this measurement. Below 100Hz there is no change, which probably means that power fluctuations are introduced downstream of the AOM, which argues for an outer-loop ISS down the road.
Atm #2 is in units of RIN.
|
I have disconnected the cable from the SR560 to LSC -ch8 for 15minutes this morning. It is moved from the floor to the top of the chambers as preparation for 40m tour. The SR560 seems to be overloading.
The ISS servo is off according to the MEDM screen. Why MC-T plot showing zero? The MC was happy yesterday.
|
Attachment 1: ISS.png
|
|
13371
|
Wed Oct 11 10:29:43 2017 |
Steve | Update | Electronics | SR560 noise level |
Gautam and Steve,
All 3 show the same noise level ~80 nV / rt Hz at 1 kHz as shown. Batteries ordered to be replaced in the top 2
We'll do more measurement to see how can we get to 4 nV / rt Hz specification level. |
Attachment 1: sr560.jpg
|
|
Attachment 2: sr560noise.jpg
|
|
13373
|
Wed Oct 11 17:59:45 2017 |
rana | Update | Electronics | SR560 noise level |
these are not the SR785 settings that you're looking for
Quote: |
Gautam and Steve,
All 3 show the same noise level ~80 nV / rt Hz at 1 kHz as shown. Batteries ordered to be replaced in the top 2
We'll do more measurement to see how can we get to 4 nV / rt Hz specification level.
|
To get low noise measurements on the SR785, you have to have the input range set to -50 dB, not +20 dB. Its not within the powers of commercial electronics ADCs to give you a 10 nV noise floor with +10 V input signals. The SR560 has an input referred noise of 5 nV/rHz, so the output noise should be 5e-9 x 500 = 2.5 uV/rHz. Your picture shows it giving 1 uV RMS, so you also need to use the PSD units. |
13456
|
Tue Nov 28 17:27:57 2017 |
awade | Bureaucracy | Calibration-Repair | SR560 return, still not charging |
I brought a bunch of SR560s over for repair from Bridge labs. This unit, picture attached (SN 49698), appears to still not be retaining charge. I’ve brought it back. |
Attachment 1: 96B6ABE6-CC5C-4636-902A-2E5DF553653D.jpeg
|
|
Attachment 2: image.jpg
|
|
13494
|
Sun Dec 31 12:43:50 2017 |
rana | Summary | Electronics | SR560: reworking |
I have ordered some LSK389A (in both the SOIC-8 and TO-71 packages) to replace the SR560's default front end FET pair (NPD5565).
I'm going to rework s# 00619 once these new FETs come in. Also ordered 100 of the SOIC-8 to DIP-8 adapter boards from Digikey.
This plot shows the current performance compared to the Rai Low Noise box. I expect the FETs should let us get to ~1.5 nV/rHz with the SR560. |
Attachment 1: Preamps.pdf
|
|
13516
|
Mon Jan 8 20:50:01 2018 |
rana | Summary | Electronics | SR560: reworking |
I replaced the NPD5565 with a LSK389 (SOIC-8 with DIP adapter). There was a noise reduction of ~30%, but not nearly as much as I expected. I wonder if I have to change the DC bias current on these to get the low noise operation?
https://photos.app.goo.gl/hsMwsif7NLscsgpx1 |
17534
|
Tue Apr 4 11:03:35 2023 |
JC | Summary | Electronics | SR560: reworking |
<p>I purchased some more of these from DigiKey. These parts are currently in the EE shop. These are replacements for the NDP5565 part of the SR560.</p> |
Attachment 1: Screen_Shot_2023-04-04_at_11.11.10_AM.png
|
|
15674
|
Thu Nov 12 14:31:27 2020 |
gautam | Update | Electronics | SR560s in need of repair/battery replacement |
I had to go through five SR560s in the lab yesterday evening to find one that had the expected 4 nV/rtHz input noise and worked on battery power. To confirm that the batteries were charged, I left 4 of them plugged in overnight. Today, I confirmed that the little indicator light on the back is in "Maintain" and not "Charge". However, when I unplug the power cord, they immediately turn off.
One of the units has a large DC output offset voltage even when the input is terminated (though it is not present with the input itself set to "GND" rather than DC/AC). Do we want to send this in for repair? Can we replace the batteries ourselves? |
Attachment 1: IMG_8947.jpg
|
|
15679
|
Tue Nov 17 00:26:32 2020 |
rana | Update | Electronics | SR560s in need of repair/battery replacement |
yes, both problems can be fixed. Usually we just order some spare lead-acid batteries from SRS (Steve may have some spare ones somewhere). The DC offset often comes from a busted FET input. I bought 50 of those at one point - they're obsolete. Its also possible to replace the input stage with any old FET pair.
I'll handle the one with the offset if you leave it on my desk. |
1407
|
Mon Mar 16 15:19:52 2009 |
Osamu | DAQ | Electronics | SR785 |
I borrowed SR785 to measure AA, AI noise and TF. |
9385
|
Thu Nov 14 14:27:51 2013 |
nicolas | Omnistructure | General | SR785 Analyzer CRT replaced |
The 785 analyzer in the 40 had a wonky hard to read screen. I was hoping that a new white CRT would fix all the problems.
I installed a white CRT, which didn't fix the wonkyness, but I adjusted the CRT position, brightness, focus settings to make the screen somewhat more readable.
BEFORE:

AFTER:

If we want to send the thing in for service to fix the wonkyness, we should probably hold on to the old CRT because they will probably replace the whole screen assembly and we'll lose our white screen. |
17095
|
Fri Aug 19 15:36:10 2022 |
Koji | Update | General | SR785 C21593 CHA+ BNC broken |
When Juan and I were working on the suspension measurement, I found that CHA didn't settle down well.
I inspected and found that CHA's + input seemed broken and physically flaky. For Juan's measurements, I plugged + channels (for CHA/B) and used - channels as an input. This seemed work but I wasn't sure the SR functioned as expected in terms of the noise level.
We need to inspect the inputs a bit more carefully and send it back to SRS if necessary.
How many SR785's do we have in the lab right now? And the measurement instruments like SR785 are still the heart of our lab, please be kind... |
Attachment 1: PXL_20220819_195619620.jpg
|
|
Attachment 2: PXL_20220819_195643478.jpg
|
|
2202
|
Fri Nov 6 23:02:44 2009 |
Haixing | Update | General | SR785 Spectrum Analyzer |
I am using SR785 Spectrum Analyzer now and also tomorrow.
I will put it back on Sunday. If anyone needs it during the weekend,
please just take it and I can reset it by myself later. Thanks. |
166
|
Wed Dec 5 16:57:36 2007 |
tobin | HowTo | Computer Scripts / Programs | SR785 data converter on linux |
I was pleased to find that the SR785 Data Viewer (including the command line conversion utility) installs and works in linux using WINE (on my laptop at least). There are some quirks, of course, but I was able to extract my data. |
3004
|
Fri May 28 07:13:05 2010 |
Alberto | Frogs | Green Locking | SR785 found abandoned next to the workbenches |
A poor lonely SR785 was found this morning roaming around in the lab in evident violation of the fundamental rule which requires all the equipment on carts to be brought back inside the lab right after use.
The people and the professors related to the case should take immediate action to repair for their misdeed. |
15899
|
Wed Mar 10 19:58:27 2021 |
gautam | Update | LSC | SR785 hooked up to CM board |
In preparation for later today evening. The TT alignment wasn't visibly disturbed. |
13860
|
Thu May 17 18:05:01 2018 |
gautam | Update | SUS | SR785 near 1X5 |
I'm working near 1X5 and there is an SR785 adjacent to the electronics rack with some cabling running along the floor. I plan to continue in the evening so please leave the setup as is.
During the course of this work, I noticed the +15V Sorensen in 1X6 has 6.8 A of current draw, while Steve's February2018 label says the current draw is 8.6A. Is this just a typo?
Steve: It was most likely my mistake. Tag is corrected to 6.8A
I'm still in the process of electronics characterization, so the SR785 is still hooked up. MC3 coil driver signal is broken out to measure the output voltage going to the coil (via Gainx100 SR560 Preamp), but MC is locked. |
Attachment 1: B55CE985-B703-4282-B716-3144957C7372.jpeg
|
|
1342
|
Thu Feb 26 20:09:32 2009 |
Yoichi | HowTo | Computers | SR785 python scripts now produce plots |
I updated the python scripts to remotely perform measurements with an SR785.
Now these scripts can plot the results immediately using python's matplotlib capability. The sample plots can be seen in my previous elog entry.
In addition to the transfer function (TFSR785.py) and spectrum measurement (SPSR785.py) scripts, I also wrote a script for time series measurements (TSSR785.py).
This is useful when you want to check the signal level flowing in the channels before determining the excitation amplitude.
TSSR785.py will measure and show the time series and histogram of the signal measured by the SR785.
More detailed usage is explained in this wiki page:
http://lhocds.ligo-wa.caltech.edu:8000/40m/netgpib_package |
10436
|
Thu Aug 28 11:02:53 2014 |
Steve | Update | Calibration-Repair | SR785 repair |
SN 46,795 of 2003 is back. |
Attachment 1: 08281401.PDF
|
|
15571
|
Tue Sep 15 12:20:36 2020 |
gautam | Update | Electronics | SR785 repaired |
The unit was repaired and returned to the 40m. Now, with a DMM, I measure a DC offset value that is ~1% of the AC signal amplitude. I measured the TF of a simple 1/20 voltage divider and it looks fine. In FFT mode, the high frequency noise floor levels out around 5-7nV/rtHz when the input is terminated in 50 ohms.
I will upload the repair documents to the wiki.
Quote: |
The "source" output of the SR785 has a DC offset of -6.66 V. I couldn't make this up.
|
|
Attachment 1: dividerTF.pdf
|
|
2140
|
Sun Oct 25 14:29:45 2009 |
haixing, kiwamu | Configuration | General | SR785 spectrum analyzer |
In this morning, we have disconnected SR785 which was in front of 1X2 rack, to measure a Hall sensor noise.
After a while, we put back SR785 and re-connected as it has been.
But the display setup might have been changed a little bit.
|
1298
|
Thu Feb 12 17:43:33 2009 |
Yoichi | Update | LSC | SRC strangeness solved |
I found the problem with the DRMI lock I had last night was caused by the zero gain in the PD11_I filter.
I don't know how it happened but putting it back to 1.000 made the DRMI lock far more stable and AS166Q got more than 3000.
I also re-centered POY PD to remove the offset in the y-arm loop. The large power drops while y-arm is locked by itself were eliminated. |
9126
|
Thu Sep 12 01:06:09 2013 |
Jenne | Update | ASC | SRCL ASS implemented |
I have modified the ASS model to also have an ASS for SRCL. The input options are POPDC, POP110, AS110. I suppose I could/should have included ASDC.
Screens are modified / made. I haven't finished setting the servo gains and oscillator amplitudes, and all that jazz yet.
Using the parameters that Koji had in elog 9116, I was able to get nice long DRMI locks (several on a ~10 minute time scale).
I tried some pseudo-ANDing for the triggers, to no avail. I was trying to have the trigger matrix row for the SRCL loop have 1*POP22 and 0.02*AS110, where the 0.02 is to scale AS110 so that it has a similar amplitude to POP22. I then set threshold levels to ~250 for up, and 100 for down (I tried several different values for the up threshold). I was watching the TRIG_MON_FAST channels for both PRCL and SRCL, and I wasn't able to get SRCL to be triggered only at the same times as PRCL using this technique. Since we can get the DRMI to lock, perhaps my AND logic for the triggers is a low priority, but I think we'll need something like that if we want real logic.
|
11836
|
Wed Dec 2 03:34:30 2015 |
ericq | Update | LSC | SRCL OLG weirdness |
[gautam, ericq]
Since ETMX seems to have been on good behavior lately, we tried to fire the IFO back up.
We had a fair amount of trouble locking the DRMI with the arms held off resonance. For reasons yet to be understood, we discovered that the SRCL OLG looks totally bananas. It isn't possible to hold the DRMI for very long with this shape, obviously.

With the arms misaligned and the DRMI locked on 1F, the loop shape is totally normal. I haven't yet tried 3F locking with the arms misaligned, but this is a logical next step; I just need to look up the old demod angles used for this, since it wasn't quickly possible with the 3F demod angles that are currently set for the DRFPMI. |
Attachment 1: weirdSRCLG.pdf
|
|
5694
|
Wed Oct 19 10:49:35 2011 |
kiwamu | Update | SUS | SRM oscillation removed |
Quote: |
The SRM oplevs were found to be oscillating because of a small phase margin.
I reduced the gains to the half of them. The peak which Steve found today maybe due to this oscillation.
Quote from #5630 |
The SRM bounce peak 18.33 Hz. Suresh helped me to retune filter through Foton, but we failed to remove it.
|
|
Kiwamu removed the 18.3 Hz ocsillation by turning down the oplev servo gain. |
Attachment 1: SRMoplevKWMtune.png
|
|
4349
|
Thu Feb 24 11:18:08 2011 |
steve | Update | SUS | SRM sus-cables |
Cheater cables for SRM sus tied up. They were dangling aimlessly on the floor. |
Attachment 1: P1070428.JPG
|
|
12601
|
Mon Nov 7 08:00:11 2016 |
Steve | Update | SUS | SRM -PRM sat. amp swap |
I just realized that Gautam set this test up and turned damping off......He will explane the details
|
Attachment 1: SRM.jpg
|
|
Attachment 2: SRM-UR_OK.png
|
|
803
|
Wed Aug 6 13:15:57 2008 |
Yoichi | Update | SUS | SRM ETMX freeswing spectra |
After yesterday's work on the SRM, I took free swinging spectra of SRM.
The eigen modes look ok. But there are many other peaks which were not present in vacuum.
Some of those peaks may be resonances of the air inside the chambers and the pipes.
However, the peaks around 0.2Hz are too low frequency for those air compression modes.
I took the ETMX spectra at roughly the same time. I chose ETMX because we have not touched it after the vent.
ETMX also shows some extra peaks but the frequencies are different. |
Attachment 1: SRM-ETMX-freeswing.pdf
|
|
4063
|
Thu Dec 16 01:23:43 2010 |
kiwamu | Update | SUS | SRM OSEMs installed |
[Zach and Kiwamu]
We worked on some more vacuum businesses. Today we finished did the following works:
- alignment of the POX mirrors
- alignment of the POP1 and POP2 mirrors
- installation of OSEMs onto SRM
- alignment of the SRM tower
(alignment of POP mirrors)
Since a beam on the POP path was quite too weak to see even by IR viewers, we used a He-Ne laser to imitate the real beam instead.
We injected the He-Ne beam from an optical bench to the chamber, and made it go through the PRM and PR2 by using some steering mirrors.
(OSEM cables)
The pin assignment was flipped in a way of mirror image due to the extension cables which cause a mirroring.
So we made mirroring connectors to flipp them back to the correct pin assignment, and plugged the mirroring connectors in between the feedthrough of the BS chamber and the SRM satellite box.
This is a picture showing how they are connected now.

|
16861
|
Wed May 18 08:30:29 2022 |
Paco | Update | BHD | SRM OpLev |
[Paco]
The SRM Oplev injection and detection paths interfere heavily with the POY11. Due to the limited optical access, I suggest we try steering POYM1 YAW and adapting the RFPD path accordingly. |
16864
|
Thu May 19 08:51:40 2022 |
Paco | Update | BHD | SRM OpLev |
[Paco, Ian]
After agreement from Yuta/Anchal, I moved POYM1 yaw to clear the aforementioned path, and Ian restored the POY11 RFPD path. The demodulation phase might need to be corrected afterwards, before any lockign attempts.
Quote: |
[Paco]
The SRM Oplev injection and detection paths interfere heavily with the POY11. Due to the limited optical access, I suggest we try steering POYM1 YAW and adapting the RFPD path accordingly.
|
|
4062
|
Wed Dec 15 23:10:40 2010 |
Koji | Update | IOO | SRM Oplev / Dark Steering mirrors installed |
I helped the vacuum installation work in the evening.
- Three steering mirrors after the SRM (OM1-OM3) were installed on the table. OM1 and OM2 were aligned.
OM3 is in-place but not aligned to the OM4 (PZT).
- The ITMY oplev setup was disintegrated. The SRM/ITMY oplev beams were prepared.
- The SRM oplev mirrors were placed on the table and aligned.
- The ITMY oplev mirrors were placed on the table but not in-place. |
800
|
Tue Aug 5 17:56:23 2008 |
Alberto | Configuration | General | SRM and PRM inspection |
Yoichi, Koji, Rana, Steve, Alberto
Today we opened the BSC to inspect the optics, and in particular the SRM and PRM.
We found that one of the side magnets of the SRM was broken and a piece of it fell and got stuck to the LR magnet.
We removed the LR OSEM and took off the broken part with tweezers. Since we couldn’t replace the magnet on the side,
we decided to just switch the OSEM to the other side were a second magnet was available. Then we centered the OSEMs.
Using the optical levers we aligned both the ITMX and the SRM so that now we have to center again the OSEMs on both.
The PRM was visibly tilted and it was out of the range of the OSEMs. To try to fix the tilt we lift it up a little
with the screws on the bottom and pushed it with the third screw on top. That had the effect of making the mirror
tilt to the opposite direction. We looked at the wires (see attached picture) and it seemed centered on the side
of the mirror.
Tomorrow we are going to reset the OSEMs on ITMX and SRM and then we’re going to try to fix the tilt on PRM. |
Attachment 1: IMG_1434.JPG
|
|
Attachment 2: IMG_1456.JPG
|
|