40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 205 of 339  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  8839   Fri Jul 12 18:30:20 2013 CharlesUpdateISSRMS Noise from PMC Transmission

Quote:

It would be better to measure the power spectrum density of the fluctuation.
The RMS does not tell enough information how the servo should be.
In deed, the power spctrum density gives you how much the RMS is in the entire or a specific frequency range.

I wanted the RMS noise simply to establish a very rough estimate of thresholds on RMS detectors that will be part of my device. If you refer to elog 8830, I explain it there. Essentially, when the ISS is first engaged, only one of the 2 or 3 filter stages will be active. Internal RMS threshold detection serves to create a logic input to switch subsequent filters to their 'on' stage.

  8840   Fri Jul 12 21:23:42 2013 JenneUpdateASCPOP QPD calibration attempt

These are the data, one plot for when the vertical QPD position was changed, and one for when the horizontal (yaw) QPD position was changed. 

The micrometer is in inches, so 1 unit is 0.1 inches, I believe.

Clearly, I need to redo the measurement and take more data in the linear region.

Attachment 1: ChangeVertMicrometer_July2013.png
ChangeVertMicrometer_July2013.png
Attachment 2: ChangeSideMicrometer_July2013.png
ChangeSideMicrometer_July2013.png
  8841   Fri Jul 12 23:13:32 2013 manasaUpdateGreen LockingALS sensor noise

[Annalisa, Koji, Manasa]

In order to improve the ALS stability we went ahead to check if we are limited by the sensor noise of ALS.

What we did:
RF signals similar to the beatnote were given at the RF inputs of the beatbox.
The frequency of the RF signal was set such that I_OUT was zero (zero-crossing point of the beatbox).
We measured the noise spectrum of the phase tracker output.

Measurements:

Plot 1: X ALS noise spectrum
Plot 2: Y ALS noise spectrum

Discussion:

The X arm ALS noise is not limited by the sensor noise...which means we shoudl come up with clever ideas to hunt for other noise sources.
But this does not seem to be the case for the Y arm ALS. The Y arm part of the beatbox is noisy for frequencies < 100Hz.


After looking into the details and comparing the X and Y arm parts of beatbox, it looks that amplitude of the beat signal seem to affect the Y arm ALS noise significantly and changes the noise spectrum.

To do:
Investigate the effect/limitations of amplitude of the beatnote on the X arm and Y arm beatbox.

Attachment 1: X_ALS_0712.pdf
X_ALS_0712.pdf
Attachment 2: Y_ALS_0712.pdf
Y_ALS_0712.pdf
  8842   Sat Jul 13 03:27:20 2013 AnnalisaUpdateGreen LockingY arm caity scan

I started doing a scan of the Y arm cavity with IR with ALS enabled.

ALS servo tuning:

The servo tuning procedure is basically the same as described in elog 8831.

This time I had a stronger beat note(-14 dBm instead of -24 dBm of the last measurement) thanks to a better alignment.

Plot1 shows the Power spectrum of the BEATY_PHASE_OUT. The RMS is smaller by a factor of 2 (400Hz), corresponding to a residual motion of about 25 pm.

Offset setting avity scan

In order to give an offset linearly growing in time, I used the ezcastep script instead of giving the offset in OFFSETTER2. If the ramp time is long enough, it is not necessary to enable the 30mHz filter.

To span 2 FSR, I started from an offset of 450 and I gave a maximum value of 1600 with a delay of 0.2s between two consecutive steps.

Cavity scan

I did a first scan with the cavity well aligned, basically to know the position of the 00 peaks and choose the best offset range (Plot2)

Then I misaligned the TT2, first in PITCH and yhen in YAW, in order to enhance the HOMs. (Plot3 and Plot4)

More investigation and measurements needed. 

 

 

Attachment 1: PowerSpectrum0712
Attachment 2: ScanCavityAligned.pdf
ScanCavityAligned.pdf
Attachment 3: ScanCavityMisPitch.pdf
ScanCavityMisPitch.pdf
Attachment 4: ScanCavityMisYaw.pdf
ScanCavityMisYaw.pdf
  8843   Sun Jul 14 17:47:28 2013 KojiUpdateIOOMC WFS maintenance

Annalisa notified me that the MC autolocker could not keep the MC locked.

I found the initial alignment was not good and the MC was too much excited when the WFS kicked in.

There might have been the WFS offset issue due to the miscentering of the spots on the WFS diodes.

I used the usual procedure of the maintenance and it looked OK if I followed the switching procedure the mc autolocker suppoed to do.
http://nodus.ligo.caltech.edu:8080/40m/7452

I still could not get the autolocker running smoothly. I opened mcup script and compared what was the difference
between my manual sequence and what the script did. The only difference was the lines related to MCL.
It was still turning on the filter module. I checked the MCL path and found that the gain was not zero but 1.0.
So now the MCL gain is set to zero. This solved all the remaining issue.

  8844   Sun Jul 14 18:19:00 2013 AnnalisaUpdateGreen LockingArm cavity scan

Yesterday evening Nic and me were in the lab. The Mode Cleaner was unlocked, but after many attempt we could fix it and we did many scans of the Y arm cavity.

Today I was not able to keep the MC locked. Koji helped me remotely, and eventually the MC locked back, but after half an hour of measurements I had to stop.

I made some more scan of the Y arm though. I also tried to do the same for the X arm, but the MC unlocked before the measurement was finished. I'll try to come back in the night.

  8847   Mon Jul 15 14:12:15 2013 SteveUpdateVACRGA scan at day 144

 Pumpdown 75, vacuum normal condition at day 144

 

Attachment 1: pd75mRGA144d.png
pd75mRGA144d.png
Attachment 2: pd75m144d.png
pd75m144d.png
  8849   Mon Jul 15 16:44:46 2013 AlexUpdateOMCOMC North Safety

 [Eric Alex]

We are planning on testing our laser module soon, so we have added aluminum foil and a safety announcement to the door of OMC North. The safety announcement is as pictured in the attachment.

Attachment 1: photo_2_(1).JPG
photo_2_(1).JPG
  8851   Mon Jul 15 17:16:59 2013 JenneUpdateASCPOP QPD calibration attempt

I tried to retake POP QPD calibration data again today.  The MC was mostly fine, but whenever the PRMI unlocked, both ITM watchdogs would trip.  I'm not sure what was causing this, but the ITM alignment wasn't perfect after this kind of event, so I felt like I was continuously locking and realigning the arms to get the alignment back.   Then, after turning on the ASC and tweaking up the PRM alignment for maximum POP110I signal, I had to recenter the QPD, so none of my previously taken data was useful.  Frustrating.  Also, I had recentered the PRMI-relevant oplevs, but I had these weird locklosses even with nicely centered oplevs.

I have given up for the daytime, and will come back to it if there's a spot in the evening when arm measurements aren't going on.

Here is the data from last week, and the data from today.  The micrometer readings have been calibrated into mm, and I have fit a line to the linear-looking region.  Obviously, for the Pitch calibration, I definitely need to take more data.

ChangeSideMicrometer_July2013_calib2.png

ChangeSideMicrometer_July2013_calib1.png

ChangeVertMicrometer_July2013_calib1.png

  8854   Tue Jul 16 01:17:21 2013 JenneUpdateASCPOP QPD calibration attempt

[Rana, Jenne]

I took POP QPD calibration data with a new method, on Rana's suggestion.  I locked the PRMI, and engaged the ASC servo, and then used awggui (x8) to put dither lines on all of the PRMI-relevant optic's ASCPIT and ASCYAW excitation points.  I then took the transfer function of the suspensions' oplev signals (which are already calibrated into microradians) to the POP_QPD signals (which are in counts).  This way, we know what shaking of any optic does to the axis translation as seen by the POP QPD.  We can also infer (from BS or PRM motion for PR3, and ITMX motion for PR2) what the folding mirrors do to the axis translation.  Note that we'll have to do a bit of matrix math to go from, say, PRM tilt effect to PR3 tilt effect on the axis motion.

The data is saved in /users/jenne/PRCL/July152013_POP_TFs.xml .  There is also a .txt file with the same name, in the same folder, listing the frequencies used by the awg.

I'll analyze and meditate tomorrow, when my brain is not so sleepy.

  8855   Tue Jul 16 10:16:23 2013 KojiUpdate Beatbox XARM whitening modified

The X arm whitening filters of the beatbox were modified.
Now we have about 10 times better floor level above 100Hz and ~3 better at 1Hz.


- The previous whitening was zero@1Hz, pole@10Hz, and the DC gain of the unity.
  When the Marconi signal (~30MHz -25dBm) was given to the beatbox (via ZFL-1000LN),
  the DC output of the beatbox was only 140mV (lame). This corresponded to 220 counts in
  the CDS.
(BTW the signals were calibrated by giving frequency deviation of 1kHz is applied at 125Hz.)

- If you compare the analog measurement of the beatbox output and what we see in the I phase signal,
  you can see that we were completely dominated by the ADC noise (attachment 2, blue and red).

- The new whitening is zero@5.2Hz, pole@159Hz, and the DC gain of 10.

- This improved the sensing noise by a factor of ten above 100Hz.

- We are stil llimited by the digitizing noise between 3Hz to 100Hz.
  We need steeper whitening like 2nd order from 1Hz to 100Hz. (and probably at DC too).
  Now the DC amplitude is about 1.4V (and 2200 counts in the CDS).
  So, it is interesting to see how the sensing limit changes by increasing
  the overall gain by a factor of 3, and have (zeros@1Hz & poles@10Hz)^2.

  This can be implemented on a proto-daughter board.

- By the way, the performance below 2Hz is now better than the analog one with the previous whitening.
  This improvement might have come from the replacement of the thick film resistors by thin-film resistors.
  (See the circuit diagram)


About the nominal power of the beatbox input.

- Marconi (-20dBm 30MHz) was directly connected to the beatbox. The RF output of -15dBm was observed at the delayline output.
- According to the beatbox schematic, the mixer LO and RF inputs were expected to be -9dBm and -19dBm.
- The nominal mixer LO level is supposed to be 7dBm. Therefore the nominal beatbox input should be -4dBm.

- Assuming 23dB gain of the preamp, the PD output is expected to be -27dBm.

- When the PD out is -27dBm, the RF mon is expected to be -5dBm. This is the level of the RF power expected to be seen in the control room.

- The output of the beatbox was measured as the function of the input to the preamp (before the beatbox input).
  With the nominal gain, we should have observed amplitude of ~170. And it is now 1700 because of the whitening modification.
 

Attachment 1: Beatbox_mod.pdf
Beatbox_mod.pdf
Attachment 2: ALS_whitening.pdf
ALS_whitening.pdf
Attachment 3: Beatbox_input_dependence.pdf
Beatbox_input_dependence.pdf
  8856   Tue Jul 16 13:48:26 2013 SteveUpdatePEMcranes cleaned

Keven and Steve,

The 3 cranes tested and  wiped off as preparation for upcoming vent.

  8858   Tue Jul 16 15:22:27 2013 manasaUpdateCDSFront ends back up

c1sus, c1ioo, c1iscex and c1iscey were down. Why? I was trying to lock the arm and I found that around this time, several computers stopped working mysteriously. Who was working near the computer racks at this time???

I did an ssh into each of these machines and rebooted them sudo shutdown -r now

But then I forgot / neglected/ didn't know to bring back some of the SLOW Controls computers because I am new here and these computers are OLD. Then Rana told me to bring them back and then I ignored him to my great regret. As it turns out he is very wise indeed as the legends say.

So after awhile I did Burtgooey restore of c1susaux (one of the OLD & SLOW ones) from 03:07 this morning. This brought back the IMC pointing and it locked right away as Rana foretold.

Then, I again ignored his wise and very precious advice much to my future regret and the dismay of us all and the detriment of the scientific enterprise overall.

Later however, I was forced to return to the burtgooey / SLOW controls adventure. But what to restore? Where are these procedures? If only we had some kind of electronics record keeping system or software. Sort of like a book. Made of electronics. Where we could LOG things....

But then, again, Rana came to my rescue by pointing out this wonderful ELOG thing. Huzzah! We all danced around in happiness at this awesome discovery!!

But wait, there was more....not only do we have an ELOG. But we also have a thing called WIKI. It has been copied from the 40m and developed into a thing called Wikipedia for the public domain. Apparently a company called Google is also thinking about copying the ELOG's 'find' button.

When we went to the Wiki, we found a "Computer Restart Procedures" place which was full of all kinds of wonderous advice, but unfortunately none of it helped me in my SLOW Controls quest.

 

Then I went to the /cvs/cds/caltech/target/ area and started to (one by one) inspect all of the targets to see if they were alive. And then I burtgooey'd some of them (c1susaux) ?? And then I thought that I should update our 'Computer Restart Procedures' wiki page and so I am going to do so right now ??

And then I wrote this elog.

 

  8860   Tue Jul 16 18:20:25 2013 JenneUpdateCDSProto-ASC implemented in ASS model

The proto-ASC now includes triggering.  I have updated the hacky temp ASC screen to show the DoF triggering.  I have to go, but when I get back, I'll also expose the filter module triggering.  So, for now we may still need the up/down scripts, but at least the ASC will turn itself off if there is a lockloss.

  8861   Tue Jul 16 19:16:12 2013 ranaUpdateDAQNDS2 Status

I have modified the settings on the router that connects our Martian network to the outside world so that one can access the NDS2 server running on megatron:31200.

To get at the data you point your data getting client (Matlab, ligoDV, DTT, etc.) at our router and the megatron port will be forwarded to you:

131.215.115.189:31200

is what you should point to. Now, it should be possible to run DetChar jobs (e.g. our 40m Summary pages) from the outside on some remote server. You can also grab 40m data on your laptop directly by using matlab or python NDS software.

  8864   Wed Jul 17 22:49:37 2013 KojiUpdateGreen LockingALS Y whitening filter change

[Koji Annalisa]

We did the same mod of the beatbox for the Y arm too. See
http://nodus.ligo.caltech.edu:8080/40m/8855

  8865   Wed Jul 17 22:51:50 2013 KojiUpdateGreen LockingALS Y performance with the new whitening filter

[Manasa Koji]

Summary:
The new whitening filters improved the out-of-loop ALS stability of the Y arm down to 300Hz (20pm_rms in displacement).


- After modifying the whitening filters, the out-of-loop stability of the arms were tested with the IR PDH signals.

- The X arm showed non-stationarity and it made the ALS servo frequenctly fell out of lock.

- For now we decided to use the Y arm for the PRMI+one arm trial.

- The performance of the ALS was tested with several measurements. (attachment 1)

Cyan: Stability of the beatnote frequency with the MC and the arm freely running. The RMS of the day was ~6MHz.

Blue: Sensing limit of the beat box was tested by giving a signal from Marconi. The same amplitude as the X arm beat was given as the test signal.
This yielded the DC output of ~1200 counts.

Green: Out-of-loop estimation of the beatbox performance. This beat note stability was measured by controlling the arm with the IR PDH signal.
Assuming the PDH signal has better SNR than the beat signal, this gives us the out-of-loop estimation of the stability below 150Hz, which is the
unity gain frequency of the ALS loop.
Above 150Hz the loop does not force this noise to the suspension. Just the noise is injected via a residual control gain (<1).

Black: In-loop evaluation of the ALS loop. This becomes the left over noise for the true stability of the arm (for the IR beam).

Red: The arm was brought to the IR resonance using the ALS offset. The out-of-loop stability was evaluated by the IR PDH signal.
This indeed agreed with the evaluation with the other out-of-loop evaluation above (Green) below 150Hz.


Attachment 2 shows the time series data to show how the arm is brought to the resonance.
1 count of the offset corresponds to ~20kHz. So the arm started from 200kHz away from the resonance
and brought to the middle of the resonance.

(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

Attachment 1: ALS_Y_130717.pdf
ALS_Y_130717.pdf
Attachment 2: ALS_Y2_StripTool.png
ALS_Y2_StripTool.png
  8866   Thu Jul 18 01:10:00 2013 kiwamuUpdateGreen LockingALS Y performance with the new whitening filter

 

Awesome !

  8867   Thu Jul 18 02:21:41 2013 KojiUpdateLSCPRMI+Y arm ALS success!

[Koji, Jenne, Manasa, Annalisa, Rana, Nic]

PRMI locked using 3f signals and Y arm brought to resonance using ALS


<<Procedure>>

Preparation:

- After we checked the functionarity of the Yarm ALS, both arms were locked with the IR, and aligned by ASS.

- Disengaged the LSC feedback. Approximately aligned the PRM.

- Recorded the current alignment biases. Turned off all of the oplevs.

- Went into the lab, aligned all of the oplevs on the QPDs (except for the SRM).

- Check the locking of the PRMI.

- Once it is locked, go into the lab again and align the POP QPD.

- Check everything of the PRMI LSC/ASC works.

- Misalign PRM by 0.2

- Lock the arm again. Run ASS again.

- Miaslign ETMX.

ALS:

- Lock the Xarm with green. Adjust the beat freq between 30-50MHz.

- Reset Phase Tracker history.

- Check if there is any offset for the ALS. If there is, adjust it to zero.

- Stabilize the arm with the ALS. We should check the sign of the servo before it is cranked up to the nominal.

- Confirm if the offset FM has LPF (30mHz LPF).

- Run excastep for the ALS offset until we find the TEM00 resonance of the IR

- Record the offset at the resonance.

- Step back by 5 count (=100kHz)

PRMI+ALS:

- Started from the offset of -5.

- Aligned the PRM and the PRMI was locked by REFL165I(x0.8)nadQ(x0.2).

- PRM ASC engaged

- Moved the offset to -4 by ezcastep C1:ALS-OFFSETTER2_OFFSET +0.01,100 -s 0.1

- Moved to -3, -2, -1.5, -1. During the sweep PRCL/MICH gain was tweaked so that the gain is reduced.
  Nominal locking gain was PRCL x+2.5/MICH -30 . During the sweep they were +2.2 / -12
  PRCL FM2/4/5 ON, Later FM3/6 turned on and no problem.

- Moved to -0.9, .... , and finally to 0.


NEXT STEP

- Automation of the PRMI+one arm

- PRMI locking with BS/PRM

- Better sensing matrix

- PRMI+two arms

- Use of the DC signals form the transmission monitors. (High power /low power transmon).

 

 

Attachment 1: Screenshot-Untitled_Window1.png
Screenshot-Untitled_Window1.png
Attachment 2: PRMI_Yarm.pdf
PRMI_Yarm.pdf
  8868   Thu Jul 18 10:47:21 2013 JamieUpdateLSCPRMI+Y arm ALS success!

AWESOME!  You guys rock.

  8869   Thu Jul 18 10:50:54 2013 LisaUpdateLSCPRMI+Y arm ALS success!

Quote:

[Koji, Jenne, Manasa, Annalisa, Rana, Nic]

PRMI locked using 3f signals and Y arm brought to resonance using ALS

Fantastico! :-)

  8870   Thu Jul 18 15:34:15 2013 Alex ColeUpdateElectronicsPD Frequency Response Update

 [Eric, Alex]

Our RF Switch arrived today, and we mounted it in rack 1Y1 (1st attachment). 

We connect our input fiber and all of our output fibers to our 1x16 optical splitter (2nd attachment). Note that the 75 meter fiber we are using for the splitter's input is in a very temporary position (3rd attachment - it's the spool).

We successfully turned our laser on and tested the optical splitter by measuring output power at each fiber using our Thorlabs PM20 power meter. Data was taken with the laser running at 67.5 mA and 24 degrees Celsius:

Detector name                  Power

REF DET 192 µW
AS55 146 µW
REFL55 180 µW
REFL11 172 µW
MCREFL 133 µW
REFL33 146 µW
REFL165 180 µW
POP22/POP110 182 µW
POP55 193 µW
POX11 123 µW

 

 

Attachment 1: photo_3_(1).JPG
photo_3_(1).JPG
Attachment 2: photo_1_(4).JPG
photo_1_(4).JPG
Attachment 3: photo_2_(4).JPG
photo_2_(4).JPG
  8871   Thu Jul 18 15:55:31 2013 JenneUpdateLSCPRMI+Y arm ALS Sensing Matrices

Last night, I took sensing matrix data at various different offsets for the Yarm.  The sensing matrices I measured were of the PRMI, while the Yarm was (a) Held off resonance, (b) Held at ~50% peak power, and (c) Held on resonance.

The dither lines were clear in the MICH and PRCL spectrum, so I think I'm driving hard enough, but something else seems funny, since clearly the REFL165 I and Q signals were not completely overlapping last night.  If they were, we wouldn't have been able to lock the PRMI using REFL 165 I&Q.

Anyhow, here's the data that was taken.  Data folder is ...../scipts/LSC/SensingMatrix/SensMatData/

Yarm off resonance, SensMat_PRMI_1000cts_580Hz_2013-07-18_012848.dat

SensMatMeas_17July2013_PRMI_YarmOffResonance.png

Yarm at ~50% resonance, SensMat_PRMI_1000cts_580Hz_2013-07-18_013937.dat

SensMatMeas_17July2013_PRMI_YarmMidResonance.png

Yarm on resonance, SensMat_PRMI_1000cts_580Hz_2013-07-18_013619.dat

SensMatMeas_17July2013_PRMI_YarmOnResonance.png

 

  8872   Thu Jul 18 16:30:08 2013 KojiUpdateLSCPRMI+Y arm ALS Sensing Matrices

Hmm. I agree that something was funny.
Let's take the matrix without the arms and confirm the measurement is correct.

  8876   Thu Jul 18 21:45:36 2013 CharlesUpdateISSISS - Full Schematic

 Here I have included the full schematic (so far) of the proposed ISS. There are two sheets: the first schematic details the filter stages and their accompanying circuitry while the second schematic details the RMS threshold detection and subsequent triggering.

The first schematic is fairly self explanatory as to what different portions do, and I have annotated much of the second schematic as there are some non-traditional components etc.

I have not yet included some mechanism to adjust the threshold voltage in real time or any of the power regulation, but these should follow fairly quickly.

Attachment 1: 40mServo_v1.pdf
40mServo_v1.pdf 40mServo_v1.pdf
  8878   Fri Jul 19 12:00:12 2013 manasaUpdateGreen LockingALS Y performance with the new whitening filter

Quote:


(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

 Path to data (retreived using getdata)

/users/manasa/data/130717/YALS_scan

  8879   Fri Jul 19 12:02:18 2013 manasaUpdateLSCPRMI+Y arm ALS success!

Data retrieved using getdata (30 minutes trend) saved at

/users/manasa/data/130717/PRMI_YALS

  8880   Fri Jul 19 12:23:34 2013 manasaUpdateCDSCDS FE not happy

I found CDS rt processes in red. I did 'mxstreamrestart' from the medm. It did not help. Also ssh'd into c1iscex and tried 'mxstreamrestart' from the command line. It did not work either.

I thought restarting frame builder would help. I ssh'd to fb. But when I try to restart fb I get the following error:

controls@fb ~ 0$ telnet fb 8088
Trying 192.168.113.202...
telnet: connect to address
192.168.113.202: Connection refused

 

Screenshot-Untitled_Window.png

  8881   Fri Jul 19 14:04:24 2013 KojiUpdateCDSCDS FE not happy

daqd was restarted.


- tried telnet fb 8088 on rossa => same error as manasa had

- tried telnet fb 8087 on rossa => same result

- sshed into fb ssh fb

- tried to find daqpd by ps -def | grep daqd => not found

- looked at wiki https://wiki-40m.ligo.caltech.edu/New_Computer_Restart_Procedures?highlight=%28daqd%29

- the wiki page suggested the following command to run daqd /opt/rtcds/caltech/c1/target/fb/daqd -c ./daqdrc &

- ran ps -def | grep nds => already exist. Left untouched.

- Left fb.

- tried telnet fb 8087 on rossa => now it works

  8886   Mon Jul 22 03:09:51 2013 AnnalisaUpdateGreen LockingY Arm cavity scan

Yesterday and today I was in the lab doing many cavity scan.

First I did many measurement with the cavity aligned in order to get the position of the 00 modes, then I misaligned the beam in many different ways to enhance the higher order modes.

In particular, I first misaligned the mode cleaner to make the beam clipping into the Faraday. To do this, I set to 0 the WFS gain, but I left the autolocker still enabled. In this way, the autolocker couldn't bring the mirrors back to the aligned position.

Then I misaligned also the TT2 to get even more HOMs.

Eventually, Rana came and we misaligned TT1 to clip the beam, and using TT2 we aligned back the beam to the arm.

To increase the SNR, we changed the gain of the TRY PD, setting it to 20dB (which corresponds to a factor 100 in digital scale)

I attached one scan that I did with Rana on Sunday night. I could not upload a better resolution image because the file size was too big, but here's the path to find all of the scans:

../users/annalisa/sweep/Yarm

There are many folders, one per each day I measured. In each folder there are measurements relative to aligned cavity, Pitch and Yaw misalignment.

 RXA EDIT:

The PDA520 used for TRY was set to 0 dB analog gain. This corresponds to ~500 counts out of 32768. The change to 20 dB actually increases the gain by 100. This makes the single arm lock saturate at ~25000 counts (obviously in analog before the ADC). The right setting for our usual running is probably 10 dB.

For the IMC WFS, we had disabled the turn on in the autolocker to use the IMC to steer the beam in the FI, but that was a flop (not enough range, not enough lever arm). In the end, I think we didn't get any clipping.

 

 

Attachment 1: Screenshot-scan3_0722.pdf_-_Adobe_Reader.png
Screenshot-scan3_0722.pdf_-_Adobe_Reader.png
  8889   Mon Jul 22 16:30:31 2013 KojiUpdateGeneralVent preparation

[Annalisa, Manasa, Jenne, Koji]

We are working on the vent preparation.

First of all, there was no light in the interferometer.
Obviously there were lots of IFO activity in the weekend. Some were elogged, some were not.
Annalisa took her responsibility to restore the alignment and the arms recovered their flashes.

The odd thing was that the ASS got instable after we turned down the TRY PD gain from +20dB to +10dB (0dB original).
We increased the TRY gain by factor of 10 (that's the "10dB" of this PDA520. See the spec sheet) to compensate this change.
This made the ASS instable. Anyway we reduced the gain of TRY PD to 0dB. This restored the ASS.

Jenne took some more data for the QPD spectrum calibration.

Link to the vent plan

  8890   Mon Jul 22 16:56:14 2013 JenneUpdateGeneralVent preparation - In progress

Pre-vent checklist

  • Center all oplevs/IPPOS/IPANG
  • Align the arm cavities for IR and align Xgreen and Ygreen lasers to the arms.
    (X green+PSL green = TRX ~0.7 pre-swap and ~ 0.6 post-swap, Ygreen +PSL green TRY ~600 counts an hour or so after green was aligned to the arm.)
  • Make a record of the MC pointing
  • Align the beam at the PSL angle and position QPDs
     
  • Record good OSEM values.
     
  • Reduce input power by placing wave plate+PBS setup on the PSL table either BEFORE or AFTER THE PMC. (We will try attenuating the power using the WP + PBS that already exist after the laser. If this does not help attenuate enough, we will introduce WP+PBS after the PMC). Refer elog 6892 and elog 7299 for after the PMC detailed procedure.
     
  • Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  • Check the MC spot position measurement under the low power mode.
     
  • Close shutter of PSL-IR and green shutters at the ends
  • Make sure the jam nuts are protecting bellows
  8891   Mon Jul 22 17:03:25 2013 JenneUpdateGeneralMC spot positions

The results of today's MC spot position measurements:

spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
[2.3244717046516197, -0.094366247149508087, 1.6060842142158149, -0.74616561350974353, -0.67461746482832874, -1.3301448018100492]

MC1 and MC3 both have spots that are a little high in pitch, but everything else looks okay.

Actual Script:

/opt/rtcds/caltech/c1/scripts/ASS/MC/mcassMCdecenter

Plotting Script:

/opt/rtcds/caltech/c1/scripts/ASS/MC/MC_spotMeasurement_history.py

MCdecenter_22July2013.png

  8892   Mon Jul 22 17:17:30 2013 annalisaUpdateendtable upgradeEnd table picture
Attachment 1: YendTable.jpg
YendTable.jpg
  8893   Mon Jul 22 18:49:16 2013 JenneUpdateGeneralVent preparation - In progress

I have just centered IPPOS, as well as PSL POS and PSL ANG (also called IOO POS and IOO ANG on the screens).  Annalisa is working on placing mirrors to get the IPANG beam to its QPD, so that one will be centered later.

  8894   Mon Jul 22 21:23:04 2013 manasaUpdateGeneralVent preparation - In progress

[Gautam, Manasa]

Green steering mirrors have been swapped with PZT mirrors at the X end table. We aligned the green to the X arm.

X arm green transmission +PSL green  ~ 0.95

That's better than before the swap...woohooo

  8895   Mon Jul 22 22:06:18 2013 KojiUpdateCDSFE Web view was fixed

FE Web view was broken for a long time. It was fixed now.

The problem was that path names were not fixed when we moved the models from the old local place to the SVN structure.

The auto updating script (/cvs/cds/rtcds/caltech/c1/scripts/AutoUpdate/update_webview.cron) is running on Mafalda.

Link to the web view: https://nodus.ligo.caltech.edu:30889/FE/

  8896   Tue Jul 23 00:51:46 2013 KojiUpdateendtable upgradeEnd table picture

The spot on the IPANG QPD was checked. The spot is higher than the center and South side of the lens.
Some photos are found below.

The spot on the IPANG steering mirrors in the ETMY chamber was also checked.
It is clipped at the top of the steering mirror. (See attachment 4)
So basically the spot is about 1" above the center of the mirror.

Attachment 1: P7224222.JPG
P7224222.JPG
Attachment 2: P7224223.JPG
P7224223.JPG
Attachment 3: P7224224.JPG
P7224224.JPG
Attachment 4: P7224238.JPG
P7224238.JPG
  8897   Tue Jul 23 01:30:27 2013 JenneUpdateASCPOP QPD analysis

I have some data for how much motion of any PRMI-relevant optic affects the beam seen by the POP QPD. 

For this, I am using the QPD calibration from the micrometer (elog 8851) to get me from counts to mm of motion.  Note that the pitch calibration hasn't been redone (I tried locking the PRMI this afternoon, but ITMX kept drifting away from me**, so I didn't get any more data.) The pitch calibration is obviously very rough, since I only have 2 points defining my fit line. 

Anyhow, if we assume that's close enough to get us started, I now have a calibrated QPD spectrum:

QPD_spectra_only.png

As detailed in elog 8854, I took single frequency transfer functions, to determine the effect at the QPD from shaking any single PRMI optic.  These transfer functions gave me a conversion factor between the optics' oplev readings (in microradians) to the counts seen at the QPD.  I used this number, as well as the QPD calibration from the micrometer data, to convert each optics' oplev spectra to motion that one would expect to see at the QPD. 

I have not yet completely figured out how to make an estimate of the PR folding optics' affect on the POP QPD spot position, if I know their motion.  The current plan is to do as Den did in elog 8451, and infer the PR2/3 motion from the ITMX/BS motion measured by the oplevs.  My plan was to take the spectra of the oplev signals while the BS/ITMX are undamped, divide by the SOS pendulum transfer functions, then multiply by the TT transfer functions (which I finally wrote down in elog 8564).  I'm planning on using the undamped data, since the oplev signals are still within the linear range of the oplev QPDs, and I won't have to take the SUS damping into account.  Anyhow, after I do that, I'll have an idea of how much the tip tilts are moving, but not what that does to the cavity axis.

However, after looking at the plots below, it seems like the PRM is the main culprit causing the PRC axis motion, although the BS (and to a smaller extent the ITMs) are not innocent.  Since the plots get very busy very quickly, I have many plots, each plot comparing one of the above QPD spectra (either pitch or yaw) with a single optics' oplev inferred motion.

EDIT:  After talking with Koji, I realize that, since the ASC was engaged during the PRM oplev spectrum measurement, I cannot yet say whether the motion is due to PRM, or if it is from PR2 or PR3, and imprinted on the PRM via the ASC servo.  The lump where the PRM-caused motion is greater than the QPD spectra is entirely in the region where the ASC is active.  So, the QPD motion I expect without the ASC would be something like the green trace in the PRM comparison plots.  The blue trace is then the closed loop measurement.  Since the ITMs and BS are below the closed loop values, they aren't the ones causing the big lump.  I should retake all of these spectra at a time when the PRMI is locked, but the ASC is not engaged.  I'm not sure if I'll have a chance to do that tonight or not.  If I can find some GPS times when the PRMI was locked, before we had ASC, I can get the oplev data.

PRM:

QPD_yaw_motion_from_PRM.pngQPD_pit_motion_from_PRM.png

BS:

QPD_yaw_motion_from_BS.pngQPD_pit_motion_from_BS.png

ITMX:

QPD_yaw_motion_from_ITMX.pngQPD_pit_motion_from_ITMX.png

ITMY:

QPD_yaw_motion_from_ITMY.pngQPD_pit_motion_from_ITMY.png

 I think part of the reason PRM is dominating is that it's damped motion is ~10x greater than any other optics', most noticeably the BS'.  I'll write a quick separate elog about this.  Also, note that the ~3Hz resonant gain had been turned off in the PRM oplev loop, but not in any other loops.  This is why there isn't the sharp dip in the PRM's oplev motion.  Also, since the PRM ASC was engaged for this measurement, and the ASC pushes on the PRM to minimize the QPD motion, it isn't totally crazy that the PRM's motion is greater than what we actually see at the QPD, if it is compensating for the motion of other optics.

 

** Re: PRMI locking this afternoon, it was almost as if ITMX were bi-stable.  I aligned both arms, to set the ITM positions.  Then, I would lock and tweak up the michelson to get the AS port nice and dark (usually touching ITMX today, since it seemed like the drifter....ITMX at this point was usually between -7 and -15 microradians in pitch from the center of the oplev QPD).  When I then brought the PRM back into alignment, ITMX was starting to drift away.  As soon as I hit the LSC Enable switch, and looked back over to the OpLev screen, ITMX was misaligned, usually around -65 urad in pitch.  I did this circus probably 3 or so times before giving up.  Koji said that he had seen this bi-stability before, but he didn't remember what fixed it.  The drifting that Koji mentioned in elog 8801 seems to have been fixed by centering all the PRMI oplevs every day, but I had already done that, and was still seeing ITMX drift.

  8898   Tue Jul 23 03:10:57 2013 KojiUpdateGeneralVent preparation - In progress

Centering of the oplev beams: done

Recording the OSEM values: done

Attachment 1: OSEM_RECORD.png
OSEM_RECORD.png
Attachment 2: OPLEVS.png
OPLEVS.png
  8899   Tue Jul 23 03:43:32 2013 manasaUpdateGeneralVent preparation - In progress

There seems to be an unexplained oscillation in X arm cavity transmission for IR when the cavity is locked using the POX error signal.

Their origin is not related to the oplevs because the oscillation does not exist when LSC is OFF and the arms are controlled only by the oplevs and OSEMs.

  8900   Tue Jul 23 04:07:48 2013 gautamUpdateCDSExcitation points set up on c1scx

 

 In light of recent events and the decision to test the piezo tip-tilts for green beam steering on the X-end table, I have set up 8 excitation points to channels 8 through 15 of the DAC on c1scx (as was done earlier for the DAC at 1Y4 with Jenne's help) in order to verify that the pin-outs of the DAC interface board. I have not yet compiled the model or restarted the computer, and will do these tomorrow, after which I will do the test. The channels are named YYY_CHAN9 etc. 

 

 

 

 

  8901   Tue Jul 23 04:22:03 2013 KojiUpdateGeneralVent preparation - In progress

[Koji Jenne]

Low power MC locking

- Rotated HWP right after the laser

- Put a knife edge beam dump at the output of the PBS after the HWP.

- Replaced the PO mirror for the MC refl by an HR mirror.

- PMC:
Input offset from 0 to 0.29
Servo Gain from 10 to 30
=> Transmission 0.84 (1.2W at the MC input) to 0.069 (100mW)

- MC:

VCO Gain from 25 to 31
MC REFL: Unlocked 3.6 Locked 0.38-0.40

  8902   Tue Jul 23 04:26:54 2013 JenneUpdateGeneralMC spot positions

After Koji and I lowered the power into the PMC and saw that the MC locked nicely, I remeasured the spot positions (no alignment on the PSL table, or of the MC mirrors has been done.  Also, WFS are off, since there isn't any power going to them).

spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
[1.1999406656184595, 0.63492727550953243, 1.0769104750021909, -1.0260011922577466, -1.059439987970527, -1.2717741991488549]

MCdecenter_22July2013_lowpower.png

The spot positions seem to have actually gotten a bit better in pitch (although between 2 consecutive measurements there was ~0.5mm discrepancy), and no real change in yaw.  This means that Rana was right all along (surprise!), and that decreasing the power before the PMC reduces alignment pain significantly.

  8903   Tue Jul 23 04:31:36 2013 JenneUpdateGeneralVent preparation - Ready for Vent

After everyone's work today (good teamwork everybody!!), we are a GO for the vent.

Steve, please check the jam nuts, and begin the vent when you get in.  Thanks.

  8904   Tue Jul 23 08:21:31 2013 SteveUpdateVACVent has started

 

Thanks for the good preparation.  IFO pressure P1=20 Torr

Attachment 1: beforVent.png
beforVent.png
Attachment 2: startVent.png
startVent.png
  8906   Tue Jul 23 13:55:08 2013 KojiUpdateIOOMC manually aligned

The MC was manually aligned. The spot positions were measured and it is consistent with the measurements done yesterday.

Attachment 1: MCalignment.png
MCalignment.png
Attachment 2: MCspot.png
MCspot.png
  8907   Tue Jul 23 14:00:03 2013 SteveUpdateVACthe vent is completed

 The 40m IFO has reached  atmospher in 5 hours. It is ready to open chamber condition. The RGA is pumped with the maglev.

P1 pirani gauge is contact dependent as you see it on the linear plot It will be replaced during this vent.

The venting speed was 2-4 Torr / min

Atm2 shows how the BS is sensing the venting air cylinder changes. 

The 4th cylinder of instrument  grade air  bump is overlapping with our janitor working at the BS chamber.

 

 

Attachment 1: Atm.png
Atm.png
Attachment 2: 5cyl.png
5cyl.png
Attachment 3: ventSum1d.png
ventSum1d.png
  8908   Tue Jul 23 16:39:31 2013 KojiUpdateGeneralFull IFO alignment recovered

[Annnalisa Koji]

Full alignment of the IFO was recovered. The arms were locked with the green beams first, and then locked with the IR.

In order to use the ASS with lower power, C1:LSC-OUTPUT_MTRX_9_6 and C1:LSC-OUTPUT_MTRX_10_7 were reduced to 0.05.
This compensates the gain imbalance between TRX/Y siganls and the A2L component in the arm feedback signals.

Despite the IFO was aligned, we don't touch the OPLEVs and green beams to the vented IFO.

Attachment 1: alignment.png
alignment.png
  8909   Tue Jul 23 16:47:01 2013 gautamUpdateCDSExcitation points set up on c1scx

 I just compiled and installed the model with the excitation points on c1scx and then restarted framebuilder. The channels I set up are now showing up in the awggui dropdown menu. I will do the tests on the DAC channels shortly.

Just to keep things on record, these are the steps I followed:

  • opened the model c1scx (path: /opt/rtcds/userapps/release/sus/c1/models) with MATLAB
  • Added 8 excitation points and saved the model. A copy has been saved as c1scx.mdl.r2010b because of the recent upgrade to r2013a. 
  • ssh to c1iscex (computer running the model c1scx). 
  • Entered the following sequence of commands in terminal: rtcds make c1scx ,  rtcds install c1scx , rtcds start c1scx 
  • ssh to framebuilder, and restarted the framebuilder by entering telnet fb 8088   and then   shutdown.
ELOG V3.1.3-