40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 159 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  8365   Thu Mar 28 07:58:15 2013 SteveUpdateGreen LockingNPRO repair

Quote:

 

 JDSU can repair the Lightwave M126-1064-700 NPRO, sn 415  They do not need the Controller sn 516 

 Posted in the 40m Wiki_ PSL_ NPRO  cost repair and/or option to buy Innolight laser as replacement

 NPRO shipped out for evaluation yesterday under RMA 18022707

  8569   Tue May 14 01:56:20 2013 JenneUpdateGreen LockingXend Green tweaked

I locked the Xarm on green.  At the PSL table, I adjusted the steering mirror to get the beam centered on the GTRX DC PD.  We need a lens for this, and presumably for the GTRY as well. 

I then went down to the Xend, and adjusted the steering mirrors to maximize the transmitted green power.  I got as high as 2150 counts.

Either the alignment is particularly delicate, or something isn't quite right, but when I put the lid back on the optical table's box, the arm will no longer lock on the 00 mode.  It's pretty typical that the cavity will unlock while you put on the lid, but usually if you bang on the underside of the table, or toggle the green shutter, you'll get back to the 00 mode.  Tonight however, I can't get the 00 mode if the lid is on.  If I slide the lid off just enough to get my hand inside, then block the green beam with my hand, I immediately lock on the 00 mode.  Even if I gently slide the lid back on, I unlock the cavity, and with the lid on can't get better than a 01 mode in yaw.  I repeated this a few times, with the same result. 

A goal for the next few days:  Re-find the Xgreen beatnote.  Once we have the PRMI locking stably and reliably, we want to move on to PRFPMI.   

  8570   Tue May 14 02:19:13 2013 KojiUpdateGreen LockingXend Green tweaked

Note that I'm supposed to return one of the two green beat PDs and the power supply.
They are on the REFL path. I'll work on the restoration of the beat configuration.

  8607   Tue May 21 18:18:23 2013 ManasaUpdateGreen LockingXend Green aligned

X arm aligned to green.

Aligned the X arm to IR.
Used steering mirrors to align the X end green to the X arm while remaining locked for IR. X arm locks to green stably with GTRX at the PSL table measuring 235uW and corresponds to 2560counts in C!:ALS-TRX_OUT.

Next
1. PSL green alignment.
2. Search for beat note.
3. Resurrect ALS for X arm.

  8610   Tue May 21 23:29:57 2013 ManasaUpdateGreen LockingXend Green aligned

X-green and PSL green have been aligned so that they interfere at the beat PD for X.

I haven't scanned the X-end NPRO temperature to find the beat note. I found the earlier elog when this was done (elog 6851) and will use those temperatures to start with.

  8651   Tue May 28 19:35:17 2013 ManasaUpdateGreen LockingStill searching for the X green beat note

Procedure

1. Aligned X-arm to IR.
2. Aligned green to the X-arm.
3. PSL green and X-green aligned to the X-green beat PD.
4. Scanned X-green laser temperature (sweep X slow servo offset through the whole range)

I did not succeed in finding the beat note; but noticed something I cannot explain.
With green very stably aligned to the X-arm, GTRX reads 3000 counts. But when the laser temperature is changed and the green unlocks and locks to the X-arm, it locks with GTRX counts over 5000. GTRX stays at 5000 counts as long as the temperature is changing but settles down to 3000 (over a time lapse of tens of seconds) when let to stay at any specific temperature.

  8653   Thu May 30 01:02:41 2013 ManasaUpdateGreen LockingFound it!

X green beat note found!

Key points
1. Near-field and far-field alignment on the PSL table. The near-field alignment checked by looking at the camera and the far-field alignment checked by allowing the beams to propagate by removing the DC PD.
2. Check laser temperature and get a sense of how the offset translates to the actual laser temperature.
3. Get an idea of the expected temperature of laser using the plot in elog.

Data
PSL laser temperature = 31.45 deg C

X end laser temperature = 39.24 deg C
C1-ALS-X_SLOW_SEERVO2_OFFSET = 4810
Amplitude of beat note = -40dBm

I do not understand why
1. The amplitude of beatnote falls linearly with frequency (peak traced using 'hold' option of the spectrum analyzer).
2. I found the beat note at the RF output of the PD. Earlier, while I was trying to search for the beatnote from the RFmon output of the betabox, there was a strong peak at 29.6MHz that existed even when the green shutters were closed. It's source has to be traced.

Next
Solve beatbox puzzle and lock arm using ALS.

IMG_0598.JPGIMG_0599.JPG

  8666   Mon Jun 3 21:09:55 2013 ManasaUpdateGreen LockingX green beatnote through beatbox

I connected the X green beat PD output back to the beatbox, did the usual PSL alignment for green and searched for the beat note from the RFmon of the beatbox.

Yuta had used a power splitter which took Xbeat-RFmon and Ybeat-RFmon and used the SUM port to monitor the beat signals. I have removed this splitter and just used the X beat RFmon.

I found the beat note with:

Beat@58.7MHz : Amplitude -30dBm
C1:ALS-TRX_OUT16 = 3000 counts
C1:PSL-FSS_SLOWDC = 0.2250
PSL temperature = 31.52 degC
X- green temperature = 39.34 degC (OFFSET = 5140)

Next
Beatbox calibration

IMG_0608.JPG

  8691   Sat Jun 8 00:24:11 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

[Annalisa, Nic]

After connecting the PD with the reflection from the arm  to the PDH box, theY  arm has been locked on the 01 mode.  Maximizing the alignment, we obtained a 00 mode locking, but we couldn't maximize the power.

The size of the reflected beam was different with respect to the size of the incoming beam, so probably a bad mode matching was one of the issues.

Moreover, the reflected beam is very low power. We need to figure out why it is so (bad alignment? related to mode matching?)

 

After measuring better all the distances, I did a new mode matching calculation. I put the lenses after measuring the beam waist, so the size of the beam on the lenses was the same as expected from the calculation. Nevertheless, the beam size on the beam splitter looks bigger than expected, and also in this case green flashes into the cavity at some HOM (again 01).

I also tried to lock again the cavity and maximize the alignment, but I didn't get any improvement with respect to the previous mode matching.

 

  8692   Mon Jun 10 21:39:26 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

 

Still no good locking!

After making the reflected beam size closer to the injected one, I maximized alignment. I locked again in 00 mode, but I couldn't maximize the power. 

I just realized that maybe I'm not using the correct radius of curvature for the ETMY in the simulation. Tomorrow I will start checking from that.

  8693   Tue Jun 11 10:00:54 2013 nicolasUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

 

Still no good locking!

After making the reflected beam size closer to the injected one, I maximized alignment. I locked again in 00 mode, but I couldn't maximize the power. 

I just realized that maybe I'm not using the correct radius of curvature for the ETMY in the simulation. Tomorrow I will start checking from that.

 Also make sure you are taking into account the substrate of the ETM.

  8694   Tue Jun 11 22:16:56 2013 ManasaSummaryGreen LockingALS for X arm

I discussed with Yuta about the ALS servo and phase tracker and found that there was a lot of information lying around from last year but there aren't any clear elogs on how to enable ALS and obtain IR resonance.

 

Guide to enabling the ALS servo and find IR resonance:

The steps will explain in detail how to ressurrect the ALS servo for green X-arm and find IR resonance using ALS. The medm screens are very confusing right now.

 

(i) Finding the beat note

1. Get the IR to flash in TEM00 for the arm and lock it by enabling LSC (Locking the arm to IR keeps the arm cavity mirrors stable so that you can scan the temperature of the X-end laser to find the beat note).

2. Steer the X-green into the arm cavity such that the arm cavity locks in TEM00 for green as well. At this point you should also have the X-green reaching the PSL table.

3. Align the PSL doubled green (PSL-green) and the X-green in near-field (at the camera) and far-field (letting the beams to propagate beyond the Green-TRX PD).

4. Check cabling of the RF beat PD.

5. Change the X-laser temperature by sweeping the offset (C1: ALS-SLOW_SERVO2_OFFSET) in steps of 10.

6. Find the beat note and tune the alignment at the beat PD to maximize the beatnote amplitude. Disable LSC for X arm.

 

(ii) The GREEN HORNET explained

'Input signal conditioning' block takes I and Q signals after the delay frequency discriminator (DFD) in the beat box and these signals pass through C1ALS_BEATX_FINE filter banks. The output signal then enters the phase rotation matrix of the phase tracker. The phase tracker gives 'PHASE_OUT' which is the error signal that is fed to the ETM servo filter module (DOF filters)  through the 'Input matrix' in the medm. 

An offset can also be fed to the phase tracker which will scan the beat frequency (used to find IR resonance).

 

(iii) Scripts

1. easyALS.py - This runs from 'ON plus' or 'ON minus' buttons in the C1ALS_COMPACT. 

The script clears history of 'fine_phase' filter module and increases gain of the servo in steps ('ON plus' for positive gain and 'ON minus' for negative gain).

2. findIRresonance.py - This runs from 'IRres' button in the C1ALS_COMPACT.

It adds offset to the phase tracker in steps which scans the beat frequency to find IR resonance.

P.S. Check the scripts before enabling the servo so that the right filter modules are being turned ON. Using the wrong set of filter modules can kick the ETM.

____________________________________________________________________________________________________________________________________________________

X arm ALS progress:

I found the beat note and got ALS to work reasonably for the Xarm without kicking the ETM. I did this by manually toggling buttons and changing gains. The scripts need editing.

To do:

Modify the scripts to work as we want them to.

The ALS medm is SSSOOOO confusing. It definitely needs to be fixed (remove all unwanted parts of the screen that existed 'pre-phase tracker').

Find IR resonance.

 
  8695   Wed Jun 12 01:56:58 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

 

 For the mode matching calculation I was using the ETMY focal length that I found on Kiwamu's plot on the wiki page. 

Taking into account also the substrate, the focal length turns out to be

fl = ((n-1)*(1/R1 - 1/R2 + (n-1)d/(nR1R2)))^(-1) = -125.81 m

with n = 1.46071 (refraction index of fused silica at 532nm)

R1 = 5625 m (radius of curvature of the first surface)

R2 = 57.37 m (radius of curvature of the second surface)

d = 25mm (thickness)

 

The value of the focal length is sligthly different from the one I was using before in the calculation, but maybe it is enough to change the coupling.

The mode matching solution I found is very sensitive to the lenses position. 

The beam waist position can vary up to 20m varying by 1cm the first lens position, while it is slightly less sensitive to the second lens displacement.

As shown in the picture, along the green beam path there is also a 1m focal length lens. It's position is fixed, because it is along the IR transmetted beam path also. I tried to get a better solution without it, but I found that the waist position was still strongly dependent on one of the two lenses position, so it would not solve the problem to remove this lens.

I think that the main issue of this mode matching is related to the "space contraints", because the two lenses' positions can vary in a very small space, even though the green beam path on the table is quite long.

Eventually, I put the MM lenses found from this last simulation on the table, and it seems to work, since I've seen very strong 00 flashes. Unfortunately, while trying to maximize the alignment I broke it  and I have to do it again, but I feel confident! 

Attachment 1: waistVaryingLensPos.pdf
waistVaryingLensPos.pdf
Attachment 2: green.JPG
green.JPG
Attachment 3: ModeMatchingY.pdf
ModeMatchingY.pdf
  8696   Wed Jun 12 22:48:10 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

  8697   Wed Jun 12 23:06:33 2013 JenneUpdateGreen LockingY arm locked with green but bad mode matching
Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
We should look at it with fresh eyes in the morning. 
  8698   Thu Jun 13 00:35:23 2013 ManasaUpdateGreen LockingY arm locked with green but bad mode matching
> Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
> We should look at it with fresh eyes in the morning. 

Also, if you have been measuring the power of green refl at the rejection port of the green faraday, the polarization of the light entering the green faraday should be checked once again to make sure that you are measuring 
only the reflected power from the arm cavity.
  8699   Thu Jun 13 10:57:36 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching
> > Hmmm.  You seem to be saying that more light is reflected than is injected. Is this a units problem? Or was some IR on the power meter during the 'reflected' measurement? 
> > We should look at it with fresh eyes in the morning. 
> 
> Also, if you have been measuring the power of green refl at the rejection port of the green faraday, the polarization of the light entering the green faraday should be checked once again to make sure that you are measuring 
> only the reflected power from the arm cavity.

Sorry Sorrry Sorry!!
It was 0.090 mW, I just forgot a zero!!!
Sorry!
  8701   Thu Jun 13 16:01:48 2013 nicolasUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

Is this reflection measured with the cavity locked or unlocked?

So what's the actual designed reflectivity of the ETM for green? No one seems to be able to give me a straight answer about this.

Looking at the reflected beam when the beam is misaligned makes it look like it's << 0.9. Is that expected given the coating spec?

You say the cavity scan goes as high as 300cts but you can only lock to 30cts, are you locked on the sideband?

  8703   Thu Jun 13 22:31:12 2013 ManasaSummaryGreen LockingX arm ALS

Stabilized ALS and beat frequency sweep realized.

Procedure:

1. Enable appropriate filter modules and set appropriate servo gains.

Servo module

Filters Gain
C1:ALS-BEATX_FINE_I   FM2 FM3 1.0
C1:ALS-BEATX_FINE_Q FM2 FM3 1.0
C1:ALS-BEATX_FINE_PHASE FM1   300.0
C1:ALS-BEATX_FINE_OFFSET - 1.0
C1:ALS-XARM FM4 FM5 -0.25
C1:ALS-ETMX - 1.0


2. Clear history of C1:ALS-BEATX_FINE_PHASE

3. Enable the servo loop. I had set limits on the servo loop and ramp time for gain switching so that I don't kick the ETMY hard.
Gains were decided such that the error signal C1:ALS-BEATX_FINE_PHASE_OUT was minimized.

4. Beat frequency sweep is realized by stepping up on C1:ALS-BEATX_FINE_OFFSET_OFFSET (from 0 to 2100 in this case).

Video1 shows the difference that can be seen at the RF spectrum analyzer when ALS is enabled.

Video2 shows the beat frequency sweep as seen on the spectrum analyzer.

I could not get 'getdata' to work as I wanted. So I have attached the error signal trend before and after the ALS servo loop is enabled.

Thank you Jenne for helping retrieve more sensible data!

More info:
The beat note is very strong and we can clearly see its harmonics as well. Attached is the picture showing the several harmonics.
________________________________
Peak frequency(MHz)    Power(dBm)
________________________________
 47                                    -2.77
 93.5                                -27.56
 139                                 -32.75
 185.4                              -45.64
 231.9                              -57.10
 278.4                              -59.42
________________________________

To do:
1. Obtain IR resonance.
2. Check the digital anti-whitening filter after the beatbox.
3. The effect of the harmonics should be figured out.
4. Write scripts to enable ALS and findIRresonance.

Attachment 1: IMG_0659.JPG
IMG_0659.JPG
Attachment 2: ALS_stabilized_13June2013.png
ALS_stabilized_13June2013.png
  8704   Thu Jun 13 23:28:40 2013 AnnalisaUpdateGreen LockingY arm locked with green but bad mode matching

Quote:

Quote:

After restoring alignment I could see again strong 00 flashes (about 250-300 counts on ALS-TRY). So I locked the arm with IR and after enabling the PDH servo for the green locking, I also locked the green on the Y arm in 00 mode. Then I moved the two mode matching lenses to maximize the power into the 00 mode, but I didn't reach more than 30-35 counts.

Green power injected into the Y arm                    0.680mW

Green power reflected back                                  0.090mW

Green power transmitted on the PSL                  few uW

I would expect more power on the PSL table (maybe 10x more).

Is this reflection measured with the cavity locked or unlocked?

So what's the actual designed reflectivity of the ETM for green? No one seems to be able to give me a straight answer about this.

Looking at the reflected beam when the beam is misaligned makes it look like it's << 0.9. Is that expected given the coating spec?

You say the cavity scan goes as high as 300cts but you can only lock to 30cts, are you locked on the sideband?

 

-The reflection is measured when the cavity is unlocked. I measured it with the power meter in front of the PD, so I interrupted the PDH loop.

- From the specs of ETM we have:

T(S1,HR,532nm)=5.0%+/-3% (+/-1% target),  R(S2,AR,532nm)<1000ppm

It means that I should have about 600-550 uW in reflection, but I don't. I can say that there are many losses, and maybe some power is clipping inside the Faraday. Nonetheless, the reflected beam looks less strong than the injected one, so most of the losses should be on the ETM table.

(- The reflected power is 0.090 mW, I just wrote it wrong yesterday, sorry!)

- The last question is actually very interesting. Maybe I was locking on the sideband when I locked to 30 cts, but if it is the case I cannot really explain why today I locked on the carrier (I locked the cavity to about 200-250 cts), and everything I changed was the PD gain and the amplitude on signal generator connected to the PDH box. It seems like there should be some sign flip somewhere, but I need to think about.

 

 

  8708   Fri Jun 14 07:06:19 2013 KojiSummaryGreen LockingX arm ALS

It's nice that we are now able to scan the cavity again. We got close to PRMI+one arm one step further.
The calibration of the scan frequency and the evaluation of the in-loop/out-of-loop error signal in terms of (Hz/rtHz) would be necessary.

The beat amplitude looks actually huge aIthough I don't know where you are monitoring.
Talk to Jamie to figure out how much the signal should be at the monitoring point.
If it is more than we are supposed to have, put an attenuator somewhere.

  8709   Fri Jun 14 17:15:45 2013 ManasaUpdateGreen Lockingc1als model edited

I have edited the daq channels in c1als model.

Added: DQ channels for the error signal (phase tracker output)
Removed: DQ channels that existed for the beat_coarse signals

Installed and restarted the model on c1ioo.
Frame builder restarted.
Changes were committed to the svn. 

  8714   Mon Jun 17 23:12:19 2013 ManasaUpdateGreen Lockingcan't get IR to resonate

What I did: 

1. Followed the same procedure to enable ALS (http://nodus.ligo.caltech.edu:8080/40m/8703)
2. Enabling ALS servo stabilized the arm fluctuation and the beat frequency.
3. Beat frequency sweep was done (with ALS servo enabled) by changing offset C1:ALS-BEATX_FINE_OFFSET_OFFSET in steps.

Discussion:

I swept the beat frequency through ~10MHz and could not find IR resonance. But TRY TRX varied from 0 - 0.9 counts as the beat frequency sweep was done. I suspected that the offset steps might have been too big and I had jumped over the IR resonance. So, I repeated the offset sweep again in smaller steps (offset steps 0.1) and it did not help. 
I also played with the gain of the ALS servo to stabilize the loop and set the gain to the maximum (smallest error signal oscillating around '0') and did the frequency sweep. The arm cavity would still not resonate through the sweep but only evolve from no flashes to strong flashes for IR (0 - 0.9 counts).
  8715   Mon Jun 17 23:53:03 2013 AnnalisaUpdateGreen LockingY arm locked on green!!

Y arm locked on green carrier in 00 mode!

It locked at almost 280 cts, and the transmitted power on the PSL table is  about 40 uW.

To make it lock on the carrier I had to flip the sign of the error signal in the PDH loop, so I put a phase shifter (a Pomona box with a 23 uF capacitor) right before the LO input of the PDH box (on the model of the X arm).

Tomorrow I will put more details about the power budget and the phase shifter transfer function.

 

  8721   Wed Jun 19 01:45:49 2013 ManasaUpdateGreen LockingBeat frequency sweep for 3FSR

Measurements:

1. Calibrating offset :

I measured the shift in the beat frequency while scanning through the offset. Offset stepped by 50 resulted in 1MHz shift of the beat frequency.
 

2. Anti-whitening filter for beatbox output:

I made an anti-whitening filter for the beatbox output in the ALS_BEATX_FINE_I module by inverting the whitening filters that Jamie had installed in the beatbox earlier (elog).  I have kept the old anti-whitening filter in the module as well for the time-being because the new anti-whitening filter was not as good as the old one in stabilizing the servo (large error signals and unstable ALS).

 

3. Beat frequency scan for 3FSR:

With ALS loop enabled, I did an offset sweep corresponding to 3FSR (FSR = c/2L = 3.7MHz). The loop doesn't seem to be stable enough to reduce the arm fluctuation to get a resonance for IR. Time series of scan is shown below:

findIR.png

4. No-loop and in-loop spectrum:

I measured the spectrum of the error signal (C1:ALS-BEATX_FINE_I_IN1) with ALS loop enabled and disabled. To suppress the peaks at 3.2Hz and 16.5Hz, I turned ON the corresponding filters. I have recorded the error signal spectrum with only 16.5Hz res gain filter turned ON. Turning ON res gain 3.2Hz filter kicked ETM. 
Spectrum of error signal shown below:

findIR1.png

To resolve:

1. What is wrong with the new anti-whiteing filter?

2. Why would the res gain filters kick ETM and show no noise suppression?

  8738   Mon Jun 24 16:06:17 2013 ManasaSummaryGreen LockingALS model

 I am working on the basic ALS servo model. The simulink model for the same is attached. The loop is not yet complete (I'm still debugging it) ; but this is just an update of where I am right now.

Attached is the simulink and matlab file. 

 

 

 

 

 

Attachment 1: elog.zip
  8751   Wed Jun 26 00:15:51 2013 AnnalisaUpdateGreen LockingETMY - green locking and beat note setup

[Koji, Annalisa]

Alignment improving

  • The alignment of the green beam injected into the Yarm has been improved, and when the green laser is locked on the cavity in 00 mode we moved from 500 cnts to almost  650 cnts in transmission on the PSL table. Now we have about 70 uW transmitted.
  • Since the beam size on the GRTY PD was too big, I put a lens to focus it better.

Beat note setup

  • The Ybeat RFmon was connected back to the power splitter that Yuta put and Manasa temporarily removed (as described in elog 8666), so that now we are using again the SUM port to monitor the beat signal.

TO DO

  • Align better the beams on the BeatPD, in order to get a stronger beat note
  • Calibrate the ALS screen to tune remotely the laser temperature
  • Find the beat note!

 

 

  8754   Wed Jun 26 11:32:11 2013 ManasaUpdateGreen Lockingc1als model edited

I have added more DAQ channels to the c1als model. Installed and restarted the model on c1ioo. Frame builder restarted.

DAQ channels added:
C1:ALS-XARM_IN1
C1:ALS-YARM_IN1
C1:ALS-OFFSETTER1_OUT
C1:ALS-OFFSETTER2_OUT

  8760   Wed Jun 26 23:32:15 2013 ManasaUpdateGreen Lockingc1als model edited

I have modified the ALS model to now include PHASE_OUT calibration for both X and Y. MEDM screen has not been edited to include these yet.

c1als_mdl.png

  8761   Thu Jun 27 02:44:33 2013 ranaUpdateGreen Lockingc1als model edited

 Could be that this is OK, but it doesn't yet make sense to me. Can you please explain in words how this manages to apply the calibration rather than just add an extra gain to the phase tracking loop?

  8768   Thu Jun 27 17:41:08 2013 AnnalisaUpdateGreen LockingETMY -beat note found!

 

 Y arm beat note found!

Procedure

  • Arm lock on IR to align the mirrors
  • Green Laser locked on the arm
  • Green Transmission on the PSL and PSL green beam aligned into the BeatPD: they have been aligned both in the near field (looking at the beam on the camera) and in the far field (removing the DC PD and looking at the two beams on the wall)
  • Checked the PSL temperature and, following the plot of the beat note measurement between "Alberto" laser and PSL reported in elog 8396, I got an idea of the range of temperature where the beat note could be found (I used the values of the second curve)
  • Scanned the Y-green laser temperature using the slow servo on the ALS command window

Data

  • PSL temperature = 31.58°C
  • PSL slow servo temperature offset = 0
  • "Alberto" laser temperature = 40.35 °C (ADJ = 0)
  • Thermal output offset on the ALS screen = -11140
  • Beat note frequency = 22 MHz
  • Beat note amplitude = -31.7 dBm

The green transmission on the PSL reads about 500 cts, and the transmitted power is about 50 uW.

(the second peak on the screen in the picture is the 29 MHz of the MC)

Attachment 1: beat_note.JPG
beat_note.JPG
  8769   Thu Jun 27 17:49:17 2013 manasaUpdateGreen Lockingc1als model edited

Quote:

 Could be that this is OK, but it doesn't yet make sense to me. Can you please explain in words how this manages to apply the calibration rather than just add an extra gain to the phase tracking loop?

The calibration is applied by adding an extra gain. But, I missed the point that I should be doing this outside the phase-tracking loop....my BAD .

So I modified the model such that the calibration is done without disturbing the phase tracking loop.

Right now, epics input 'PHASE_OUT_CALIB' accepts the calibration and we get the calibrated phase tracker output converted from deg to Hz at 'PHASE_OUT_HZ'.  I have also made it a DAQ channel to be used with dataviewer and dtt.

medm screens have been modified to accommodate these additions to the phase tracker screen. I used Yuta's phase tracker calibration data in elog to set PHASE_OUT_CALIB in the medm screens.

ALS_PHASEcalib.png

BEATX_FINE.png

  8789   Tue Jul 2 00:25:14 2013 gautamUpdateGreen LockingUniversal PDH box tuning

 [Koji, Annalisa, Gautam]

Annalisa noticed that over the weekend the Y-arm green PDH was locked to a sideband, despite not having changed anything on the PDH box (the sign switch was left as it was). On friday, we tried turning on and off some of the filters on the slow servo (C1ALS_Y_SLOW) which may have changed something but this warranted further investigation. We initially thought that the demodulation phase was not at the optimal value, and decided to try introducing some capacitances in the path from the function generator to the LO input on the universal PDH box. We modelled the circuit and determined that significant phase change was introduced by capacitances between 1nF and 100nF, so we picked out some capacitors (WIMA FKP) and set up a breadboard on which to try these out.

After some trial and error, Koji dropped by and felt that the loop was optimized for the old laser, the various loop parameters had not been tweaked since the new laser was installed. The following parameters had to be optimized for the new laser;

  • Servo gain
  • LO frequency
  • LO modulation depth
  • Demodulation phase

The setup was as follows: 

  • PDH box error signal to Oscilloscope CH1
  • Green PD output to Oscilloscope CH2
  • No capacitor between Function Generator and the PDH box
  • 0.1Hz triangle wave (30 counts amplitude) applied to ETMY via awggui (so as to sweep the cavity and see stronger, more regular TEM00 flashes)

The PDH error signal did not have very well-defined features, so Koji tweaked the LO frequency and the modulation depth till we got a reasonably well-defined PDH signal. Then we turned the excitation off and locked the cavity to green. The servo gain was then optimized by reducing oscillations in the error signal. Eventually, we settled on values for the Servo Gain, LO frequency and modulation depth such that the UGF was ~20kHz (determined by looking at the frequency of oscillation of the error signal on an Oscilloscope), and the PDH signal had well-defined features (while the cavity was unlocked). The current parameters are

  • LO frequency: 205.020 kHz
  • modulation depth: 0.032 Vpp

We then proceeded to find the optimal demodulation phase by simulating the circuit with various capacitances between the function generator and the PDH box (circuit diagram and plots attached). The simulation seemed to suggest that there was no need to introduce any additional capacitance in this path (introducing a 1nF capacitance added a phase-lag of ~90 degrees-this was confirmed as the error-signal amplitude decreased drastically when we hooked up a 1nF capacitor on our makeshift breadboard). In the current configuration, the LO is connected directly to the PDH box.

 

Misc Points:

  • The phase shifter in the PDH box is not connected: the IC in the box, JSPHS-26, is designed for operation in the range 18-26MHz. If necessary, an all-pass-filter could be introduced, with a tuneable rheostat to adjust the phase for our frequency range. Right now, turning the knob marked "LO phase angle" on the front panel doesn't do anything. The mixer on the PDH board is also not used for the same reason.
  • PSL shutter was closed sometime earlier this evening, because we suspected some IR light was reaching the Green PD on the y-endtable, and was influencing the error signal. Its back open now.
  • Useful information about the old y-end laser relevant to selecting the right LO frequency, modulation depth, and servo gain can be found here and in elog 2746 and subsequent replies, though the details of how the measurement were made aren't entirely clear. The idea is that the characteristics of the piezoelectric element in the laser has some characteristics which will determine the optimal LO frequency, modulation depth and servo gain.

 

To Do:

Now that we are reasonably confident that the loop parameters are optimal, we need to stabilise the C1ALS_Y_SLOW loop to stabilise the beat note itself. Appropriate filters need to be added to this servo.

 

Circuit Diagram: 50 ohm input impedance on the source, 50 ohm output impedance seen on the PDH box, capacitance varied between 1nF and 100nF in steps.

circuit.pdf

Plots for various capacitances: Gold-green trace (largest amplitude) direct from LO, other traces at input to PDH box.

model.pdf

  8792   Wed Jul 3 01:49:46 2013 AnnalisaUpdateGreen LockingALS servo configuration

[Koji, Annalisa, Manasa]

Today we worked on the ALS servo stabilization for the Y arm.

First step: find the beat note

The beat note was found following the usual steps:

  • Y arm cavity locked on IR to have a good alignment
  • Y arm cavity locked on green (eventually unlocked on IR)
  • beat note alignment maximized on the PSL table

Beat note amplitude = -27 dBm @ 50 MHz

PSL temperature = 31.54 degC

Laser Offset on the slow servo2 = -11011

 

In the GREEN HORNET we did the following changes for the Y arm:

Input Signal Conditioning

On the C1ALS-BEATY_FINE  screen the same antiwhitening filters of the C1ALS-BEATX_FINE have been reproduced. At moment, only the FM3 [10:1] is enabled.

On the C1ALS-BEATY_FINE_PHASE screen the gain was set at 3600, since the amplitude of the Q signal after the Phase rotator (BEATY_FINE_Q_ERR) was about 30. To set this value we made a proportion with respect to a previous optimized value, where the amplitude was 100 and the gain was set to 1200.

DOF filters

In order to stabilize the beat frequency, we started enabling the FM5 [1000:1] filter in the C1ALS_YARM panel, and then we started increasing the gain first in small steps (0.1), in order to understand which sign the gain should have without kicking the mirror.

We measured the Power Spectrum of the C1:ALS-BEATY_FINE_PHASE_OUT in-loop signal while varying the gain of the C1ALS_YARM servo filter.

Eventually, we enabled the following filters:

FM2 [0:1]

FM3 [1:5]

FM4 [1:50]

FM5 [1000:1]

FM6 [RG3.2]

FM7 [RG16.5]

Gain = -30.

Koji expects the UGF of the loop to be around 100-ish Hz, and he also expected the small bump around 300-400 Hz.

Then we realized that the channel we were measuring was not calibrated in unit of Hz, so we took again the measurement looking at the channel C1:ALS-BEATY_FINE_PHASE_OUT_HZ. In this case, we didn't observe any bump. Maybe the beat frequency was slightly changed from the previous measurement and the all servo shape was also different. The final value of the gain was set at -8.

The Y axis unit is missing (bad me!). It's in deg/sqrt(Hz) for the first plot and Hz/sqrt(Hz) for the second one.

 

Attachment 1: ALS
Attachment 2: ALS_calibrated
  8793   Wed Jul 3 03:06:29 2013 AnnalisaUpdateGreen LockingALS servo configuration

 

I realized that I cannot open the attached plots. I'll fix them tomorrow.

  8807   Mon Jul 8 21:46:31 2013 manasaUpdateGreen LockingBeatbox

[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

  8813   Tue Jul 9 17:03:06 2013 SteveUpdateGreen Lockingfiber layed for Y arm

Alex, Gautam and Steve,

Single mode fiber 50m long is layed out into cable tray that is attached to the beam tube of the Y arm.

It goes from ETMY to PSL enclosure. It is protected at both ends with " clear- pvc, slit corrugated loom tubing " 1.5" ID

The fiber is not protected between 1Y1 and 1Y4

Attachment 1: fromETMYtowardPSL.jpg
fromETMYtowardPSL.jpg
Attachment 2: fibreETMYtoPSL50m.jpg
fibreETMYtoPSL50m.jpg
Attachment 3: PSLfiberfromETMY.jpg
PSLfiberfromETMY.jpg
  8817   Wed Jul 10 01:27:44 2013 gautamUpdateGreen LockingY-end Green PDH open-loop transfer function

 [Annalisa, gautam]

Summary:

We have measured the open-loop transfer function of the Y-end green PDH loop. From the measurement, the loop UGF is ~12kHz.

Details:

We have been trying to measure this transfer function for some time now, and playing around with various points of injecting the excitation and measuring the output. Koji helped arrive at one that actually worked, and the scheme used to make this measurement is shown in the sketch below. The SR785 signal analyzer was used to make the measurement, while an SR560 preamp was used to sum the output from the PDH box (PZT-OUT) and the excitation, with this sum being delivered to the auxiliary laser PZT via a pomona box that sums the servo output and the signal from the LO. The transfer function measurement made was a1/a2 w.r.t the sketch attached.

  • The swept-sine measurement was done from high to low frequencies, as the open-loop gain was expected to be high at low frequencies.
  • After some trial and error, we realised that the excitation amplitude on the SR785 can be varied continuously during the course of a swept sine measurement using the dial on the front panel. We started out with a 1mVpp signal at the high end of the frequency sweep (~102kHz, the upper limit on the SR785) and went up to 17mVpp at ~30Hz). These values were determined by trial and error, and were approximately the maximum that did not kick the loop out of lock/into a higher order mode.

Remarks:

  • As per this paper, the expected bandwidth of this loop is expected to be ~30kHz, while the measured UGF was more like 11.7kHz. Perhaps we can get this closer to the expected 30kHz by increasing the servo gain. The measurement shown was done with the servo gain knob on the Universal PDH box set to ~7.86. We tried two other values, ~8.2 and 10 (this was the limit on the knob), but the UGF first increased to ~13kHz (for the 8.2 gain), and then decreased to ~5kHz with a gain of 10. Not sure why this was, but it can be looked into further. 
     

Set-up to measure Y-end Green PDH transfer function:

Green_PDH_measurement.pdf

 

Measured Open Loop Transfer Function:

Y-end_Green_PDH.pdf

  8818   Wed Jul 10 02:10:41 2013 manasaUpdateGreen LockingBeatbox gets a makeover

Quote:

[Koji, Manasa]

I wanted to investigate on the ALS electronics(in particular the beatbox and the phase tracker) and find out if the beatbox is showing a linear behavior
as we expect it to and as to why we have been seeing sudden jumps at the phase tracker output.

I have been using the Xarm part of the beabox.
I used Marconi as well as signal generator to do frequency sweep/modulation at the RF input of the beatbox and looked at the I_MON output of the beatbox.

We observed sudden jumps in the beatbox output from time to time while we either varied the carrier frequency or the RF amplitude.
Also the beatbox output shows high frequency oscillations at ~95MHz (source unknown). It is for sure that the beatbox is not behaving the way it should
but we could not tell more or troubleshoot with the beatbox mounted on the rack.

I am going to let Annalisa do her Y arm ALS scan tonight and pull out the beatbox tomorrow to fix it.

 The beatbox output showed high frequency oscillations during the troubleshooting process yesterday. I removed the beatbox from the rack. With no RF inputs, just powering the beatbox showed these high frequency oscillations at the beatbox output. This confirms that these oscillations are from the op-amp AD829JR. I replaced these with low noise OP27G. Also I removed the AD829JR that were soldered to the frequency divider and comparator which are not being used. Output buffer U10 was also removed.

After replacing with OP27G, I rechecked the beatbox with and without the RF input. There were no more high frequency contaminations and beatbox seemed to behave as it is supposed to when a frequency modulated RF input is fed. I put the beatbox back on the rack and did  a quick recheck.

Before (top) and after (bottom) pictures

IMG_0842.JPGIMG_0844.JPG

IMG_0845.JPGIMG_0846.JPG

 

  8819   Wed Jul 10 02:28:04 2013 AnnalisaUpdateGreen LockingBeat notes lost!

[Manasa, Jenne, Annalisa]

I was going to find the beat note to start the cavity scan, but I couldn't.

These are the steps I followed:

  • locked the arm with IR to reduce the arm swinging
  • locked the green on the arm
  • started changing the green temperature setting the offset from the slow servo2 in the ALS. The PSL slow actuator ADJ was always set approximately to zero, and the PSL temperature was checked in order to set the auxiliary laser temperature where the beat was expected (as in the plot)

After spanning the temperature by approximately 4degC, we started be suspicious that I couldn't find the beat in the range of temperature where it was supposed to be found, and we started making several trials:

  • PD output disconnected from the beatbox and connected to the cable running to the Control Room
  • Checked that the cable going to the Control Room was working by sending a signal with the Marconi (the cable was working)
  • Put back the amplifier that had been previously removed
  • PD DC output checked with the oscilloscope
  • Spectrum analyzer connected to the PD output without passing trough the cable

The same trials were done also for the X arm, but we didn't succeed in finding the beat for the X neither.

 

  8820   Wed Jul 10 11:27:02 2013 manasaUpdateGreen LockingX arm beatnote found

I found the beat note for X arm. I did not change anything this morning (to the best of my knowledge). Hooking up the spectrum analyzer, I could find the beatnote signal at the PD RF output, after the amplifier and also at the MON port of the beatbox. I still don't know what changed from the last night set of trials

  8821   Wed Jul 10 11:44:02 2013 AnnalisaUpdateGreen LockingY beat note found!

I found the beat note for the Y arm. Nothing was changed with respect to yesterday night, but the beat is back!

  8822   Wed Jul 10 14:49:00 2013 SteveUpdateGreen Locking more fiber protective tubing layed

Quote:

Craig, Gautam and Steve,

Single mode fiber 50m long is layed out into cable tray that is attached to the beam tube of the Y arm.

It goes from ETMY to PSL enclosure. It is protected at both ends with " clear- nylon slit corrugated loom tubing " 1.5" ID

The fiber is not protected between 1Y1 and 1Y4

 Installed 0.5" ID 10 ft long protective tubing at the PSL end of the  ETMY fiber this morning. Here I had to cable tie a bunch of cables at the east side of the PSL enclosure.

They were hanging off the table blocking space were the sliding doors move.

 At the ETMX end of the X-arm fiber received the same protective tubing.

Attachment 1: fibreETMXprotectedendOnly.jpg
fibreETMXprotectedendOnly.jpg
  8824   Thu Jul 11 00:30:27 2013 manasaUpdateGreen LockingX arm ALS post-beatbox makeover

I ran a series of diagnostics on the X arm ALS to look at how the beatbox behaves after the makeover.

Diagnostic tests run:
1. X arm ALS in-loop spectrum
2. X arm ALS out-of loop spectrum
3. X ALS scan of the X arm cavity

The noise suppression looks better after the makeover at the lower frequencies. To suppress the noise at high frequencies, we would have to add more whitening filters.

Attachment 1: XALS_inloop.pdf
XALS_inloop.pdf
Attachment 2: XALS_scan.pdf
XALS_scan.pdf
Attachment 3: ALS_outloop.pdf
ALS_outloop.pdf
  8831   Thu Jul 11 14:38:38 2013 AnnalisaUpdateGreen LockingY arm cavity scan

Yesterday I did a cavity scan with IR while holding the Yarm with green.

ALS servo tuning:

  • C1ALS-BEATY_FINE_PHASE

             The gain of the loop is set such that BEATY_FINE_Q_ERR x GAIN = 120k. This is a kind of "empirical low" in order to have the UGF around 1kHz. 

  • C1ALS_YARM

             Start with FM5 [1000:1] enabled, determine the sign of the gain increasing it in small steps and making sure that the mirror doesn't get a kick. Then gradually raise it while looking at the BEATY_PHASE_OUT power spectrum.

             Enable FM7 [RG16.5], FM6 [RG3.2], FM3 [1:5], FM2[0:1], FM10 [40:7].

Plot 1 shows the power spectrum of BEATY_PHASE_OUT (calibrated in Hz).

  1. blue curve - ALS disabled
  2. green curve - in loop measurement, ALS enabled and servo tuned as described above
  3. grey curve - RMS of the in loop measurement
  4. red curve - out of loop measurement (arm locked with IR)
  5. pink curve -  RMS of the out of loop measurement

Offset setting and cavity scan

The C1ALS_OFFSETTER2 was used to set an offset for ALS scan.

  • LPF30m enabled
  • Ramp time set to 150s
  • Offset set to 1500 (approximately 3 FSR in this interval)

Many scans have been done to find the optimal offset conditions, I only attached one (Plot 2).

I also misaligned the END mirror in pitch to enhance the HOMs peaks, but it turned out that it was not enough, because I didn't see a very big difference between the "aligned" and the "slightly misaligned" measurements (Plot 3). 

NEXT STEPS

Increase the cavity misalignment both in pitch and in yaw and repeat the measurement.

 

Attachment 1: IRlocked_res_mot_0710.pdf
IRlocked_res_mot_0710.pdf
Attachment 2: ArmScanN5.png
ArmScanN5.png
Attachment 3: CavityScanETMYmis
  8841   Fri Jul 12 23:13:32 2013 manasaUpdateGreen LockingALS sensor noise

[Annalisa, Koji, Manasa]

In order to improve the ALS stability we went ahead to check if we are limited by the sensor noise of ALS.

What we did:
RF signals similar to the beatnote were given at the RF inputs of the beatbox.
The frequency of the RF signal was set such that I_OUT was zero (zero-crossing point of the beatbox).
We measured the noise spectrum of the phase tracker output.

Measurements:

Plot 1: X ALS noise spectrum
Plot 2: Y ALS noise spectrum

Discussion:

The X arm ALS noise is not limited by the sensor noise...which means we shoudl come up with clever ideas to hunt for other noise sources.
But this does not seem to be the case for the Y arm ALS. The Y arm part of the beatbox is noisy for frequencies < 100Hz.


After looking into the details and comparing the X and Y arm parts of beatbox, it looks that amplitude of the beat signal seem to affect the Y arm ALS noise significantly and changes the noise spectrum.

To do:
Investigate the effect/limitations of amplitude of the beatnote on the X arm and Y arm beatbox.

Attachment 1: X_ALS_0712.pdf
X_ALS_0712.pdf
Attachment 2: Y_ALS_0712.pdf
Y_ALS_0712.pdf
  8842   Sat Jul 13 03:27:20 2013 AnnalisaUpdateGreen LockingY arm caity scan

I started doing a scan of the Y arm cavity with IR with ALS enabled.

ALS servo tuning:

The servo tuning procedure is basically the same as described in elog 8831.

This time I had a stronger beat note(-14 dBm instead of -24 dBm of the last measurement) thanks to a better alignment.

Plot1 shows the Power spectrum of the BEATY_PHASE_OUT. The RMS is smaller by a factor of 2 (400Hz), corresponding to a residual motion of about 25 pm.

Offset setting avity scan

In order to give an offset linearly growing in time, I used the ezcastep script instead of giving the offset in OFFSETTER2. If the ramp time is long enough, it is not necessary to enable the 30mHz filter.

To span 2 FSR, I started from an offset of 450 and I gave a maximum value of 1600 with a delay of 0.2s between two consecutive steps.

Cavity scan

I did a first scan with the cavity well aligned, basically to know the position of the 00 peaks and choose the best offset range (Plot2)

Then I misaligned the TT2, first in PITCH and yhen in YAW, in order to enhance the HOMs. (Plot3 and Plot4)

More investigation and measurements needed. 

 

 

Attachment 1: PowerSpectrum0712
Attachment 2: ScanCavityAligned.pdf
ScanCavityAligned.pdf
Attachment 3: ScanCavityMisPitch.pdf
ScanCavityMisPitch.pdf
Attachment 4: ScanCavityMisYaw.pdf
ScanCavityMisYaw.pdf
  8844   Sun Jul 14 18:19:00 2013 AnnalisaUpdateGreen LockingArm cavity scan

Yesterday evening Nic and me were in the lab. The Mode Cleaner was unlocked, but after many attempt we could fix it and we did many scans of the Y arm cavity.

Today I was not able to keep the MC locked. Koji helped me remotely, and eventually the MC locked back, but after half an hour of measurements I had to stop.

I made some more scan of the Y arm though. I also tried to do the same for the X arm, but the MC unlocked before the measurement was finished. I'll try to come back in the night.

  8864   Wed Jul 17 22:49:37 2013 KojiUpdateGreen LockingALS Y whitening filter change

[Koji Annalisa]

We did the same mod of the beatbox for the Y arm too. See
http://nodus.ligo.caltech.edu:8080/40m/8855

  8865   Wed Jul 17 22:51:50 2013 KojiUpdateGreen LockingALS Y performance with the new whitening filter

[Manasa Koji]

Summary:
The new whitening filters improved the out-of-loop ALS stability of the Y arm down to 300Hz (20pm_rms in displacement).


- After modifying the whitening filters, the out-of-loop stability of the arms were tested with the IR PDH signals.

- The X arm showed non-stationarity and it made the ALS servo frequenctly fell out of lock.

- For now we decided to use the Y arm for the PRMI+one arm trial.

- The performance of the ALS was tested with several measurements. (attachment 1)

Cyan: Stability of the beatnote frequency with the MC and the arm freely running. The RMS of the day was ~6MHz.

Blue: Sensing limit of the beat box was tested by giving a signal from Marconi. The same amplitude as the X arm beat was given as the test signal.
This yielded the DC output of ~1200 counts.

Green: Out-of-loop estimation of the beatbox performance. This beat note stability was measured by controlling the arm with the IR PDH signal.
Assuming the PDH signal has better SNR than the beat signal, this gives us the out-of-loop estimation of the stability below 150Hz, which is the
unity gain frequency of the ALS loop.
Above 150Hz the loop does not force this noise to the suspension. Just the noise is injected via a residual control gain (<1).

Black: In-loop evaluation of the ALS loop. This becomes the left over noise for the true stability of the arm (for the IR beam).

Red: The arm was brought to the IR resonance using the ALS offset. The out-of-loop stability was evaluated by the IR PDH signal.
This indeed agreed with the evaluation with the other out-of-loop evaluation above (Green) below 150Hz.


Attachment 2 shows the time series data to show how the arm is brought to the resonance.
1 count of the offset corresponds to ~20kHz. So the arm started from 200kHz away from the resonance
and brought to the middle of the resonance.

(Manasa downloaded the 2k sampled data so that we can use this for presentations.)

Attachment 1: ALS_Y_130717.pdf
ALS_Y_130717.pdf
Attachment 2: ALS_Y2_StripTool.png
ALS_Y2_StripTool.png
ELOG V3.1.3-