ID |
Date |
Author |
Type |
Category |
Subject |
761
|
Tue Jul 29 23:04:34 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
Quote: |
The measurement of the PZT open loop TF is very suspicious. According to this, the PC path has a very large gain even at very low frequencies (there is no cross over above 1kHz). This cannot be true. Maybe the cavity's optical gain was low when it was locked with only the PZT. I will re-measure it.
|
I measured it again and found that the loop was oscillating at 13.5kHz. I think this oscillation prevented the ref. cavity from building up the power and consequently lowered the optical gain making it marginally stable. So the PZT path open loop TF posted in the previous entry is wrong.
I was able to stop the oscillation by lowering the gain down to CG=-7.6dB and FG=-8.78dB.
The first attachment shows the measured open loop transfer function.
Since the gain setting is different from when the over all open loop TF was measured, I scaled the gain (attachment 2).
However, this plot seems to have too much gain. Scaling it down by 20dB makes it overlap with the over all open loop TF.
Maybe the gain reading on the EPICS screen is wrong. I will measure the actual gain tomorrow. |
Attachment 1: OpltfPZTOnlyRaw.eps
|
|
Attachment 2: OpltfPZTOnly.eps
|
|
791
|
Mon Aug 4 13:43:02 2008 |
Yoichi | Summary | PSL | FSS loop calibration |
As a part of the effort to repair the FSS loop bandwidth, I tried to calibrate the FSS loop.
First, I scanned the MOPA frequency by injecting a triangular wave into the ramp-in of the FSS box, which goes to the PZT of the NPRO.
The first attachment shows the transmitted light curve (pink one) along with the PDH signal (light blue).
The sweep was very slow (0.1Hz for 2Vp-p). From this measurement, the FWHM was 6.8e-3V. Then fpol = FWHM/2=3.4e-3V, where fpol is the cavity pole frequency.
So the PZT's DC response is 294*fpol/V. If we use the canonical fpol=38kHz, it is 11.172MHz/V.
Then I tried to measure the cavity pole. First I tried the cavity ring down measurement, by blocking the beam abruptly. Unfortunately, my hand was not fast enough.
The ring down shape was not an exponential decay.
I then locked the reference cavity only using the PZT with very narrow bandwidth (UGF=2kHz). I injected signal into the external modulation input of the 80MHz VCO
for the AOM. The second attachment shows the transfer function from this input to the IN2 (mixer output monitor port) of the FSS servo box.
To plot this, I corrected the measurement for the open loop TF (i.e. multiplying the measured TF with (1+G)), and other filters in the path (8MHz LPF after the ext. mod.
input of the 80MHz VCO, and an RCL network after the mixter). The gain looks like a cavity pole, but the phase decreases very rapidly.
If you look at the third attachment showing a wider band transfer function, there are notches at 1.8MHz and above. I couldn't find this kind of filter in the schematic.
Maybe this is the RFPD's bandpass filter. I will check this later. From these plots, it is difficult to tell the cavity pole frequency. From the -3dB point, fpol is around 83kHz,
but from the phase=-45deg point, fpol is around 40kHz.
Finally, I calibrated the cavity's optical gain by locking the Ref. Cavity with only PZT, and injecting a signal into the loop.
The signal was injected from Test-In2 of the FSS servo box and the transfer function from the PZT output signal (TP10) to IN1 (mixer output) was measured.
The transfer function was corrected for a 10Hz LPF after TP10.
The attachment4 shows a nice flat response up to 30kHz. Above 30kHz, the measurement is too noisy. The optical gain at DC is about 22dB from the PZT drive to the error signal (IN1).
Using fpol=38kHz, it means 887kHz/V calibration factor for the signal at IN1. There is a mixer output monitor DAQ channel in the FSS but it seems to be not working at the
moment. I will look into this later. There is a gain of 10dB between IN1 and the mixer monitor channel.
By looking at the phase response of the attachement4, there is a cavity pole like behavior around 30kHz. If we assume the PZT response is flat up to this frequency, it is
roughly consistent with fpol=38kHz.
I was not able to take a sensible spectrum of IN1 using the network analyzer. When the FSS servo was engaged, the signal was too small.
I will try to use an AF spectrum analyzer later to get a calibrated spectrum. |
Attachment 1: P7310048.JPG
|
|
Attachment 2: cavity-response.pdf
|
|
Attachment 3: cavity-response2.pdf
|
|
Attachment 4: cavity-gain.pdf
|
|
799
|
Tue Aug 5 12:52:28 2008 |
Yoichi | Update | SUS | ITMX, SRM OSEM spectra |
Free swinging spectra of ITMX and SRM.
ITMX seems to be ok after yesterday's work, though the OSEM DC values are still a bit off from the normal value of 0.9.
(ITMX OSEM values: UL=1.12, UR=1.38, LR=0.66, LL=0.41, SIDE=0.66)
SRM is still clearly wrong. |
Attachment 1: ITMX-2008_08_05-morning.pdf
|
|
Attachment 2: SRM-2008_08_05-morning.pdf
|
|
803
|
Wed Aug 6 13:15:57 2008 |
Yoichi | Update | SUS | SRM ETMX freeswing spectra |
After yesterday's work on the SRM, I took free swinging spectra of SRM.
The eigen modes look ok. But there are many other peaks which were not present in vacuum.
Some of those peaks may be resonances of the air inside the chambers and the pipes.
However, the peaks around 0.2Hz are too low frequency for those air compression modes.
I took the ETMX spectra at roughly the same time. I chose ETMX because we have not touched it after the vent.
ETMX also shows some extra peaks but the frequencies are different. |
Attachment 1: SRM-ETMX-freeswing.pdf
|
|
806
|
Wed Aug 6 22:19:07 2008 |
Yoichi | Update | SUS | BS alignment |
Koji, Yoichi
We realized that we did not pay attention to the BS alignment while working on the alignment of the ITMX today. Because we were injecting the ALM laser (absolute length measurement laser) from the AS port, the ITMX alignment depends on the BS alignment.
The BS optical lever was not centered and the sum was about 2000cnt, which is low compared, for example, to the SRM oplev.
So we were not sure if the BS was in a good alignment or not.
So we decided to move the BS to center the QPD.
In doing so, we also moved the ITMX so that we do not lose the ALM laser beam coming back to the AS port.
When the BS oplev was centered, the sum of the QPD was still about 2000. So it was not far off centered.
After the tweaking, we were able to see some interference between the light reflected by the ITMY and ITMX at the AS port (actually this is the bright port for the ALM laser). By tweaking the ITMY, we were able to see Michelson fringes at the AS port.
If we believe the ALM laser alignment is still good after the vent, the ITMX, ITMY, BS and SRM should be now in a good alignment condition.
The OSEM values for the ITMX, BS, SRM seem to be ok (0.9+/-0.2). The ITMY LL is a bit low (~ 0.45). |
807
|
Thu Aug 7 10:07:13 2008 |
Yoichi | Update | SUS | Free swinging OSEM spectra |
Looks like there are more extra peaks in the SRM than other optics.
Maybe because it is closer to the door ? |
Attachment 1: FreeSwingSpectra.pdf
|
|
810
|
Thu Aug 7 12:20:52 2008 |
Yoichi | Update | SUS | PRM stand-offs and wire |
We removed the side OSEM of the PRM so that we can see the stand-off on the farther side.
Attachment 1: Farther side stand-off from an angle before removing the OSEM
Attachment 2: Farther side stand-off through the empty OSEM hole.
Attachment 3: Near side stand-off
The wire is definitely in the near side stand-off groove.
Probably the wire is in the groove also on the farther side. |
Attachment 1: IMG_1456.JPG
|
|
Attachment 2: IMG_1478.JPG
|
|
Attachment 3: IMG_1470.JPG
|
|
816
|
Fri Aug 8 13:29:54 2008 |
Yoichi | Update | SUS | No groove in the stand-off ... wait, it is not even a stand-off ! |
Yoichi, Steve, Seiji
We took magnified pictures of the stand-offs of the PRM.
Attm1: North side stand-off.
Attm2: South side stand-off.
Attm3: Zipped file of the full pictures.
We found no groove in the south side stand-off.
After some discussion, we concluded that it is actually a guide rod. You can see it from the size difference (the magnification is the same for the two pictures).
The stand off on the south side is missing (fell off, ran away, evaporated or whatever ...).
Also we noticed that the guide rod on the north side is missing.
We have to find a stand-off and place it on the south side.
Seiji suggested that it is better to put a guide rod next to the north side stand-off, otherwise the stand-off itself is too weak to hold the load.
He also said that the PRM was installed after he left, so it was not his fault. |
Attachment 1: north-standoff-preview.jpg
|
|
Attachment 2: south-standoff-preview.jpg
|
|
Attachment 3: No-groove.zip
|
817
|
Fri Aug 8 15:10:35 2008 |
Yoichi | Update | SUS | No groove in the stand-off ... wait, it is not even a stand-off ! |
I tried to find the missing stand-off and the guide rod in the BS chamber, but I couldn't. |
827
|
Tue Aug 12 12:05:36 2008 |
Yoichi | Update | Computers | HP color printer is back |
I restarted the HP printer server (a little box connected to the HP color laser) so that we can use the HP LaserJet 2550.
After this treatment, the printer spat out a bunch of pages from suspended jobs, many of these were black and white.
I think people should use the black-and-white printer for these kind of jobs, because the color printer is slow and troublesome. |
832
|
Wed Aug 13 20:13:35 2008 |
Yoichi | Update | SUS | PRM stand-off is glued |
Steve, Janne, Rob, Bob, Koji, Yoichi
We finally managed to balance the PRM and the stand-off is now glued.
The whole procedure was something like this:
(1) Measure the levelness of the optical table. It was done by a bubble level claiming that
the sensitivity is 60 arcsec (roughly 0.3 mrad).
There was no noticeable tilt along the longitudinal direction of the table.
(2) We put a He-Ne laser on one end of the table. Mounted a QPD on a X-Y-Z stage. Put the QPD very
close to the laser and centered it by moving the QPD.
Then we moved the QPD far away from the laser and centered the beam spot in vertical direction
by changing the tilt of the laser mount.
We then moved the QPD close to the laser again and adjusted the height to center it. By repeating
the centering at two locations (near and far) several times, we aligned the laser beam parallel to
the table.
(3) The PRM suspension tower was put on the other end of the optical table, i.e. far from the laser.
The QPD was moved next to the laser to form an optical lever. The height of the QPD is preserved from
the previous step.
(4) A stand-off was picked by a pair of tweezers. By gently lifting the mirror by the bottom earthquake stops,
the tension of the wire was relieved. Then the stand off was slid in below the guide rod.
(5) Using the microscope, it was confirmed that the wire is in the grooves on both sides.
(6) Without damping, it was too much pain to balance the mirror. So we put spare OSEMs in the suspension and
pulled a long cable from the suspension rack to the clean room with a satellite amp.
(7) It turned out that the pinout of the cable is flipped because of the vacuum feed through. So we asked Ben for help.
He made conversion cables. We also found UR OSEM was not responding. Ben opened the satellite box, and we found an op-amp was burnt.
Probably it was because we connected OSEMs wrongly at first and the LED current driver was shorted. We switched the satellite box
from the PRM one to the BS one. Ben will fix the PRM box.
Bob cleaned up some D-Sub converters for the interface with the clean OSEM pigtails.
(8) While waiting for Ben, we also tried to short the OSEM coils for inductive damping. We saw no noticeable change in the Q.
(9) After the OSEMs were connected to the digital control system, Rob tweaked the damping gains a bit to make it work efficiently.
(10) I pushed the stand-off back and forth to make the reflected beam spot centered on the QPD. I used the PZT buzzer to gently move the stand-off.
For fine tune, just touching it is enough. I found it useful to touch it without clamping the mirror, because if it is clamped, we can easily push
it too hard. When the mirror is freely hanging, once the tip of the buzzer touches the stand-off, the mirror escapes immediately. If the mirror
swings wildly by your touch, you pushed it too hard.
(11) After about an hour of struggle, I was able to level the mirror. We used about 1.5m optical lever arm. A rough calibration tells us that the
beam spot is within 0.6mm of the center of the QPD. So the reflected light is deflected by 0.4mrad. That means the mirror
is rotated by 0.2mrad. The OSEMs should have about 30mrad of actuation range. So this should be fine.
(12) We mixed the Vac Seal epoxy and put it under vacuum for 15min to remove bubbles. Actually 15min was not enough for removing bubbles completely. But
stopped there because we did not want the epoxy to be too stiff.
I dipped a thin copper wire into the epoxy and applied it on the top of the stand-off. I found the epoxy is already not fluid enough, so Steve made
another Vac Seal mixture. This time we put it under vacuum for only 3 min.
I also applied the epoxy to the sides of the stand-off.
While working on this, I accidentally touched the side of the PRM. Now there is a drop of epoxy sitting there (upper left of the attached picture).
We decided not to wipe it out because we did not want to screw up the levelness.
(13) We put an incandescent light about 1m away from the suspension to gently warm up the epoxy but not too much. We will leave it overnight to cure the
epoxy.
|
Attachment 1: img1.jpg
|
|
836
|
Thu Aug 14 19:08:14 2008 |
Yoichi | Configuration | SUS | Free swing measurement going on |
I started free swinging spectra measurement of all the suspensions now Aug 14 19:05 (PDT).
The watch dogs are all shutdown. Please do not turn them back on until tomorrow morning. |
842
|
Fri Aug 15 17:38:41 2008 |
Yoichi | Update | SUS | OSEM free swinging spectra before the pump down |
I ran an overnight measurement of the free swinging OSEM spectra.
The attm1 shows the results. Everything look ok except for the ITMY UL OSEM.
The time series from that OSEM was very noisy and had many spikes.
We suspected the cable from the satellite box to the computer rack because we disconnected the cable
when we tested a spare cable which was used to connect the spare OSEMs to the PRM suspension in the clean room.
Janne remembered when she put the cable back, she trusted the latch on the connector and did not push it in too hard.
However, Rob suggested the latch does not work well. So she pushed the connector again. Then the signal from
the ITMY UL OSEM got back to normal.
The second attachment shows the ITMY spectra after the cable push.
We decided to pump down after confirming this.
There are still a lot of extra peaks especially in the suspensions in the BS chamber.
These may be inter modulations (by the non-linearities of the OSEMs) of the modes of the multiple
suspensions sitting on the same stack. |
Attachment 1: 2008-8-15.pdf
|
|
Attachment 2: ITMY2.pdf
|
|
844
|
Mon Aug 18 08:07:10 2008 |
Yoichi | Configuration | SUS | Suspension free swinging |
I've started a free swinging measurement of OSEM spectra now. Please leave the watchdogs untouched. |
846
|
Mon Aug 18 11:50:29 2008 |
Yoichi | Update | SUS | In vacuum free swinging results |
The first attachment is the results of the free swinging spectra measurement performed in vacuum this morning.
They are freely swinging, but the suspensions in the BS chamber got even more extra peaks.
Especially, the SRM spectrum looks like a forest.
If those extra peaks are inter-modulations of the primary suspension modes, the heights of them should be
enhanced (compared to the in-the-air case) by the increased quality factors of the primary modes (due to the less air friction).
This might explain the observed increase in the extra peaks.
While doing the free swinging, we had two big spikes in the OSEM signals of the ETMs and only in ETMs.
Those spikes screwed up the spectra of the ETMs. So the ETM spectra were calculated using the time series
after the spikes.
The second attachment shows one of those spikes. It looks like a computer glitch. |
Attachment 1: 2008-8-18.pdf
|
|
Attachment 2: spike.pdf
|
|
849
|
Mon Aug 18 22:47:12 2008 |
Yoichi | Update | IOO | MC unlock study |
As rob noted, the MC keeps unlocking in a few minutes period.
I plotted time series of several signals before unlocks.
It looks like the MC alignment goes wrong a few hundred msec before the unlock (the attached plot is only one example, but all unlocks
I've looked so far show the same behavior).
I will look for the cause of this tomorrow.
The horizontal axis of the plot is sec. The data values are scaled and offset-removed appropriately so that all curves are shown
in a single plot. Therefore, the vertical axis is in arbitrary units. |
Attachment 1: MC-Unlock.png
|
|
856
|
Tue Aug 19 18:55:41 2008 |
Yoichi | Update | IOO | MC unlock study update |
In entry 849, I reported that the MC transmitted power drops before the sudden unlocks.
However, because C1:IOO-MC_TRANS_SUM is a slow channel, we were not sure if we can believe the timing.
So I wanted to use C1:IOO-MC_RFAMPDDC, which is a fast channel, to monitor the transmitted light power.
However, this channel was broken. So I fixed it. Details of the fixing work is reported in another entry.
The attached plot shows a recent unlock event. It is clear that in the fast channel (i.e. C1:IOO-MC_RFAMPDDC),
there is no delay between the drop of the MC power and the crazy behavior of control signals.
So it was concluded that the apparent precedence of the MC power drop in the slow channels (i.e. C1:IOO-MC_TRANS_SUM)
is just an artifact of timing inaccuracy/offset of the slow epics channels.
Sometime around 5PM, the MC started to be unwilling to even lock. It turned out that the PC drive of the FSS was going
crazy continuously. So I changed the normal values of the common gain and the fast gain, which the mcup script uses.
Now with this new setting, the MC locks happily, but still keeps unlocking. |
Attachment 1: MC-unlock.png
|
|
857
|
Tue Aug 19 19:14:17 2008 |
Yoichi | Configuration | DAQ | Fixed C1:IOO-MC_RFAMPDDC |
Yoichi, Rob
C1:IOO-MC_RFAMPDDC, which is a PD at the transmission port of the MC, was not recording sensible values.
So I tracked down the problem starting from the centering of the beam on the PD.
The beam was hitting the PD properly. The DC output BNC on the PD provided +1.25V output when the light was
falling on the PD. The PD is fine.
The flat cable from the PD runs to the IOO rack and fed into the LSC PD interface card.
The output from the interface card is connected to a VMIC3113A DAQ card, through cross connects.
The voltages on the cross connects were ok.
The VMIC3113A was controlled by an EPICS machine (c1iool0). So it provides only a slow channel.
By looking at C1IOOF.ini and tpchn_C1.par, I figured that C1:IOO-MC_RFAMPDDC is using chnnum=13639 in the RFM
network and it is named C1:IOO-ICS_CHAN_15 in the .par file. So it is reading values from the ICS DAQ board.
Actually nothing was connected to the channel 15 of the ICS board and that was why C1:IOO-MC_RFAMPDDC was reading
nothing. So I took the PD signal from the cross connect and hooked it up to the Ch15 of the ICS DAQ through
the large black break out box with 4-pin LEMOs. Now C1:IOO-MC_RFAMPDDC reads the DC output of the PD.
I also put an ND filter in front of the RFAMPD to avoid the saturation of the ADC. The attenuation should have been done
electronically, but I was too lazy. Since the ND filter changes the Stochmon values, someone should remove it and reduce the
gain of the LSC PD interface accordingly.
|
864
|
Wed Aug 20 18:09:48 2008 |
Yoichi | Update | IOO | MC still unlocks |
Being suspicious of FSS PC path as the culprit of the MC unlocks, I opened the FSS box and connected a probe to the TP7,
which is a test point in the PC path (before high voltage amplifier).
The signal is routed to an unused fast DAQ channel in the IOO rack. It is named C1:IOO-MC_TMP1 and recorded by the frame
builder. You can use this channel as a generic test DAQ channel later.
By looking at the attachment, the PC path (C1:IOO-MC_TMP1) goes crazy at the same time as other channels. So probably
it is not the trigger for the MC unlock.
Then I noticed the WFS signals drift away just before the unlock as shown in the attached plot. So now the WFS is the
main suspect.
Rob tweaked MC1 pitch to center the WFS QPDs while the MC is not locked. It improved the shape of the MC reflection.
However, the sudden MC unlock still happens. We then lowered the WFS gain from 0.5 to 0.3. Did not change the situation.
It looks like the MC length loop starts oscillating after the WFS signals drift away.
We will measure the WFS and MC OPLTF to see the stability of the loops tomorrow.
|
Attachment 1: MC-unlock.png
|
|
872
|
Fri Aug 22 17:03:41 2008 |
Yoichi | Update | IOO | MC open loop TF |
I measured the open loop TF of the overall MC loop using the sum-amp A of the MC board.
I used the Agilent 4395A network analyzer and saved the data into a floppy disk. However, the data was corrupted when
I read it with my computer. I had the same problem before. The floppy is not reliable. Anyway, I have to re-measure the TF.
From what I remember, the UGF was around 25kHz and the phase margin was less than 15deg.
Above this frequency, the open loop gain was almost flat and had a small bump around 100kHz.
This bump has a gain margin of less than 4dB (the phase is more than 180deg delayed here).
So the MC is marginally stable and either decreasing or increasing the gain will make it unstable easily.
Probably, the broken FSS is responsible for this. We have to fix it.
During the measurement, I also found that the input connectors (IN1 and IN2) of the MC board are freaky.
These are TNC connectors directory mounted on the board. Gently touching the cables hooked up to those connectors
caused a large offset change in the output.
When Rana pulled the board out and pushed it in firmly, the strange behavior went away. Probably, the board was
not correctly inserted into the backplane.
This could have been the reason for the MC unlocks. |
877
|
Mon Aug 25 11:43:55 2008 |
Yoichi | Frogs | IOO | MC REFL PD cable had been disconnected through out the weekend |
Most of my morning was wasted by the MC REFL PD cable, which was disconnected on the generic LSC PD interface board.
I know who did this. *ME*. When I pulled out the MC board, which is sitting next to the PD interface, on Friday, I must have
disconnected the PD cable accidentally. The connector of the PD cable (D-Sub) does not have screws to tighten and easily comes off.
I wrote this entry to warn other people of this potential problem. |
889
|
Tue Aug 26 19:07:37 2008 |
Yoichi | HowTo | Computers | Reading data from Agilent 4395A analyzer through GPIB from *Linux* machine |
I succeeded in reading data from Agilent 4395A analyzer, who's floppy is crappy, through GPIB from a Linux machine using
agilent 82357B USB-GPIB interface.
I installed the linux GPIB driver to one of the lab. laptops (the silver DELL one currently sitting on the 4395A analyzer).
I wrote an initialization script for the USB-GPIB interface and a small python script for reading data from the analyzer.
[Usage]
1. Connect the USB-GPIB interface to the laptop and the analyzer.
2. Run /usr/local/bin/initGPIB command (it takes about 10sec to complete).
3. Run /usr/local/bin/getgpibdata.py > data.txt to save data from the analyzer to a text file.
The data format is explained in the comments of getgpibdata.py
This method is way faster than the unreliable floppy. The data is transfered in a few sec.
I'm now writing a wiki page on this
http://lhocds.ligo-wa.caltech.edu:8000/40m/GPIB
I will install the same thing into the other DELL laptop soon.
Let me know if you have trouble with this. |
890
|
Wed Aug 27 10:55:35 2008 |
Yoichi | HowTo | Computers | Annoying behavior of the touch pads of the lab. laptops is fixed |
I was sick of the stupid touch pad behavior of the lab. laptops, i.e. firefox goes back and forth in the history when the cursor is moved.
It was caused by firefox mis-interpreting the horizontal scroll signal as back/forward command.
I stopped it by going to about:config in firefox and set mousewheel.horizscroll.withnokey.action to 0 and
mousewheel.horizscroll.withnokey.sysnumlines to true. |
896
|
Fri Aug 29 10:20:32 2008 |
Yoichi | Configuration | PSL | beam block distorted |
Quote: | There was a beam block after the Mach Zender. Who or what put this there?
The going to the MC now looks distorted as if someone has left something funny in the beam or maybe the new PMC has started to degrade??
Use the ELOG people...its good for you. |
I put the block. I was frequently reaching to the FSS box to change the test point probes. I put the block to protect my hands/clothes from being burnt accidentally. |
902
|
Fri Aug 29 16:35:18 2008 |
Yoichi | Configuration | PSL | beam block distorted |
Quote: | There was a beam block after the Mach Zender. Who or what put this there?
The going to the MC now looks distorted as if someone has left something funny in the beam or maybe the new PMC has started to degrade??
Use the ELOG people...its good for you. |
The apparent distortion of the MC refl. was caused by mis-alignment of the MC mirrors.
Because the MC1 was mis-aligned, the reflected light was clipped by a steering mirror.
I restored the MC angle bias values from the conlog history and now the MC locks.
According to conlog, the MC alignment was changed at around 18:30 on Thursday PDT.
It could have been caused by the computer reboots. |
905
|
Fri Aug 29 22:57:48 2008 |
Yoichi | Update | PSL | FSS loop transfer functions |
I've been measuring a bunch of transfer functions of the FSS related stuffs.
There are a lot to be analyzed yet, but here I put one mystery I'm having now.
Maybe I'm missing something stupid, so your suggestions are welcome.
Here is a conceptual diagram of the FSS control board
TP3 TP4
^ ^
| |
RF PD -->--[Mixer]-----[Sum Amp]------>--[Common Gain]--->----[Fast Gain]----[Filter]--> NPRO PZT
^ | ^ | |
| V | V |
LO ---->------- TP1 IN TP2 -->---[Filter]--[High Volt. Amp.] --> Phase Corrector
What I did was first to measure a "normal" openloop transfer function of the FSS servo.
The FSS was operated in the normal gain settings, and a signal was injected from "IN" port.
The open loop gain was measured by TP1/TP2.
Now, I disconnected the BNC cable going to the phase corrector to disable the PC path and locked the ref. cav.
only using the PZT. This was done by reducing the "Common Gain" and "Fast Gain" by some 80dB.
Then I measured the open loop gain of this configuration. The UGF in this case was about 10kHz.
I also measured the gain difference between the "normal" and "PZT only" configurations by injecting
a signal from "IN" and measuring TP3/TP2 and TP4/TP3 with both configurations (The signal from the Mixer was
disconnected in this measurement).
The first attachment shows the normal open loop gain (purple) and the PZT only open loop gain scaled by the
gain difference (about 80dB). The scaled PZT open loop gain should represent the open loop gain of the PZT
path in the normal configuration. So I expected that, at low frequencies, the scaled PZT loop TF overlaps the normal
open loop TF.
However, it is actually much larger than the normal open loop gain.
When I scale the PZT only TF by -30dB, it looks like the attachment #2.
The PZT loop gain and the total open loop gain match nicely between 20kHz and 70kHz.
Closer look will show you that small structures (e.g. around 30kHz and 200kHz) of the two
TFs also overlap very well. I repeated measurements many times and those small structures are always there (the phase is
also consistently the same). So these are not random noise.
I don't know where this 30dB discrepancy comes from. Is it the PC path eating the PZT gain ?
I have measured many other TFs. I'm analyzing these.
Here is the TO DO list:
* Cavity response plot from AOM excitation measurements.
* Cavity optical gain plot.
* Reconstruct the open loop gain from the electric gain measurements and the optical gain above.
* Using a mixer and SR560(s), make a separate feedback circuit for the PZT lock. Then use the PC path
to measure the PC path response.
* See the response of the FSS board to large impulse/step inputs to find the cause of the PC path craziness.
etc ... |
Attachment 1: OPLTFs.pdf
|
|
Attachment 2: OPLTFsScaled.pdf
|
|
908
|
Mon Sep 1 19:23:17 2008 |
Yoichi | Configuration | PSL | FSS on an auxiliary loop |
Summary: The FSS is now temporarily disabled. Naturally, the MC won't lock. I will fix it tomorrow morning.
Today, I did the 4th item of my TO DO list.
Using a mini-circuit mixer and two SR560s, I constructed an auxiliary servo loop for the reference cavity.
With this loop, I was able to lock the reference cavity without using the FSS box.
By locking the reference cavity with this auxiliary servo, I was able to measure the PC path transfer function.
I will post the analyzed results later.
I borrowed the PD RF and the LO signals from the main FSS loop by power splitters. Therefore, the gain of the main FSS loop
is now about 3dB low. I tried to compensate it by increasing the EOM modulation depth, but the PC path is still a bit noisy.
Probably the already too low LO power is now seriously low (the LO power cannot be changed from EPICS).
Because I did not want to leave the PC path with large output overnight (it will heat up the PA85, and might cause damage, though unlikely),
I disabled the FSS for now.
|
910
|
Tue Sep 2 09:58:42 2008 |
Yoichi | Configuration | PSL | FSS on an auxiliary loop |
Quote: | Summary: The FSS is now temporarily disabled. Naturally, the MC won't lock. I will fix it tomorrow morning.
|
Now I removed the power splitters for the aux. reference cavity servo. The FSS is back and the MC locks.
I'm now returning one of the active high-impedance probes to the Wilson house. They need it today.
We are left with only one active probe. If anyone finds another active probe in the 40m lab.,
please let me know (according to Rana we should have one more). |
912
|
Tue Sep 2 14:28:41 2008 |
Yoichi | Update | PSL | FSS EOM driving signal spectra |
Rich advised me to change the +10V input of the FSS crystal frequency reference board from whatever voltage supply we use now to a nice one.
This voltage is directory connected to the signal lines of both LO and RF output amps. Therefore, fluctuations in the voltage directly appear
in the outputs, though DC components are cut off by the AC coupling capacitors.
I changed the source of this voltage from the existing Sorensen one to a power supply sitting next to the rack.
The attached plots shows the difference of the RF output spectra between the two 10V sources.
The low frequency crap is almost gone in the new 10V spectrum.
I tried to increase the FSS gain with the new 10V, but still it goes crazy. I suspect it is because the LO power is too low. |
Attachment 1: RFDrive1.png
|
|
Attachment 2: RFDrive2.png
|
|
913
|
Tue Sep 2 22:43:16 2008 |
Yoichi | Configuration | PSL | Updated FSS open loop TF |
Since the LO level of the FSS servo was too low, I replaced the RF oscillator board with a combination of
a Stanford signal generator and an RF amplifier.
Right now, the POY RF amplifier is used for this purpose temporarily.
Now the LO level is about 16dBm. The RF power going into the EOM is attenuated by 20dB from the LO level.
I played with the cable length to get the phase right.
Then I was able to lock the FSS with the new RF signal source.
Attached is the open loop transfer function of the current FSS. Now the UGF is a bit above 200kHz, a factor of 2 improvement.
This gain was achieved with the common gain slider at 13.5dB and the fast gain = 30dB.
With the old RF oscillator board, UGF=100kHz was achieved with the common gain =30dB. Therefore, the increase of the LO gave
us a large signal gain.
Increasing the gain further, again ,makes the PC path crazy.
Rich suggested that this craziness was caused either by the slew rate limit of the PA85 or the output voltage limit of the bypass Op-amp(A829)
is hit.
TO DO:
* Look at the error signal spectrum to see if there is any signal causing the slew rate saturation at high frequencies.
* Find out what the RF signal level for the EOM should be. 20dB attenuation is an arbitrary choice.
* Find out the cross over frequency. Determine where the fast gain slider should be.
etc ... |
Attachment 1: OPLTF.png
|
|
915
|
Wed Sep 3 18:43:19 2008 |
Yoichi | Configuration | Electronics | Two more active probes |
I found two active probes, an HP41800A and a Tektronix P6201.
Thanks John for telling me you saw them before.
Now we have three active probes, wow !
We have to find or make a power supply for P6201.
The manual of the probe is attached. |
Attachment 1: Tektronix-P6201-active-probe.pdf
|
|
917
|
Wed Sep 3 19:09:56 2008 |
Yoichi | DAQ | Computers | c1iovme power cycled |
When I tried to measure the sideband power of the FSS using the scan of the reference cavity, I noticed that the RC trans. PD signal was not
properly recorded by the frame builder.
Joe restarted c1iovme software wise. The medm screen said c1iovme is running fine, and actually some values were recorded by the FB.
Nonetheless, I couldn't see flashes of the RC when I scanned the laser frequency.
I ended up power cycling the c1iovme and run the restart script again. Now the signals recorded by c1iovme look fine.
Probably, the DAQ boards were not properly initialized only by the software reset.
I will re-try the sideband measurement tomorrow morning. |
919
|
Thu Sep 4 07:29:52 2008 |
Yoichi | Update | PSL | c1iovme power cycled |
Quote: | Entry 663 has a plot of this using the PSL/FSS/SLOWscan script. It shows that the SB's were ~8x smaller than the carrier.
P_carrier J_0(Gamma)^2
--------- = ------------
P_SB J_1(Gamma)^2
Which I guess we have to solve numerically for large Gamma? |
P_carrier/P_SB = 8 yields gamma=0.67. |
920
|
Thu Sep 4 07:46:10 2008 |
Yoichi | Update | IOO | MC is now happy |
The MC has been locked for more than 12 hours continuously now !
Changes I made yesterday were:
(1) Removed the 20dB attenuator before the EOM.
(2) Reduced the Fast Gain from 21dB to 16dB, which made the PC to be a little bit more loaded (~0.6Vrms).
As Rana pointed out in the meeting, setting the Fast Gain a bit lower may have put the FSS in a stabler state. |
Attachment 1: MC-lock.png
|
|
923
|
Thu Sep 4 13:48:50 2008 |
Yoichi | Update | PSL | FSS modulation depth |
I scanned the reference cavity with the NPRO temperature (see the attached plot).
The power ratio between the carrier and the sideband resonances is about 26.8.
It corresponds to gamma=0.38.
The RF power fed into the EOM is now 14.75dBm (i.e. 1.7V amplitude). The NewFocus catalog says 0.1-0.3rad/V. So
gamma=0.38 is a reasonable number.
|
Attachment 1: RCScan.png
|
|
926
|
Thu Sep 4 17:03:25 2008 |
Yoichi | Update | PSL | RF oscillator noise comparison |
I measured current spectra of the RF signal going to the FSS EOM.
The attachment compares the spectra between a Stanford signal generator and a Marconi.
I borrowed the Marconi from the abs. length measurement experiment temporarily.
The measurement was done using the signal going to the EOM. That means the spectra include
noise contributions from the RF amp., splitter and cables.
21.5MHz peak was not included because that would overload the ADC and I would have to use a large attenuation.
This means the measurement would be totally limited by ADC noise everywhere except for 21.5MHz.
I noticed that with the Marconi, the FSS is a little bit happier, i.e. the PC path is less loaded
(0.9Vrms with Stanford vs. 0.7Vrms with Marconi). But the difference is small.
Probably the contribution from the 77kHz harmonics in the laser light is more significant (see entry #929).
Also the peaks in the Stanford spectrum are not harmonics of 77kHz, which we see in the FSS error signal.
I returned the Marconi after the measurement to let Alberto work on the abs. length measurement. |
Attachment 1: RFSpectra.png
|
|
927
|
Thu Sep 4 17:12:57 2008 |
Yoichi | Update | PSL | FSS open loop TF |
I changed the gain settings of the FSS servo.
Now the Common Gain is 5dB (the last night it was 2dB) and the Fast Gain is 12dB (formerly 16dB).
I measured the open loop TF with this setting (the attachment).
I also plotted the OPLTF when CG=2dB, FG=20.5dB. With this setting, the MC looses lock every 30min.
You can see that the OPLTF is smoother with FG=12dB.
When the FG is high, you can see some structure around 250kHz. This structure is reproducible.
This may be some interruption from the fast path to the PC path through a spurious coupling. |
Attachment 1: FSS-OPLTFs.png
|
|
928
|
Thu Sep 4 17:17:03 2008 |
Yoichi | Update | IOO | MC open loop TF |
I measured open loop transfer functions of the MC servo.
The UGF was about 30kHz. Since there was some gain margin at higher frequencies, I increased
the input gain of the MC servo board from 19dB to 22dB. Now the UGF is 40kHz and we have more
phase margin (~30deg). |
Attachment 1: MC-OPLTF.png
|
|
929
|
Thu Sep 4 17:44:27 2008 |
Yoichi | Update | PSL | FSS error signal spectrum |
Attached is a spectrum of the FSS error signal.
There are a lot of sharp peaks above 100kHz (the UGF of the servo is about 200kHz).
These are mostly harmonics of 77kHz. They are the current suspects of the FSS slew rate saturation.
I remember when I blocked the light to the PD, these peak went away. So these noises must be
in the light. But I checked it a few weeks ago. So I will re-check it later.
One possible source of the lines is a DC-DC converter in the NPRO near the crystal.
We will try to move the converter outside of the box. |
Attachment 1: FSS-Error-Spe.png
|
|
937
|
Mon Sep 8 15:38:57 2008 |
Yoichi | Configuration | PSL | POY RF amp is back to its original task |
I temporarily fixed the busted ZHL-32A RF amplifier's power connector by simply soldering a cable to the internal circuit and pulling the cable out of the box through a hole for the power connector.
So I released the POY RF amplifier from the temporary duty of serving the FSS RF distribution and put it back to the original task,
so that Rob can finally re-start working on the lock acquisition.
Now the temporarily fixed ZHL-32A is sitting next to the IOO rack along with the power supply and a Stanford signal generator.
Please be careful not to topple over the setup when you work around there. They will be there until Peter's Wentzel RF box arrives. |
939
|
Wed Sep 10 13:28:25 2008 |
Yoichi | Summary | Electronics | IOO rack lost -24V (recovered) |
Alberto, Yoichi
This morning, the MC suddenly started to be unwilling to lock.
I found a large offset in the MC servo board.
It turned out that -24V was not supplied to the Eurocard crate of the IOO rack.
We found two loose cables (violet, that means -24V) around the cross connects with fuses.
We connected them back, and the -24V was back.
The MC locks fine now, and Alberto can continue his arm length experiment. |
949
|
Tue Sep 16 10:57:45 2008 |
Yoichi | Configuration | PEM | Particle counter gain |
Summary:
Since we reduced the integration time of the particle counter by a factor of 10, we had to add a gain of 10
to the EPICS channels C1:PEM-count_full and C1:PEM-count_half.
I asked Alex to change it and he did it. I forgot to ask him to change the gain of C1:PEM-count_half. So now only
C1:PEM-count_full has x10 gain.
Detail:
C1:PEM-count_full and C1:PEM-count_half are 'Soft Channel' records in the database (Pcount.db). The values are actually
written into the VAL fields directly by an SNL code Particle.o.
Particle.o reads data from the RS-232C port, to which the particle counter is connected. Then it parses the data and put values
into relevant EPICS channels using channel access. This means we cannot change the gain of the channels by modifying the
database file. For example, ASLO field does not have any effect when the value is directly written into the VAL field.
We had to modify the SNL code. Alex modified Particle.st and the new SNL object file is Particle_x10.o sitting in
/cvs/cds/caltech/target/c1psl/. I modified seq.load so that c1psl loads Particle_x10.o when rebooted.
The source code for the old Particle.st can be found on lesath.ligo.caltech.edu in
/export/CDS/d/epics/apple/Caltech/40mVac/40mVacScipe/dev/src
I asked Alex to disclose the location of the source of the new code.
In order to compile the SNL code into an object file for Motorola CPU by ourselves, we have to call Dave Barker at LHO. |
950
|
Tue Sep 16 13:04:22 2008 |
Yoichi | Configuration | PEM | C1:PSL-FSS_RMTEMP alarm level changed |
At the request of Steve, I modified the HIGH value of C1:PSL-FSS_RMTEMP from 21.27 to 23.0.
The HIHI is set to 23.50. |
954
|
Wed Sep 17 13:43:54 2008 |
Yoichi | Configuration | PSL | RC sweep going on |
I'm doing a cavity sweep of the RC. Please leave the IFO untouched until the meeting is over. |
957
|
Wed Sep 17 15:22:31 2008 |
Yoichi | Configuration | PSL | RC sweep going on |
Quote: | I'm doing a cavity sweep of the RC. Please leave the IFO untouched until the meeting is over. |
The measurement is still going on.
I will post an entry when it is done.
Thank you for the patience. |
958
|
Wed Sep 17 17:31:24 2008 |
Yoichi | Update | PSL | FSS calibration |
I calibrated the reference cavity error signal with the following procedure.
(1) I disconnected the PC path BNC cable and locked the RC only using the PZT. To do so, I had to insert a 20dB attenuator
in the RF signal path going to the EOM to reduce the gain of the loop sufficiently.
The normal RF level going to the EOM is 17dBm. With the attenuator it is of course -3dBm.
(2) Using the SR785, I injected signal into the Test-IN2 (a sum-amp after the mixer) of the FSS box and measured the TF from the Ramp-IN to the IN1.
When the Ramp-In switch is off, the Ramp-IN port can be used as a test point connected to the PZT drive signal path just before the output.
There is a RC low-pass filter after the Ramp-IN. IN1 is the direct output from the mixer (before the sum-amp).
The attm1 is the measured transfer function along with the fitting by a first order LPF.
From this measurement, the DC transfer function from the applied voltage on the PZT to the error signal is determined to be 163.6 (V/V).
Since the RF level is lowered by 20dB, the cavity gain in the normal operation mode is 10 times larger (assuming that the modulation depth is
linearly proportional to the applied voltage to the EOM).
(3) According to elog:791, the conversion factor from the voltage on the PZT to the frequency change of the NPRO is 11.172MHz/V. Combining this with the
number obtained above, we get 6.83kHz/V as the calibration factor for converting the error signal (mixer output) to the frequency at DC.
Using 38kHz cavity pole frequency, the calibration factor is plotted as a function of frequency in the attm2.
(4) I took a spectrum of the error signal of the FSS and calibrated it with the obtained calibration factor. See attm3.
The spectrum was measured by SR785. I will measure wide band spectra with an RF analyzer later.
TO DO:
1: Use the actual modulation depth difference to extrapolate the calibration factor obtained by with a low RF signal for the EOM.
The cavity sweep was already done.
2: I assumed 38kHz cavity pole. I will measure the actual cavity pole frequency by cavity ringdown.
3: Measure out-of-the-loop spectrum of the frequency noise using PMC and MC. |
Attachment 1: PZTresp.png
|
|
Attachment 2: Calibration.png
|
|
Attachment 3: FreqNoiseSpectrum.png
|
|
959
|
Wed Sep 17 17:58:35 2008 |
Yoichi | Configuration | PSL | RC sweep going on |
The cavity sweep is done. The IFO is free now. |
963
|
Thu Sep 18 12:16:01 2008 |
Yoichi | Update | Computers | EPICS BACK |
Quote: |
Somehow the EPICS system got hosed tonight. We're pretty much dead in the water till we can get it sorted.
|
The problem was caused by the installation of a DNS server into linux1 by Joe.
Joe removed /etc/hosts file after running the DNS server (bind). This somehow prevented proper boot of
frontend computers.
Joe and I confirmed that putting back /etc/hosts file resolved the problem.
Right now, the DNS server is also running on linux1.
We are not sure why /etc/hosts file is still necessary. My guess is that the NFS server somehow reads /etc/hosts
when he decides which computer to allow mounting. We will check this later.
Anyway, now the computers are mostly running fine. The X-arm locks.
The Y-arm doesn't, because one of the digital filters for the Y-arm lock fails to be loaded to the frontend.
I'm working on it now. |
964
|
Thu Sep 18 13:05:05 2008 |
Yoichi | Update | Computers | EPICS BACK |
Quote: |
The Y-arm doesn't, because one of the digital filters for the Y-arm lock fails to be loaded to the frontend.
I'm working on it now. |
Rob told me that the filter "3^2:20^2" is switched on/off dynamically by the front end code for the LSC.
Therefore, the failure to manually load it was not actually a problem.
The Y-arm did not lock just because the alignment was bad.
Now the Y-arm alignment is ok and the arm locks. |
966
|
Thu Sep 18 18:38:14 2008 |
Yoichi | HowTo | Computers | How to compile an SNL code for VxWorks |
Dave Barker guided me through how to compile an SNL code into a Motorola 162 CPU object.
Here is the procedure:
(1) You need an account at LHO and a password for ops account at LHO. Contact Dave if you don't have these.
(2) Copy your code (say Particle.st) to the LHO gateway machine.scp Particle.st username@lhocds.ligo-wa.caltech.edu:/cvs/cds/lho/target/t0sandbox0 (3) Login to lhocds.ligo-wa.caltech.edussh username@lhocds.ligo-wa.caltech.edu (4) Login to control0ssh ops@control0 (5) Change directory to the sandbox dir.cd /cvs/cds/lho/target/t0sandbox0 (6) Prepare for the compilationsetup epics (7) Edit makefile in the directory. You have to modify a few lines at the end of the file.
There are comments for how to do it in the file.
(8) Compilemake Particle.o (9) Copy the object file to the 40m target directoryscp Particle.o controls@nodus.ligo.caltech.edu:/cvs/cds/caltech/target/c1psl/
That is it. |