40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 187 of 355  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  7121   Wed Aug 8 18:01:58 2012 JenneUpdateIOOMC autolocker threshold changed

Jan and Manasa are going to elog about their work later, but it involved putting a BS/window/some kind of pick off in front of the MC Trans QPD, so the total light on the MC Trans QPD is now ~16000 rather than ~26000 counts.  I changed the threshold in the MC autolocker to 5000, so now the MC Trans PD must see at least 5000 counts before the autolocker will engage the boosts, WFS, etc.  Actually, this threshold I believe should have been some several thousand value, but when I went in there, it was set to 500 counts, for low power MC mode during a vent.  It had never gotten put back after the vent to some higher, nominal value.

  7122   Wed Aug 8 19:54:06 2012 ManasaConfigurationIOOMC trans optics configured

Jan and I wanted to measure the ringdown at the IMC. Since the QPD at the MC trans is not fast enough for ringdown measurements, we decided to install a pickoff to include a faster PD while not disturbing much of the current MC trans configuration. The initial configuration had very little space to accommodate the pickoff. So the collimating lens along with the QPD were moved 2 inches closer to the incoming beam. A 50-50 BS was put in front of the QPD and the steering mirror was moved behind to reflect MC trans output to the new PD. The current configuration is shown below with the MC autolocker threshold mentioned in Jenne's elog

Pic1.png

The hunt for a faster PD wasn't satisfactory and we found a couple of PDs that were good for measurements actually didn't work after installing them. The one currently installed is also not satisfactorily fast enough for ringdown measurements. We'll hunt for faster PDs at Bridge tomorrow and replace PDA400. Also the IMC unlocked from time to time....may be we were noisy and didn't master the 'interferometer walk' very well.

 

 

  7126   Wed Aug 8 22:12:30 2012 ranaConfigurationIOOMC trans optics configured

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

  7127   Wed Aug 8 22:17:43 2012 ManasaConfigurationIOOMC trans optics configured

Quote:

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

 We found a PDA255 but it doesn't seem to work. I am not sure if that is one you are mentioning...but I'll ask Steve tomorrow!

  7140   Fri Aug 10 09:54:51 2012 ManasaConfigurationIOOMC trans optics configured

Quote:

Quote:

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

 We found a PDA255 but it doesn't seem to work. I am not sure if that is one you are mentioning...but I'll ask Steve tomorrow!

 I double checked the PDA255 found at the 40m and it is broken/bad. Also there was no success hunting PDs at Bridge. So the MC trans is still in the same configuration. Nothing has changed. I'll try doing ringdown measurements with PDA400 today.

  7142   Fri Aug 10 11:05:33 2012 jamieConfigurationIOOMC trans optics configured

Quote:

Quote:

Quote:

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

 We found a PDA255 but it doesn't seem to work. I am not sure if that is one you are mentioning...but I'll ask Steve tomorrow!

 I double checked the PDA255 found at the 40m and it is broken/bad. Also there was no success hunting PDs at Bridge. So the MC trans is still in the same configuration. Nothing has changed. I'll try doing ringdown measurements with PDA400 today.

Can you explain more what "broken/bad" means?  Is there no signal?  Is it noisy?  Glitch?  etc.

  7144   Fri Aug 10 15:05:52 2012 ManasaConfigurationIOOMC trans optics configured

Quote:

Quote:

Quote:

Quote:

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

 We found a PDA255 but it doesn't seem to work. I am not sure if that is one you are mentioning...but I'll ask Steve tomorrow!

 I double checked the PDA255 found at the 40m and it is broken/bad. Also there was no success hunting PDs at Bridge. So the MC trans is still in the same configuration. Nothing has changed. I'll try doing ringdown measurements with PDA400 today.

Can you explain more what "broken/bad" means?  Is there no signal?  Is it noisy?  Glitch?  etc.

 The PD saturates the oscilloscope just by switching on the power; with no real signal at all. But Steve helped locating a PD that is not being used at the AP table. So I will check it and replace the current one if it works!

  7159   Mon Aug 13 12:17:41 2012 ManasaConfigurationIOOPD from AP table removed

The PD (pda255) at the AP table, close to the MC refl , which Steve mentioned to be not in use, has been removed from the table for testing.

  7172   Tue Aug 14 08:43:42 2012 SteveUpdateIOOlaser off and on

The janitor accidentally hit the laser emergency kill switch at room 103  entry door. It did shut down the PSL laser. The laser was turned back on.

Attachment 1: 1day.png
1day.png
  7196   Wed Aug 15 17:17:58 2012 Manasa, JanUpdateIOORingdown measurements

Finally ringdown at IMC conquered and oopsie that came out so clean!

The finesse of the cavity from the current ringdown measurement, F= 453, differs from the measurements made in the document dated 10/1/02 on dcc...not sure if things have changed since then.

While I thought that the bumps observed at the end of the ringdown might be because of the cavity trying to lock itself, Jan commented that they have always existed in these measurements and their source is not known yet.

Ringdown_815.jpg

  7198   Wed Aug 15 18:56:46 2012 YoichiUpdateIOOMC Servo Transfer Function Measurements

 I started working on the characterization of the MC servo.

The current MC servo topology is shown in the figure attached along with a simplified schematic diagram of the MC board. 

A usual way to measure the open loop gain of this servo is to inject a signal from, say, EXCA of the MC board and measure the transfer function from TP2A to TP1A. It works OK at frequencies around the UGF. The second attachment is the OPLTF measured in this way with the Agilent 4395A. The UGF is about 100kHz with the phase margin of 40 to 50 deg. 

Now we have two issues here. First, I expected the UGF to be more than 100kHz, like 300kHz or so. The phase babble is peaked around 100kHz. According to our old measurement (http://nodus.ligo.caltech.edu:8080/40m/1431) the phase babble peak was at a much higher frequency when the FSS was using the reference cavity. One reason could be that the MC is located much farther from the laser than the reference cavity, so that there is some phase lag caused by the time delay. I will make a model of the MC servo system later to check this theory.

The second issue is that, as you can see in the plot, the OPLTF measurement becomes noisy at lower frequencies. With 4395A, which has the minimum IFBW of 2Hz, OPLTF measurement below 10kHz was impossible with the traditional method. We could use SR785 with a long averaging time to improve the SNR, but it requires a patience which I don't have.

The measurement becomes difficult at low frequencies because the loop gain is too high. When the open loop gain (G) is high, the injected signal (x) from EXCA is immediately suppressed by a factor of 1/(1+G) at TP2A. This makes the injected signal hidden in other noises at TP2A.

How do we solve this problem ? Let's consider a simple servo model shown in the third attachment. A traditional OPLTF measurement is done by injecting a signal from EXC port and measuring the TF from TP2 to TP1. The problem was that at TP2, the signal is attenuated by 1/(1+G1*G2), which is too much when G (=G1*G2) is large. However, at TP3, the attenuated signal is amplified by G1. So the injected signal x becomes x*G1/(1+G) at TP3. If G1's contribution to the overall gain G is large enough,  the signal at TP3 is not so small. Then we can easily measure G2 using TP3 and TP1. In a typical situation, G1 is the transfer function of the electric circuits, which we can know either from standalone measurements or from model calculations, and G2 is an interferometer response, which we want to measure. So, by combining the knowledge of G1 and the measurement of G2, we can obtain the overall loop gain G even at lower frequencies.

 The final attachment shows an example of the measurement of G2. In our case, this is the transfer function from MC_Out_Mon to Q-Mon (see the first attachment) . G1 is the transfer function of the MC board. Since G1 is large at low frequencies, we can measure G2 down to 100Hz with a reasonable integration time (10000 cycles per point).

Last night, I took a bunch of TFs with this method. Now I'm analyzing the data to recover the overall gain G. I will post the results later.

Attachment 1: MC-Diagram.png
MC-Diagram.png
Attachment 2: OPLG-10kHz-1MHz.png
OPLG-10kHz-1MHz.png
Attachment 3: SimpleServoDiagram.png
SimpleServoDiagram.png
Attachment 4: OPTG-100Hz-1kHz.png
OPTG-100Hz-1kHz.png
  7199   Wed Aug 15 20:15:51 2012 JanUpdateIOORingdown measurements

Quote:

While I thought that the bumps observed at the end of the ringdown might be because of the cavity trying to lock itself, Jan commented that they have always existed in these measurements and their source is not known yet.

What I meant to say was that in all ringdown measurements that we observed today, the bumps were consistently part the ringdown, and that I have no explanation for the bumps. It should also be mentioned that fitting the bumpy part of the ringdown instead (we used the clean first 10us), the ringdown time is about twice as high. In either case, the ringdown time is significantly smaller than we have seen in documents about previous measurements.

We (basically I) also made one error when producing the plots. The yaxis label of the semi-logarithmic plot should be log(...), not log10(...).

  7200   Wed Aug 15 20:53:48 2012 ManasaUpdateIOORingdown measurements

Quote:

Quote:

While I thought that the bumps observed at the end of the ringdown might be because of the cavity trying to lock itself, Jan commented that they have always existed in these measurements and their source is not known yet.

What I meant to say was that in all ringdown measurements that we observed today, the bumps were consistently part the ringdown, and that I have no explanation for the bumps. It should also be mentioned that fitting the bumpy part of the ringdown instead (we used the clean first 10us), the ringdown time is about twice as high. In either case, the ringdown time is significantly smaller than we have seen in documents about previous measurements.

We (basically I) also made one error when producing the plots. The yaxis label of the semi-logarithmic plot should be log(...), not log10(...).

 I thought about  why we do not find any bumps beyond the exponential fall. Could it be because we neglected fluctuations of voltage in the negative direction and plotted the absolute values?

  7201   Thu Aug 16 01:52:52 2012 YoichiUpdateIOOMC Servo Transfer Function Measurements

Quote:

Last night, I took a bunch of TFs with this method. Now I'm analyzing the data to recover the overall gain G. I will post the results later.

 I calculated the MC open loop transfer function with the combination method. For that, I made a circuit model of the MC board (from the input to the output). The transfer function of this circuit is calculated by SPICE (attachment1). Then it is multiplied by the measured transfer function from the output of the MC board to the input of the MC board (attachment 2) to get the overall transfer function.

The result is shown in the attachment 3. The blue curve is the OPLTF measured with the traditional method. The red curve is the combination method described above. There are some discrepancies between the two curves. The ratio of the two curves (Traditional)/(Combination) is plotted in attachment 4. It seems there is a pole(s) missing from my model of the MC board at around 1MHz. This may come from the omitted op-amps in the MC board model (there are so many op-amps which have flat responses below 1MHz and I omitted most of those). Also the MC board includes many generic filter stages to customize the frequency response. I will open the MC board box to examine what is actually implemented on the board. 

At low frequencies, the two curves are similar but the slope is still different.

I also had to add 83dB of gain to the combined TF to match with the traditional one. I will check where does it come from.

The MC board model (Altium project) is attached as attachment 6. The schematic is attachment 5.

Attachment 1: MC_Board_TF.png
MC_Board_TF.png
Attachment 2: OPTG.png
OPTG.png
Attachment 3: OPLG.png
OPLG.png
Attachment 4: Difference.png
Difference.png
Attachment 5: MC_Board.pdf
MC_Board.pdf
Attachment 6: MC_Board.zip
  7202   Thu Aug 16 05:08:38 2012 YoichiUpdateIOOMC Servo Transfer Function Measurements

Quote:

 Also the MC board includes many generic filter stages to customize the frequency response. I will open the MC board box to examine what is actually implemented on the board. 

 I took out the MC board. Unfortunately, most of the components are surface mounted. So the values of the capacitors are not legible.

I will try my best to guess what is implemented on the board.

Attachment 1: MCBoard1.JPG
MCBoard1.JPG
Attachment 2: MCBoard2.JPG
MCBoard2.JPG
  7205   Thu Aug 16 16:44:55 2012 ManasaConfigurationIOOPD from AP table removed

Quote:

The PD (pda255) at the AP table, close to the MC refl , which Steve mentioned to be not in use, has been removed from the table for testing.

 The PD installed at MC trans to make ringdown measurements has been replaced with the above PDA255. 

  7206   Thu Aug 16 17:28:51 2012 ManasaConfigurationIOOMC trans optics configured

Quote:

Quote:

Quote:

Quote:

Quote:

  The PDA255 is a good ringdown detector - Steve can find one in the 40m if you ask him nicely.

 We found a PDA255 but it doesn't seem to work. I am not sure if that is one you are mentioning...but I'll ask Steve tomorrow!

 I double checked the PDA255 found at the 40m and it is broken/bad. Also there was no success hunting PDs at Bridge. So the MC trans is still in the same configuration. Nothing has changed. I'll try doing ringdown measurements with PDA400 today.

Can you explain more what "broken/bad" means?  Is there no signal?  Is it noisy?  Glitch?  etc.

 The PD saturates the oscilloscope just by switching on the power; with no real signal at all. But Steve helped locating a PD that is not being used at the AP table. So I will check it and replace the current one if it works!

Koji opened up the PD and found that the screw connecting the PD to the pole was doing an additional job as well; connecting the power cable to the PD output in the inside. The PD is now fixed! Yippie...we have two PDA255 s at 40m now!!

  7239   Tue Aug 21 00:35:25 2012 ranaSummaryIOOVisibilities and Chrome

MC and PMC vis:

MC REFL Unlocked    = 4.4

MC REFL Locked      = 0.67

 1 - Locked/Unlocked = 85%

 

PMC REFL Unlocked   = 0.270

PMC REFL Locked     = 0.013

 1 - Locked/Unlocked = 95%

I checked (by looking through recent trends) that the zero level is zero on both channels. I tried to do a proper mode scan, but we have lost the PSL fast channels during the upgrade sadly. Also, the DC signal for the PMC REFL needs some gain. Unlocked level should be more like 3-5 V.

Also used the instructions from this page to add Google's sources to rosalba's apt-get list and then installed Chrome.

Attachment 1: Untitled.pdf
Untitled.pdf
  7263   Thu Aug 23 22:21:13 2012 ranaConfigurationIOOMCL turned back on

I turned on some filters and gain in the SUS-MC2_MCL filter bank tonight so as suppress the seismic noise influence on MC_F. This may help the MC stay in lock in the daytime.

Koji updated the mcdown and mcup scripts to turn the MCL path on and off and to engage the Boost filters at the right time.

The attached PNG shows the MCL screen with the filters all ON. In this state the crossover frequency is ~45 Hz. MC_F at low frequencies is reduced by more than 10x.

I also think that this may help the X-Arm lock. The number of fringes per second should be 2-3x less.

Attachment 1: mcl-screen.png
mcl-screen.png
Attachment 2: mcf-noise.pdf
mcf-noise.pdf
  7264   Thu Aug 23 22:41:04 2012 KojiUpdateIOOMC Autolocker update

[Koji Rana]

MC Autolocker was updated. (i.e. mcup and mcdown were updated)

mcup:

  • Turn on the MCL input and output switches
  • Change the MCL gain from 0 to -300 with nominal ramp time of 5sec
  • Turn on FM2, FM5, MF7 after a sleep of 5sec. Note: FM1 FM8 FM9 are always on.
  • Set the offset of 42 counts
  • Turn on the offset

# Turn on MCL servo loop
echo mcup: Turning on MCL servo loop...
date
ezcaswitch C1:SUS-MC2_MCL INPUT OUTPUT ON
ezcawrite C1:SUS-MC2_MCL_GAIN -300
sleep 5
ezcaswitch C1:SUS-MC2_MCL FM2 FM5 FM7 ON
# Offset to take off the ADC offset of MC_F
ezcawrite C1:SUS-MC2_MCL_OFFSET 42
ezcaswitch C1:SUS-MC2_MCL OFFSET ON


This offset of 42 count is applied in order to compensate the ADC offset of MC_F channel.
The MCL servo squishes the MC_F signal. i.e. The DC component of MC_F goes to zero.
However, if the ADC of MC_F has an offset, the actual analog MC_F signal, which is fed to FSS BOX,
still keep some offset. This analog offset causes deviation from the operating point of the FSS (i.e. 5V).

mcdown:

  • Basically the revese process of mcup.
  • This script keeps FM1 FM8 FM9 turned on.

# Turn off MCL servo loop
echo mcdown: Turning off MCL servo loop...
date
ezcawrite C1:SUS-MC2_MCL_GAIN 0
ezcaswitch C1:SUS-MC2_MCL INPUT OUTPUT OFFSET FMALL OFF FM1 FM8 FM9 ON
# Remove Offset to take off the ADC offset of MC_F
ezcawrite C1:SUS-MC2_MCL_OFFSET 0

  7268   Fri Aug 24 09:21:45 2012 SteveUpdateIOOMC2 damping restored

Quote:

I turned on some filters and gain in the SUS-MC2_MCL filter bank tonight so as suppress the seismic noise influence on MC_F. This may help the MC stay in lock in the daytime.

Koji updated the mcdown and mcup scripts to turn the MCL path on and off and to engage the Boost filters at the right time.

The attached PNG shows the MCL screen with the filters all ON. In this state the crossover frequency is ~45 Hz. MC_F at low frequencies is reduced by more than 10x.

I also think that this may help the X-Arm lock. The number of fringes per second should be 2-3x less.

 

Attachment 1: 10hrsMC2.png
10hrsMC2.png
  7275   Fri Aug 24 22:01:15 2012 JenneUpdateIOOMC spot position - close

I am getting closer with the MC spot centering.  I had everything but MC1 really great, but then I tweaked MC1's pointing, and things all went to hell. 

I have to go home to let Butter out, but I'll be back tomorrow, and I'll try to get back to where I was in the 2nd to last measurement in the plot below.

I recenterd the WFS after moving the input beam, so that the beam was hitting the WFS at all.

Attachment 1: MCdecenter_24Aug2012.png
MCdecenter_24Aug2012.png
  7276   Sun Aug 26 11:53:09 2012 JenneUpdateIOOMC2 getting kicked up regularly

We need to re-look at this new MC autolocker stuff, and the new MCL filters.

MC2 is getting kicked up (sometimes the watchdog trips, sometimes it just comes close) pretty regularly.  I'm not sure yet what is causing this, but we need to deal with it since it's pretty obnoxious.

  7277   Sun Aug 26 12:26:44 2012 JenneUpdateIOOMC spot position - not done yet

Quote:

I am getting closer with the MC spot centering.  I had everything but MC1 really great, but then I tweaked MC1's pointing, and things all went to hell. 

I have to go home to let Butter out, but I'll be back tomorrow, and I'll try to get back to where I was in the 2nd to last measurement in the plot below.

I recenterd the WFS after moving the input beam, so that the beam was hitting the WFS at all.

 We are being riddled with earthquakes.  Brawley, CA (~150 miles from here) has had 9 earthquakes in the last hour, and they're getting bigger (the last 4 have been 4-point-somethings).  I may try to come back later, but right now the MC won't stay locked for the ~5 minutes it takes to measure spot positions.  Koji and Jamie said they were coming in today, so they can call me if they want help.

  7280   Mon Aug 27 01:05:36 2012 JenneUpdateIOOMC spot position - callin' it quits
spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
[-0.98675603448324423, -0.94064212026141558, 2.6749179375892544, -0.65896393156684185, -0.4508281650731974, -0.55109088188064204]

MC3 pitch isn't what I'd like it to be, but MC1 and MC3 pitch aren't quite acting in relation to each other how I'd expect. Sometimes they move in common, sometimes differentially, which is confusing since I have only ever been touching (on the PSL table) the last steering mirror before the beam is launched into the vacuum.

The latest few measurements have all been with the WFS off, but reflection of ~0.48 . I haven't figured out why yet, but MC1 and MC3 yaw WFS outputs start to escalate shortly after the WFS becoming engaged, and they keep knocking the MC out of lock, so I'm leaving them off for now, to be investigated in the morning.
Attachment 1: MCdecenter_26Aug2012.png
MCdecenter_26Aug2012.png
  7284   Mon Aug 27 12:03:54 2012 KojiUpdateIOOMC spot position - callin' it quits

The MC REFL path was checked. ==> Some clippings were fixed. MC WFS is working now.

- MC was aligned manually

- The steering mirror for the WFS and camera was clipping the beam. => FIxed

- The WFS spots were realigned.

- There was small clipping on the MC REFL RFPD. ==> Fixed

  7288   Mon Aug 27 18:32:48 2012 JenneUpdateIOOMC spot position - Jenne is stupid

Quote:

The MC REFL path was checked. ==> Some clippings were fixed. MC WFS is working now.

- MC was aligned manually

- The steering mirror for the WFS and camera was clipping the beam. => FIxed

- The WFS spots were realigned.

- There was small clipping on the MC REFL RFPD. ==> Fixed

 We have figured out that some of these measurements, those with the WFS off, were also not allowing the dither lines through, so no dither, so no actual measurement.

Jamie is fixing up the model so we can force the WFS to stay off, but allow the dither lines to go through.  He'll elog things later.

  7289   Mon Aug 27 18:59:24 2012 jamieUpdateIOOMC ASC screen was confusing - Jenne is not stupid

Quote:

We have figured out that some of these measurements, those with the WFS off, were also not allowing the dither lines through, so no dither, so no actual measurement.

Jamie is fixing up the model so we can force the WFS to stay off, but allow the dither lines to go through.  He'll elog things later.

In the c1ioo model there were filter modules at the output of the WFS output matrix, right before going to the MC SUS ASCs but right after the dither line inputs, that were not exposed in the C1IOO_WFS_OVERVIEW screen (bad!).  I switched the order of these modules and the dither sums, so these output filters are now before the dither inputs.  This will allow us to turn off all the WFS feedback while still allowing the dither lines.

I updated the medm screens as well (see attached images).

Attachment 1: Screenshot-1.png
Screenshot-1.png
Attachment 2: Screenshot-2.png
Screenshot-2.png
  7290   Mon Aug 27 23:52:59 2012 JenneUpdateIOOMC Spots centered

Finally!

Jamie and I have the MC spots centered.  We did the normal move the input beam, realign jazz for a while, then when we got close, used the "move MC2 spot" scripts to get the MC2 spot back to ~center.

This was way easier when the measurements were real, and not just noise.  Funny that.

The dark blue spot is the farthest from 0 in pitch, and it is 1.04mm.  The cyan and yellow we've done a pretty good job of getting them equally far from zero.  Since we aren't translating the beam, we can't get better than the point at which the cyan and yellow curves cross.

Attachment 1: MCdecenter_26Aug2012.png
MCdecenter_26Aug2012.png
  7312   Wed Aug 29 20:43:23 2012 KojiUpdateIOOSetup for a cavity scan or the input mode cleaner

The technique is based on detection of the beating between the resonant carrier and a resonant higher order mode.
This means that the beat signal is cancelled out if the transmitted beam is integrated over the entire beam.
Thus, you may want to introduce intentional clipping (or cutting a half of the beam with a razor blade). 

Ref: LIGO DCC G080467: Precise Measurements on Longitudinal and Transverse Mode Spacings of an Optical Cavity using an Auxiliary Laser

I am quite curious on the measurement as I am going to do the same measurement for the aLIGO OMC.
I am interested in seeing the statistical evaluation on the precision of the measurement.

  7313   Wed Aug 29 21:02:45 2012 JenneUpdateIOOOptics between Faraday and PRM are centered, realigned

[Jenne, Suresh, with support from Jamie and Koji]

MC spots measured, MC1, MC3 no change.

No clipping going through Faraday.

Beam hitting to the right of center of PZT1.  It was translated sideways so we are now hitting it on the center.  Knobs adjusted so we hit center of MMT1.

Beam totally obscured by Faraday on the way to MMT2.  MMT2 moved north, so that we clear the Faraday by more than a beam diameter.  MMT1 knobs adjusted to hit center of MMT2.

MMT2 knobs adjusted to hit center of PZT2.

PZT2 didn't have enough range with knobs, so we loosened it, pointed then adjusted with knobs so we're hitting center of PRM. 

We need to check spot centering on PRM with camera tomorrow.

Suresh checked that we're not clipped by IP ANG/POS pickoff mirrors, but we haven't done any alignment of IP ANG/POS.

 

Tomorrow:  Open ITMX door.  Check with Watek that we're hitting center of PRM.  Then look to see if we're hitting center of PR2.  Then, continue through the chain of optics.

  7320   Thu Aug 30 18:01:05 2012 ElliUpdateIOOSetting up Input MC cavity scan measurement

Riju, Elli

Today tried to take our first cavity scan.  We unplugged the 55MHz sideband input from the RF combiner on the PSL table, and connected a network analyser instead.  Using the network analyzer we injected a 12dBm signal (swept from 32MHz to 45MHz) through the RF combiner into the EOM to create our swept sidebands.  We measured the  MC cavity response by looking at the signal comming out of the RF photodiode on the MC2 table.  I replaced the BNC cable connected to the RF PD with a longer BNC cable that could reach our network analyzer next to the PSL table.  Riju will post a diagram of our setup.

We didn't see the expected carrier resonances when we performed a cavity scan.  The light incident on the RF PD is around 0.7micro Watts and we are still thinking about whether this is strong enough to see our signal above the noise.  We also want to work out what the strength of our swept sidebands is.  We will attempt to do a 'real' cavity scan tomorrow.

 

  7323   Thu Aug 30 20:31:35 2012 JenneUpdateIOOPZT1 and PZT2 set to center of their ranges

[Koji, Jenne]

Jamie and Koji pointed out that we need to be doing the in-vac alignment with the PZTs at the center of their ranges.  Also, we confirmed that they were set to "closed loop off", so the strain gauges were not supplying any feedback.

PZT1 was set to 0 for both pitch and yaw, since it has a very limited range of motion right now, so 0 is close enough.

For PZT2, Koji and I moved the slider in pitch and yaw, and watched the LCD output monitor on the PZT driver at the bottom of 1Y3.  We saw the value on the LCD change between slider values +4 to -6 for PZT2 yaw, so it is set to -1 as the center.  We saw the value on the LCD change between slider values -4 to +5 for PZT2 pitch, so it is set to +0.5 as the center.   Beyond these slider values (the sliders all go -10 to +10), the LCD value didn't change, either at 0, or at the maximum. 

Since PZT1 doesn't really move, this shouldn't affect any of the alignment work that Suresh and I did last night, although we should quickly confirm tomorrow. On the agenda for tomorrow is adjusting PZT2 such that we hit the center of PR2 (and hopefully that will also put us through the center of the PRM target, if the alignment was done well enough last time), so it's okay that we have only now set it to the center of its range.

  7328   Fri Aug 31 13:22:29 2012 ElliUpdateIOOCorrecting improper termination of the 55MHz input to the EOM

Koji, Riju, Elli

This morning Koji discovered that the 55MHz input into the RF combiner that I disconnected yesterday wasn't terminated properly, so it was reflecting power back into the amplifier in the signal generation unit.    We turned off the signal generation unit and checked that the amplifier was still working properly- it was.  A 50 ohm terminator was attached to the end of the 55MHz cable so that it is now terminated properly.

When we tried to turn the signal generator box back on we discovered the switch is broken (the box will only stay on while you hold down the on switch) and will need to be replaced.  In order to create the 29.5MHz sidebands to lock the mode cleaner, we bypassed the signal generation unit which won't stay on (unplugging '29.5 MHZ out' cable from the frequency generation unit), and instead sent a 0.39V 29.5MHz signal from a function generatior into 'RF input' on the 'RF AM Stabiliser' board.

We also increased the power coming exiting the PSL table and going into the cavity from 11 microwatts to 20 microwatts by adjusting the polariser at the end of the table slightly.  The power has been set to 20 microwatts using the polariser a few days ago but had drifted down since then.

  7332   Fri Aug 31 18:32:47 2012 KojiUpdateIOOCorrecting improper termination of the 55MHz input to the EOM

 

The power switch of the frequency source was mechanically broken. I replace it with the spare in Kiwamu's treasure box.
I think this replaced new one also had the same problem before, we basically have to find an alternative switch.
The problem is too much friction between the metal housing and the plastic button. I have lubricated the button with
bicycle oil.

I have checked that the 55MHz output still have the output of 25dBm after a 5m BNC cable. (nominal: 27dBm)

I could not test it with the MC as the chambers have already been closed with the light doors.

  7349   Thu Sep 6 13:07:02 2012 JenneUpdateIOOIPANG no longer a reference :(

I was having trouble centering IPANG using the PZTs, and I suspected something funny was going on at the end.  I went down there, and the beam was focused right on the PD, and the spot was very very small.  I think this means that when I was trying to center the beam, I was falling into the gap between the pieces of the diode.  Also, as Koji pointed out to me the other day, if the PD is at the focal point of the beam, any parallel rays hitting the lens just before the PD will all go to the same place, no matter how the input beam has moved.  This means we're not getting as much info out as we'd like.

So.  I moved the lens a little bit farther from the PD such that we are just beyond the focal point of the beam.  The beam size is now ~1mm on the QPD.

This means, however, that I moved the beam on the QPD such that IPANG is no longer a reference of the input pointing. Ooops. I think this adjustment needed to be done though.  Right now, the PZTs are set to where we had them yesterday, when we moved them slightly to center the IPANG QPD, and I've recentered IPANG.

  7407   Wed Sep 19 09:24:01 2012 SteveOmnistructureIOOaccess connector at athmoshere

Quote:

Quote:

We really need something better to replace the access connector when we're at air.  This tin foil tunnel crap is dumb.  We can't do any locking in the evening after we've put on the light doors.  We need something that we can put in place of the access connector that allows us access to the OMC and IOO tables, while still allowing IMC locking, and can be left in place at night.

 It is in the shop. It will be ready for the next vent. Koji's dream comes through.

 24" diameter clear acetate access connector is in place. The 0.01" thick plastic is wrapped around twice to insure air and bug tight barrier for the MC to lock overnight. The acetate transmission for 1064 nm is 90 % This was measured at 150 mW   2.5 mm beam size.

 

Attachment 1: IMG_1641.JPG
IMG_1641.JPG
Attachment 2: IMG_1642.JPG
IMG_1642.JPG
Attachment 3: acetateAC.png
acetateAC.png
  7410   Wed Sep 19 13:12:48 2012 JenneUpdateIOOPower into vacuum increased to 75mW

The power buildup in the MC is ~400, so 100mW of incident power would give about 40W circulating in the mode cleaner.

Rana points out that the ATF had a 35W beam running around the table in air, with a much smaller spot size than our MC has, so 40W should be totally fine in terms of coating damage.

I have therefore increased the power into the vacuum envelope to ~75mW.  The MC REFL PD should be totally fine up to ~100mW, so 75mW is plenty low.  The MC transmission is now a little over 1000 counts.  I have changed the low power mcup script to not bring the VCO gain all the way up to 31dB anymore.  Now it seems happy with a VCO gain of 15dB (which is the same as normal power).

  7439   Tue Sep 25 22:40:55 2012 JenneUpdateIOOIPANG ND filter installed

[Jenne, Evan Hall]

Both IPPOS and IPANG beams are (after turning on the input and output PZTs) hitting their QPDs.  However IPANG was saturating.  We went down to take a look, and we had ~2.8mW incident on the QPD.  There was an ND filter sitting unmounted, next to the diode, and an empty fork directly in front of the diode.  Since IPPOS also has an ND filter in front, we stuck this ND filter back in.  Now we are no longer saturating.

We're not hitting (yet) the center of these 2 PDs, but we're at least hitting the diodes, so it shouldn't be too hard to steer the input PZTs.

Whomever took away this ND filter without elogging it was BAD!!!  (Jamie, when we first found IPANG coming out of the vacuum during this vent, we moved some of the mirrors on the out-of-vac table in the IPANG path.  Was the ND filter removed at that time?  Or has it been out for much longer, and we never noticed because IPANG wasn't coming nicely out of the vacuum / was clipping on the oplev lens?)

  7440   Wed Sep 26 01:10:34 2012 JenneUpdateIOOPZT2 not working?!?! MC back to normal

[Jenne, Evan, Den]

MC REFL beam is back on the PD, and the mode cleaner locks.  It looks like we're a little high on the MC Refl camera, but the MC spots were measured, and don't look like they changed from Friday (or maybe Monday?), the last time they were measured. We took this to be acceptable MC alignment, and did not touch the PSL table's pointing.

The laser power reduction optics were removed, and placed out of the way on the PSL table (where do they belong?).  PSL-POS and PSL-ANG aren't quite perfectly centered, but a beam dump had been in the way of that path, so I don't know if they drifted bad, or if it was a sudden thing.  The beam is still hitting the QPDs though.  After removing the beam power reducing optics, we recentered the MC REFL beam on the REFL PD, still not touching any PSL alignment.  MC mirrors were aligned (Den did this work while I showed Evan around, so I don't know by how much), and MC Trans was maximized (really MC Refl was minimized, making sure that the unlocked MC Refl was the usual 4.something units on the EPICS readback.

We turned on the PZT high voltage supplies for the output steering PZTs and for the input steering PZTs.  We left the OMC locking PZT supplies off, since we're still not using the OMC.  Sadly, the beam coming out of the AS port looks clipped somewhere.  [SELF: attach the videocapture shot when you get to work tomorrow] We tried moving PZT2's sliders, but nothing happened!!! I can move BS and the ITMs to get the beam mostly unclipped, but I really need to be able to move the PZTs, or at least one of them.  IPPOS and IPANG beams are hitting the QPDs (although they're not centered perfectly), so the PZTs came back mostly to the same positions, but not exactly.  Evan and I sat next to the input steering PZT controllers in 1Y3, and moved the sliders around.  For most of the range, nothing changes on the LCD screen for either PZT2 pitch or yaw.  Yaw can make 2 small steps near the far negative side of the slider, but nothing happens for most of the slider.  Pitch really doesn't do anything for any part of the slider.  We ensured that the LED labeled "CL ON" was not illuminated, next to the button labeled "closed loop", for all 4 controllers (PZT1 and 2, pitch and yaw).  Sad!!   I don't know if the LCD screen on the front panel of the PZT controllers is a readback of signal supplied to the PZTs, or of the strain gauges.  I really hope it's the controller that's not working, rather than the PZTs themselves.  The PZTs were fine before we vented, and Koji and I did our centering of the PZT range check during the vent, so they were fine then.  What happened???  All PZT high voltage supplies were off during the pump-down.  I turned them off yesterday, and Evan and I turned them back on tonight around 9:30pm or 10pm.  What else could make them bad?

Without being able to move PZT2, just using BS and / or ITMs, I was unable to completely make the beam look nice on the AS camera.  I came close, but it still seems a little bit funny, and I had to move the suspended optics quite a bit to find that place.  This is not good. 

  7442   Wed Sep 26 16:59:30 2012 jamieUpdateIOOIPANG ND filter installed

Quote:

[Whomever took away this ND filter without elogging it was BAD!!!  (Jamie, when we first found IPANG coming out of the vacuum during this vent, we moved some of the mirrors on the out-of-vac table in the IPANG path.  Was the ND filter removed at that time?  Or has it been out for much longer, and we never noticed because IPANG wasn't coming nicely out of the vacuum / was clipping on the oplev lens?)

I do not remember removing anything from that setup.  We just moved some mirrors and lenses around

  7444   Wed Sep 26 23:55:14 2012 JenneUpdateIOOWFS centered

Since the MC spots are good, I put the beam back on WFS 1 and WFS 2.

Also, I changed the indicators on the LockMC screen to reflect the change in elog 7289, where we added another on/off switch for the WFS so that the ASS could be on, but the WFS off.  For the last month, the WFS could be disabled, but the MC screen's indicators would suggest that we were pushing very significantly on all 3 MC mirrors.  Now the MC screen reflects reality a little better.

I also uncommented the WFS lines in the mcup script.  Den had commented them out, but didn't elog about it!  C'mon Den, please elog stuff!!!!  (He confessed out loud the other day, but it still wasn't in the elog).

I'm leaving the WFS loops disabled (even though the MC autolocker tries to turn them on, I have them manually disabled using the extra on/off switch) since they're unstable.  I'm in the process of figuring out what's wrong.  So far, the WFS improve the MC alignment for a minute or two, and then they totally misalign the MC.  This is a work in progress.

  7452   Fri Sep 28 21:17:41 2012 KojiUpdateIOOMC WFS adjustment

MC WFS was fixed. Now it is running constantly with the autolocker.

Found a bug in the IOO screen: All of the 6 WFS signal indicators is liked to the same info (C1:IOO-MC1_PIT_OUTPUT).
Fix this, Jenne! Baaaaagghhhhh! 


What I did:

1. C1:IOO-MC_RFPD_DCMON indicator was saturating. "HOPR" of this entry was  set to 5 by running the following command:

ezcawrite C1:IOO-MC_RFPD_DCMON.HOPR 5

2. Scan MC2 spot position by using /opt/rtcds/caltech/c1/scripts/MC/moveMC2 scripts.
or the adjustment, C1:SUS-MC2_ASCPIT_EXC and C1:SUS-MC2_ASCYAW_EXC were excited with 300cnt at 12Hz and 10Hz, respectively.
The corresponding peaks (i.e. ANgle to length coupling) in C1:IOO-MC_F were monitored on DTT and adjusted so that the peaks are approximately nulled.

3. moveMC2 scripts are not perect to keep the maximum of the transmission. So, the alignment was adjusted with MC1 and MC3.

4. Repeated 2 and 3 until the alignment converges.

5. Once I got satisfied with the MC2 spot position, I went to the MC2 table and aligned the steering mirror before the QPD.

6. As these actions above moves the REFL beam, I went to the MC REFL path and adjusted the MC REFL PD position and the MC WFS spot positions.

7. Checked if the alignment is still good. The MC REFL is 0.50~0.51. Pretty good.

8. Run /opt/rtcds/caltech/c1/scripts/MC/WFS/WFS_FilterBank_offsets to register the current WFS offset etc.

9. At this point, MC WFS started working fine. I also confirmed the autolocker worked with this setting.

--------

Checked how the things are going in the morning. There were several unlocks. But the autolocker and WFS kept the cavity lcoked again.
Very good.

Some power fluctuation of ~1% is observed in the MC trans. I checked the PMC trans and found it is also fluctuating by 1% in a coherent way.
So I judge the WFS itself is fine. (See attached)

 

 

Attachment 1: MC_WFS_12h.png
MC_WFS_12h.png
  7455   Mon Oct 1 11:08:25 2012 JenneUpdateIOOMC WFS adjustment

Quote:

Found a bug in the IOO screen: All of the 6 WFS signal indicators is liked to the same info (C1:IOO-MC1_PIT_OUTPUT).
Fix this, Jenne! Baaaaagghhhhh! 

 My bad.  As it turns out, you can't copy and paste between MEDM instances.  It is now fixed.

  7456   Mon Oct 1 13:11:43 2012 JenneUpdateIOOPZT inspection elogs

I'll come back to the PZTs later, but I want to write down all the elogs I have found so far that look relevant.

http://nodus.ligo.caltech.edu:8080/40m/699

http://nodus.ligo.caltech.edu:8080/40m/5368

nodus.ligo.caltech.edu:8080/40m/5431

  7462   Tue Oct 2 14:20:33 2012 ManasaConfigurationIOOPDA255 not working

The PDA255 that Koji repaired is still not alright. It seems to be saturating again. I've left it in the PD cabinet where it is marked 'PDA 255'. I've asked Steve to order a fast PD at 150MHz, PDA10A because we don't seem to have any at the 40m.

  7463   Tue Oct 2 15:14:54 2012 jenne, jamieUpdateIOOPZT diagnosis

pzt2 mod signals matched slider vals for both pitch and yaw

  pzt2 yaw mon output = 6
  pzt2 pitch mon output = 11.3

From the PZT connector-converter board we determined the following pin-outs:

  X=Yaw:  red=1, white=14, black=3 
  Y=Pitch:  red=2, white=15, black=16

We believe that red is signal, white/black/shield are all ground.  We also believe (although this is from the PMC PZT) that the expected capacitance of the PZTs should be in the 100's of nF range.

Here are the readings from the two PZT dsub connectors:

  pin 1:14   PZT1 = ".003" on 2uF scale
             PZT2 = ".184"
   
  pin 2:15   PZT1 = ".002" on 2uF scale
             PZT2 = ".202"

So we think this means (given this crappy capacitance meter) that PZT2 is showing roughly 200nF, which sounds ok, but that PZT1 is indeed bad.

So next we investigate the PZT2 driver.

 
  7465   Tue Oct 2 16:32:43 2012 JenneUpdateIOOPZT diagnosis

[Koji, Jenne]

Jamie and I pulled the whole PZT driver for both PZT1 and PZT2. 

Koji and I found that each HV power supply (the left-most module) has 2 fuses.  Both HV supplies (PZT1 and PZT2) have one blown fuse.  The "T2L250A" measures low resistance for both HV supplies, but the "T250mAL250V" measures Open for both HV supplies.

I have ordered 10 pieces of each kind of fuse, Next Day shipping, from DigiKey.

  7469   Wed Oct 3 15:58:57 2012 SteveConfigurationIOOSOS coil drivers moved

The SOS coil drivers (Atm2) were moved from 1X1 to 1Y2 location. Is this the best place to locate the  IOO Tip-Tilt steering that will replace the PJ-PZT ?

See 40m wiki T-T

Attachment 1: SOScoildriversTT.jpg
SOScoildriversTT.jpg
Attachment 2: IMG_1680.JPG
IMG_1680.JPG
  7472   Wed Oct 3 18:45:51 2012 jamieUpdateIOOwiki page for active IO tip-tilts

I made a wiki page for the active IO tip-tilts.  I should have made this a long time ago.

ELOG V3.1.3-