40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 215 of 337  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  1298   Thu Feb 12 17:43:33 2009 YoichiUpdateLSCSRC strangeness solved
I found the problem with the DRMI lock I had last night was caused by the zero gain in the PD11_I filter.
I don't know how it happened but putting it back to 1.000 made the DRMI lock far more stable and AS166Q got more than 3000.

I also re-centered POY PD to remove the offset in the y-arm loop. The large power drops while y-arm is locked by itself were eliminated.
  9126   Thu Sep 12 01:06:09 2013 JenneUpdateASCSRCL ASS implemented

I have modified the ASS model to also have an ASS for SRCL.  The input options are POPDC, POP110, AS110.  I suppose I could/should have included ASDC.

Screens are modified / made.  I haven't finished setting the servo gains and oscillator amplitudes, and all that jazz yet. 

Using the parameters that Koji had in elog 9116, I was able to get nice long DRMI locks (several on a ~10 minute time scale). 

I tried some pseudo-ANDing for the triggers, to no avail.  I was trying to have the trigger matrix row for the SRCL loop have 1*POP22 and 0.02*AS110, where the 0.02 is to scale AS110 so that it has a similar amplitude to POP22.  I then set threshold levels to ~250 for up, and 100 for down (I tried several different values for the up threshold).  I was watching the TRIG_MON_FAST channels for both PRCL and SRCL, and I wasn't able to get SRCL to be triggered only at the same times as PRCL using this technique.  Since we can get the DRMI to lock, perhaps my AND logic for the triggers is a low priority, but I think we'll need something like that if we want real logic.

 

  11836   Wed Dec 2 03:34:30 2015 ericqUpdateLSCSRCL OLG weirdness

[gautam, ericq]

Since ETMX seems to have been on good behavior lately, we tried to fire the IFO back up. 

We had a fair amount of trouble locking the DRMI with the arms held off resonance. For reasons yet to be understood, we discovered that the SRCL OLG looks totally bananas. It isn't possible to hold the DRMI for very long with this shape, obviously. 

With the arms misaligned and the DRMI locked on 1F, the loop shape is totally normal. I haven't yet tried 3F locking with the arms misaligned, but this is a logical next step; I just need to look up the old demod angles used for this, since it wasn't quickly possible with the 3F demod angles that are currently set for the DRFPMI. 

Attachment 1: weirdSRCLG.pdf
weirdSRCLG.pdf
  5694   Wed Oct 19 10:49:35 2011 kiwamuUpdateSUSSRM oscillation removed

Quote:

The SRM oplevs were found to be oscillating because of a small phase margin.

I reduced the gains to the half of them. The peak which Steve found today maybe due to this oscillation.

Quote from #5630

The SRM bounce peak 18.33 Hz. Suresh helped me to retune filter through Foton, but we failed to remove it. 

 Kiwamu removed the 18.3 Hz ocsillation by turning down the oplev servo gain.

Attachment 1: SRMoplevKWMtune.png
SRMoplevKWMtune.png
  4349   Thu Feb 24 11:18:08 2011 steveUpdateSUSSRM sus-cables

Cheater cables   for SRM sus tied up. They were dangling aimlessly on the floor.

Attachment 1: P1070428.JPG
P1070428.JPG
  12601   Mon Nov 7 08:00:11 2016 SteveUpdateSUSSRM -PRM sat. amp swap

I just realized that Gautam set this test up and turned damping off......He will explane the details

 

Attachment 1: SRM.jpg
SRM.jpg
Attachment 2: SRM-UR_OK.png
SRM-UR_OK.png
  803   Wed Aug 6 13:15:57 2008 YoichiUpdateSUSSRM ETMX freeswing spectra
After yesterday's work on the SRM, I took free swinging spectra of SRM.
The eigen modes look ok. But there are many other peaks which were not present in vacuum.
Some of those peaks may be resonances of the air inside the chambers and the pipes.
However, the peaks around 0.2Hz are too low frequency for those air compression modes.
I took the ETMX spectra at roughly the same time. I chose ETMX because we have not touched it after the vent.
ETMX also shows some extra peaks but the frequencies are different.
Attachment 1: SRM-ETMX-freeswing.pdf
SRM-ETMX-freeswing.pdf SRM-ETMX-freeswing.pdf
  4063   Thu Dec 16 01:23:43 2010 kiwamuUpdateSUSSRM OSEMs installed

  [Zach and Kiwamu]

 We worked on some more vacuum businesses.  Today we finished did the following works:

 - alignment of the POX mirrors 

 - alignment of the POP1 and POP2 mirrors

 - installation of OSEMs onto SRM

 - alignment of the SRM tower

 

 (alignment of POP mirrors)

 Since a beam on the POP path was quite too weak to see even by IR viewers, we used a He-Ne laser to imitate the real beam instead.

We injected the He-Ne beam from an optical bench to the chamber, and made it go through the PRM and PR2 by using some steering mirrors.

 

(OSEM cables)

 The pin assignment was flipped in a way of mirror image due to the extension cables which cause a mirroring.

 So we made mirroring connectors to flipp them back to the correct pin assignment, and plugged the mirroring connectors in between the feedthrough of the BS chamber and the SRM satellite box.

This is a picture showing how they are connected now.

DSC_2757_ss.jpg

  16861   Wed May 18 08:30:29 2022 PacoUpdateBHDSRM OpLev

[Paco]

The SRM Oplev injection and detection paths interfere heavily with the POY11. Due to the limited optical access, I suggest we try steering POYM1 YAW and adapting the RFPD path accordingly.

  16864   Thu May 19 08:51:40 2022 PacoUpdateBHDSRM OpLev

[Paco, Ian]

After agreement from Yuta/Anchal, I moved POYM1 yaw to clear the aforementioned path, and Ian restored the POY11 RFPD path. The demodulation phase might need to be corrected afterwards, before any lockign attempts.

Quote:

[Paco]

The SRM Oplev injection and detection paths interfere heavily with the POY11. Due to the limited optical access, I suggest we try steering POYM1 YAW and adapting the RFPD path accordingly.

 

  4062   Wed Dec 15 23:10:40 2010 KojiUpdateIOOSRM Oplev / Dark Steering mirrors installed

I helped the vacuum installation work in the evening.

- Three steering mirrors after the SRM (OM1-OM3) were installed on the table. OM1 and OM2 were aligned.
  OM3 is in-place but not aligned to the OM4 (PZT).

- The ITMY oplev setup was disintegrated. The SRM/ITMY oplev beams were prepared.

- The SRM oplev mirrors were placed on the table and aligned.

- The ITMY oplev mirrors were placed on the table but not in-place.

  800   Tue Aug 5 17:56:23 2008 AlbertoConfigurationGeneralSRM and PRM inspection
Yoichi, Koji, Rana, Steve, Alberto

Today we opened the BSC to inspect the optics, and in particular the SRM and PRM.
We found that one of the side magnets of the SRM was broken and a piece of it fell and got stuck to the LR magnet.
We removed the LR OSEM and took off the broken part with tweezers. Since we couldn’t replace the magnet on the side,
we decided to just switch the OSEM to the other side were a second magnet was available. Then we centered the OSEMs.
Using the optical levers we aligned both the ITMX and the SRM so that now we have to center again the OSEMs on both.

The PRM was visibly tilted and it was out of the range of the OSEMs. To try to fix the tilt we lift it up a little
with the screws on the bottom and pushed it with the third screw on top. That had the effect of making the mirror
tilt to the opposite direction. We looked at the wires (see attached picture) and it seemed centered on the side
of the mirror.

Tomorrow we are going to reset the OSEMs on ITMX and SRM and then we’re going to try to fix the tilt on PRM.
Attachment 1: IMG_1434.JPG
IMG_1434.JPG
Attachment 2: IMG_1456.JPG
IMG_1456.JPG
  10664   Mon Nov 3 17:56:57 2014 KojiUpdateLSCSRM calibration

SRM Calibration

After the DRMI measurements on Friday, SRY cavity was locked in order to compare ITMY and SRM actuators.

SRY cavity was locked with AS55Q ->  SRM servo with gain of +10?
(My memory is fading. I tried +50 and noticed it was saturated at the limiter. So I thought it was 10)

Then the transfer functions between SRM->AS55Q TF and ITMY->AS55Q TF were measured.

The ratio between two transfer functions was obtained as seen in the second attachment.
The average at f<100Hz was 4.07 +/- 0.15. Therefore the calibration is ... as you can find below


SRM: http://nodus.ligo.caltech.edu:8080/40m/10664
SRM = (19.0 +/- 0.7) x 10 -9/ f2

PRM: http://nodus.ligo.caltech.edu:8080/40m/8255
PRM:  (19.6 +/- 0.3) x 10 -9 / f2 m/counts

BS/ITMs http://nodus.ligo.caltech.edu:8080/40m/8242
BS     = (20.7 +/- 0.1)    x 10 -9 / f2 m/counts
ITMX = (4.70 +/- 0.02)  x 10 -9/ f2
m/counts
ITMY = (4.66 +/- 0.02) x 10 -9/ f2
m/counts

Attachment 1: SRY_SRM_CALIB_RAW.pdf
SRY_SRM_CALIB_RAW.pdf
Attachment 2: SRY_SRM_CALIB.pdf
SRY_SRM_CALIB.pdf
  12987   Fri May 12 01:36:04 2017 gautamUpdateGeneralSRM coil driver + dewhite board LISO modeling

I've made the LISO models for the dewhitening board and coil driver boards I pulled out.

Attached is a plot of the current noise in the current configuration (i.e. dewhitening board just has a gain x3 stage, and then propagated through the coil driver path), with the top 3 noise contributions: The op-amps (op3 and op5) are the LT1125s on the coil driver board in the bias path, while "R12" is the Johnson noise from the 1k input resistace to the OP27 in the signal path.

Assuming the OSEMs have an actuation gain of 0.016 N/A (so 0.064 N/A for 4 OSEMs), the current noise of ~1e-10 A/rtHz translates to a displacement noise of ~3e-15m/rtHz at ~100Hz (assuming a mirror mass of 0.25kg). 

I have NOT included the noise from the LM6321 current buffers as I couldn't find anything about their noise characteristics in the datasheet. LISO files used to generate this plot are attached.

Quote:

I've added marked-up schematics + high-res photographs of the SRM coil driver board and dewhitening board to the 40m DCC Document tree (D1700217 and D1700218). 

In the attached marked-up schematics, I've also added the proposed changes which Rana and I discussed earlier today. For the thick-film -> thin-film resistor switching, I will try and make a quick LISO model to see if we can get away with replacing just a few rather than re-stuff the whole board.

Since I have the board out, should I implement some of these changes (like AD797 removal) before sticking it back in and pulling out one of the ITM boards? I need to look at the locking transients and current digital limit-values for the various DoFs before deciding on what is an appropriate value for the output resistance in series with the coil.

Another change I think should be made, but I forgot to include on the markups: On the dewhitening board, we should probably replace the decoupling capacitors C41 and C52 with equivalent value electrolytic caps (they are currently tantalum caps which I think are susceptible to fail by shorting input to output).

 

Attachment 1: SRM_bypass_plus_CoilDriver.pdf
SRM_bypass_plus_CoilDriver.pdf
Attachment 2: liso.zip
  12986   Thu May 11 18:59:22 2017 gautamUpdateGeneralSRM coil driver + dewhite board initial survey

I've added marked-up schematics + high-res photographs of the SRM coil driver board and dewhitening board to the 40m DCC Document tree (D1700217 and D1700218). 

In the attached marked-up schematics, I've also added the proposed changes which Rana and I discussed earlier today. For the thick-film -> thin-film resistor switching, I will try and make a quick LISO model to see if we can get away with replacing just a few rather than re-stuff the whole board.

Since I have the board out, should I implement some of these changes (like AD797 removal) before sticking it back in and pulling out one of the ITM boards? I need to look at the locking transients and current digital limit-values for the various DoFs before deciding on what is an appropriate value for the output resistance in series with the coil.

Another change I think should be made, but I forgot to include on the markups: On the dewhitening board, we should probably replace the decoupling capacitors C41 and C52 with equivalent value electrolytic caps (they are currently tantalum caps which I think are susceptible to fail by shorting input to output).

Attachment 1: D010001-B_40m.pdf
D010001-B_40m.pdf D010001-B_40m.pdf D010001-B_40m.pdf D010001-B_40m.pdf
Attachment 2: D000183-C8_40m.pdf
D000183-C8_40m.pdf D000183-C8_40m.pdf D000183-C8_40m.pdf
  8981   Wed Aug 7 21:52:11 2013 JenneUpdateSUSSRM coils fine - problem with slow bias slider

[Koji, Jenne]

We have looked a little more at the SRM situation.  We aligned the SRM, and then aligned the oplev, so that we had a convenient monitor of the optic's motion.

When we use the _COMM channels, which are the usual ones on the IFO_ALIGN screen, the pitch slider makes pitch motion, but the yaw slider makes the oplev spot move ~45degrees from horizontal.

However, when we use the bias channels that are in the front end model, parallel to the ASC path, pitch moves pitch, and yaw moves pure yaw.

So, we conclude that the SRM coils are fine, and there is something funny going on with the slow part of the actuation. 

Koji restarted the slow computer susaux, and burt restored it, but that did not fix the situation.  We went inside and looked at all of the ribbon cable connections, and pushed them all in, but that also has not fixed things. 

We have been looking at D010001-b, the coil driver board, and we think that's where the summing resistor network between the slow bias slider, and the coil outputs from the fast model exists.  (It's not 100% clear, but we're confident that that's what is going on). 

Tomorrow, we will pull the SRM's coil driver board, and see if any of the components in the slow slider path, before the summing point, look burned / broken / bad.

  5293   Tue Aug 23 18:25:56 2011 jamieUpdateSUSSRM diagnalization OK

By looking at a longer data stretch for the SRM (6 hours instead of just one), we were able to get enough extra resolution to make fits to the very close POS and SIDE peaks.  This allowed us to do the matrix inversion.  The result is that SRM looks pretty good, and agrees with what was measured previously:

SRM SRM.png        pit     yaw     pos     side    butt
UL    0.869   0.975   1.140  -0.253   1.085  
UR    1.028  -1.025   1.083  -0.128  -1.063  
LR   -0.972  -0.993   0.860  -0.080   0.834  
LL   -1.131   1.007   0.917  -0.205  -1.018  
SD    0.106   0.064   3.188   1.000  -0.011 
4.24889

 

  5690   Wed Oct 19 04:23:58 2011 kiwamuUpdateSUSSRM free swinging test

The following optics were kicked:
SRM
Wed Oct 19 04:22:53 PDT 2011
1003058589
 

  5460   Mon Sep 19 15:30:22 2011 PaulUpdateSUSSRM oplev OSEM yaw calibration curve

 I made the first measurements towards oplev calibration measurements: calibrating the oplevs in SRM YAW. The measurements seemed fine, I had a range of between -1.5 and 1.5 in SRM DC alignment before clipping on mirrors on the oplev bench became a problem. This seemed to be plenty to get a decent fit for the spot position against DC alignment value - see attached plot. The fitted gradient was -420um oplev yaw count. I calculated oplev yaw values as UL+LL-UR-LR. Pitch next.

Attachment 1: SRM_YAW_calib_curve.png
SRM_YAW_calib_curve.png
  5432   Fri Sep 16 14:03:53 2011 PaulUpdateSUSSRM oplev QPD noise measurement

 I checked the dark and bright noise of the SRM oplev QPD. The SRM QPD has a rather high dark level for SUM of 478 counts. The dark noise for the SRM QPD looked a little high in the plot against the bright noise (see first attachment), so I plotted the dark noise with the ITMY QPD dark noise (see second attachment). It seems that the SRM QPD has a much higher dark noise level than the ITMY! In case anyone is wondering, to make these traces I record the data from the pitch and yaw test points, then multiply by the SUM (to correct for the fact that the test point signal has already been divided by SUM). I will check the individual quadrants of the SRM QPD to see if one in particular is very noisy. If so, we/I should probably fix it.

Attachment 1: SRM_oplev_dark_noise_vs_bright_noise.pdf
SRM_oplev_dark_noise_vs_bright_noise.pdf
Attachment 2: SRM_ITMY_QPD_dark_noise_comparison.pdf
SRM_ITMY_QPD_dark_noise_comparison.pdf
  7091   Mon Aug 6 16:48:43 2012 steveUpdateSUSSRM oplev is clipping

The SRM oplev beam is clipping.

  5465   Mon Sep 19 16:56:29 2011 PaulUpdateSUSSRM oplev pitch calibration

 Same measurements for SRM pitch (as previously done for yaw in entry 5460) are complete. The QPD is back in the path and aligned. I will be doing the same measurements for ITMY now though, so please ask before activating the SRM or ITMY oplev servos, as I may be blocking the beam.

  8121   Wed Feb 20 20:15:29 2013 yutaUpdateAlignmentSRM oplev status

Currently, SRM is misaligned in pitch so that SRM reflected beam hits on the top edge of SR3 (not on the mirror, but on the cage holding the mirror).
We also confirmed that SRM oplev beam is coming out from the chamber unclipped, and centered on QPD when SRM is "aligned".

  10493   Thu Sep 11 00:27:39 2014 JenneUpdateSUSSRM oplev touch-up

The sum vs. pitch and yaw signals for the SRM QPD weren't making sense to me - centering on the PD lowered the sum, etc.  So, I had a look at the SRM oplev setup. 

The beam going in to the chamber looked fine, but the beam coming out was weird, like it was being clipped, or diffracted off of a sharp edge.  The beam was spread out in yaw over almost 1cm as seen by eye.  I looked into the vacuum window, and the beam was sitting on the edge of one of the in-vac steering optics.  So, I adjusted the yaw of the beam-launching optic on the out of vac table so that I was roughly centered on both of the in-vac SRM steering mirrors.  This required moving the first out of vac mirror for the SRM oplev path on the way to the QPD to move a small amount to one side, since the beam was near-ish the edge of the optic.  I then centered the beam on the oplev (I had the SRM roughly aligned already). 

Now the SRM oplev makes more sense to me.  I have turned on FMs 1, 2, 5, 9 to match ITMY's loop shape.  I have set the gains to -10 for pitch and +10 for yaw, to make the upper UGF about 6 Hz.

  5636   Fri Oct 7 23:23:05 2011 kiwamuUpdateSUSSRM oplev was oscillating

The SRM oplevs were found to be oscillating because of a small phase margin.

I reduced the gains to the half of them. The peak which Steve found today maybe due to this oscillation.

Quote from #5630

The SRM bounce peak 18.33 Hz. Suresh helped me to retune filter through Foton, but we failed to remove it. 

  3916   Sun Nov 14 16:26:31 2010 jenne, valeraUpdateElectronicsSRM side OSEM noise with no magnet

We realized that the SRM sensors are connected to the readout but just sitting on the BS in vacuum table with no magnets and therefore no shadows in them. We swapped the inputs to the SRM and PRM satellite boxes to use the higher transimpedance gain of the PRM side sensor. The attached plot shows the current spectrum in this configuration. The PD readback voltage was 9.5 V. Since this is close to the rail we put a slightly higher voltage into the AA of this channel to test that we can read out more ADC counts to make sure we are not saturating. The margin was 15800 vs 15400 counts with p-p of 5 counts on the dataviewer 1 second trend. We returned all cables to nominal configuration.

The calibration from A to m is 59 uA/1 mm.

Attachment 1: SRM-SD-Current-NoMagnet.pdf
SRM-SD-Current-NoMagnet.pdf
  3918   Mon Nov 15 04:57:10 2010 ranaUpdateElectronicsSRM side OSEM noise with no magnet

IF I believe this calibration and IF I believe that the noise is the same with no magnet in there, then its almost 1 nm/rHz @ 1 Hz.

I am guessing that Jenne's calculation will show that this is an unacceptably high level of OSEM sensor noise, OAF-wise.

  5692   Wed Oct 19 08:34:16 2011 steveUpdateSUSSRM sus damping restored

Sorry Kiwamu, I realized too late that you were freeswigging. Hopefully 4 hrs was enough.

Attachment 1: SRM.png
SRM.png
  5277   Mon Aug 22 16:28:44 2011 SureshUpdateGeneralSRM tower shifted on Friday

[Kiwamu, Suresh]   This is a belated elog entry from last Friday night + Saturday morning! 

    We shifted the SRM tower across the beam and away from the door by about 5mm. 

                  After the input beam from MC was aligned to the Y-arm,  Kiwamu noticed that the AS beam was being clipped and that the correction had to start from SRM onwards as the beam had become offcentered on the SRM.  So we shifted the SRM tower by about 5mm away from the door and transverse to the beam and rotated it by a few degrees to center the OSEM offsets.  After this we aligned all optics along the AS beam path to extract the AS beam from the chamber.    We then aligned each optic in the vertex so that their beams overlap at the AS port with the reflection from ITMY.  Then we aligned BS to center the beam on ETMX and then looked for flashes from the Y arm.

      At this point Kiwamu checked and found that the input beam from the MC had shifted.  It was landing on the ITMY about 5mm below the center.  And (inexplicably) it was still centered on ETMY!  The Y- green which traced the cavity axis (since this was still flashing) was not coincident with the IR beam.   So all the work we did in aligning the AS beam and the vertex optics work was lost..... and had to be done again.

 

 

  3094   Mon Jun 21 18:01:34 2010 JenneUpdate40m UpgradingSRM, PRM hung, magnets inspected

[Jenne, Kiwamu, Rana, Eric Gustafson]

The SRM and PRM have been re-hung, and are ready for installation into the chambers.  Once we put the OSEMs in, we may have to check the rotation about the Z-axis.  That was not confirmed today (which we could do with the microscope on micrometer, or by checking the centering of the magnets in the OSEMs).

Also, Eric and Rana inspected the Tip Tilt magnets, and took a few that they did their best to destroy, and they weren't able to chip the magnets.  There was concern that several of the magnets showed up with the coatings chipped all over the place.  However, since Rana and Eric did their worst, and didn't put any new chips in, we'll just use the ones that don't have chips in them.  Rana confiscated all the ones with obvious bad chips, so we'll check the strengths of the other magnets using a gaussmeter, and choose sets of 4 that are well matched. 

Eric, photographer extraordinaire, will send along the pictures he took, and we'll post them to Picasa.

  4655   Fri May 6 17:11:55 2011 steveUpdateSUSSRM-oplev cable

The SRM qpd cable was removed from the BS-table. It's path was changed from 1x4 to ITMY-table following the inner cable tray.

  4687   Wed May 11 11:24:59 2011 steveUpdateSUSSRM-oplev qpd is back

Quote:

The SRM qpd cable was removed from the BS-table. It's path was changed from 1x4 to ITMY-table following the inner cable tray.

 Laser diode oplev SRM is working. Qpd matrix values were reset like others.

In 0.44mW, returning 0.1mW,  -500 counts.

Attachment 1: srm-prm_oplevs.jpg
srm-prm_oplevs.jpg
  2862   Fri Apr 30 23:16:51 2010 KojiUpdateSUSSRM/PRM ready for baking

Kiwamu and Koji

- Checked the SRM/PRM balancing after the gluing.

- The mirrors were removed from the suspensions for baking.

- Bob is going to bake them next week.

  10694   Mon Nov 10 23:14:20 2014 ranaSummarySUSSRM: damping gains & Optical Lever servo Tune-up
  1.  tweaked gains for POS, PIT, YAW, SIDE by ~10-20% to get nice ringdowns with Q~5.
  2. Measured bounce rool freqs = 16.43 / 23.99 Hz. Updated the Mech Res Wiki page. Tightened up the bandstops to get back a few deg of phase. Propagated these new bandstops into the SRM SUS damping filter banks.
  3. Made and turned on a LP filters for the loops.
  4. Added a ~0.3 Hz gain boost / bubble.
  5. Set UGF to be ~2.5x below where it rings up. Estimate this to be ~3.5 Hz.
  6. First PDF shows bounce/roll peaks in OSEMs. Notice how f_roll is > sqrt(2)*f_bounce. ??
  7. Second PDF shows the OL spectra with the loops on/off. Previously there was no Boost and no LP (!!) turned on.
  8. 3rd PDF shows the modeled Bode plot of the OLG. yellow/blue is boost off/on
Attachment 1: SRM-BR.pdf
SRM-BR.pdf
Attachment 2: SRM_err_141110.pdf
SRM_err_141110.pdf
Attachment 3: SRM-OLG.pdf
SRM-OLG.pdf
  1134   Fri Nov 14 11:33:19 2008 steveUpdateVACSRS-RGA installed
Old Dycor rga is removed and new SRS-RGA200 installed.
It is pumped down and ready for hooking up its RS-232 output for operation.
  7925   Tue Jan 22 11:09:58 2013 SteveUpdateTip - TiltSS mirror holder ordered

Koji's design of the SS  2" mirror holder with flexure spring optic retainer  like Polaris-K1 has been ordered. We are getting just one to see it's effect on the hysteresis.

Attachment 1: D1201574_v1_Tip-Tilt_Mirror_Holder.SLDDRW
  550   Fri Jun 20 17:42:48 2008 steveUpdatePSLSS trap scattering compared to black glass trap
Circular SS304 trap was compared to wedged black glass trap.

The measurement set up of entry 529 was changed to define polarization.
CrystaLaser was remounted in horizontal position and half wave plate was placed after it.
These measurements were done in horizontal polarization.

atm1: the cSSt and wBGt was moved horizontally, ~90 degrees of the incident beam
atm2: traps were rotated around the incident beam, ~20 degrees each direction
atm3: set up
atm4: top view of traps
atm5: side view of trap
Attachment 1: cSSt_1.png
cSSt_1.png
Attachment 2: cSSt_2.png
cSSt_2.png
Attachment 3: scatset_61908.png
scatset_61908.png
Attachment 4: cSSt&wBGt.png
cSSt&wBGt.png
Attachment 5: cSStbeam.png
cSStbeam.png
  14197   Wed Sep 12 22:22:30 2018 KojiUpdateComputersSSL2.0, SSL3.0 disabled

LIGO GC notified us that nodus had SSL2.0 and SSL3.0 enabled. This has been disabled now.
The details are described on 40m wiki.

  7   Mon Oct 22 12:02:59 2007 ajwRoutineGeneralSTACIS as microseismic shaker
In case we ever want to use our Stacis systems as shakers, check this:
link
  7231   Sun Aug 19 19:56:20 2012 YaakovUpdateSTACISSTACIS signal box made

I made the signal box as described in eLog 7210. It adds the geophone signal and an external signal.

It has six switches, for x, y, and z signals from both an external and local (geophone) source. The x signals add if both x switches are flipped down (and the same for the other directions). For example, if you want to feed in only an external signal in the x direction, flip down the external x direction switch (it's labeled on the box), leaving all others flipped up.

The x, y, and z outputs are wired to the pins from the preamplifier that go to the high voltage board. These I disconnected from the preamplifier by cutting at their base (there are spare connectors if this wants to be undone, or, a wire can just be soldered from the pin to its old spot on the board). The power (plus/minus) and ground are wired to the respective pins from the geophone preamplifier (naturally, the STACIS must be turned on for the box to work since the box shares its power source). Below, the front (switches and geophone/external inputs) and back (power, ground, outputs) of the box are shown:

SAM_0276.JPGSAM_0277.JPG

The preamplifier can plug into its regular connectors- the x,y,and z signals will all be redirected to the signal box with these modifications. The box sits outside the STACIS, there is room to feed the wires out from underneath the STACIS platform.

SAM_0275.JPG

NOTE: The geophone z switch is a little different than the others, just make sure it's flipped all the way down if you want that signal to be seen in the z output.

 

  7258   Thu Aug 23 15:42:48 2012 ranaUpdateSTACISSTACIS signal box made

 

 I found this entry in the old 40m ilog which describes the STACIS performance. It shows that even though the STACIS is bad for the differential arm motion below 3 Hz. It has quite a big and positive effect at 10-30 Hz. The OSEMs show a bigger effect than what the single arm does. I think this is because the single arm is limited by the MC frequency noise above 10 Hz.

We should figure out how to turn on the STACIS but set the lower UGF to be ~5 Hz.

Attachment 1: vsanni-1107222997.pdf
vsanni-1107222997.pdf
  2428   Thu Dec 17 17:13:50 2009 AlbertoOmnistructureEnvironmentSTACIS stuff
One of the electronics benches is currently occupied by the STACIS equipment.
We need that table If no one is working on the STACIS anymore, it should be removed from there.
  16885   Wed Jun 1 12:56:44 2022 PacoSummaryElectronicsSTEMlab 125 handout

[Paco, Deeksha]

Yesterday I handed Deeksha a red pitaya (stemlab 125 - 10) to begin her summer work in the lab. The short term goal (~1 week) is to get it to work as a network analyzer and perhaps characterize its ADC/DAC noise spectra.

  6981   Tue Jul 17 18:00:58 2012 MashaUpdatePEMSTS

Den and investigated the STS-1 problem (which is currently plugged into ADC channels 13, 14, and 15, which correspond to the STS-3 channels in dtt). It turns out that I had plugged in the power to the monitor in the host box rather than the remote. The X, Y, and Z readout is currently approaching a mean of zero, and I will let it continue to do so overnight (pressing auto-zero as necessary). Attached is a plot of the coherence with GUR 1, and the time-domain signals.

Attachment 1: Screenshot.png
Screenshot.png
  6987   Wed Jul 18 11:05:40 2012 MashaUpdatePEMSTS Coherene

I realized what the ADC channel mismatch was, and apologize for plotting a terrible coherence in log scale. The channels are now properly matched (there is decent coherence between GUR1_X/STS_X, etc.).

  6499   Fri Apr 6 19:04:35 2012 JenneUpdatePEMSTS releveled, GUR2 plugged in

[Den, Jenne]

We were wondering why the STS-2 signal was funny.  When I went to look at it, the X-axis indicator was pointing ~45deg from the x-axis, so that it was pointing between the arms of the IFO.  Also, the bubble in the level was totally stuck on one side.  We locked the masses, and I put the seismometer back to the correct orientation, and then leveled it.  We unlocked the masses and turned the power back on, and hit the auto-zero button a few times.  Right now the X-axis signal is fine, but Y and Z are still railed, but it's been like 24 seconds, not 24 hours since we last hit auto zero, so there's still some time to wait.

Also, GUR2 was unplugged on both ends of the cable.  We plugged it back in.  However, it looks like the *seismometer* labeled #1 is now plugged into *channels* GUR2, and the seismometer labeled #2 is plugged into channels GUR1.  Recall that Den has only modified X, Y, Z for GUR1 channels, not any other channels in the breakout box.

  7080   Thu Aug 2 22:52:23 2012 MashaConfigurationPEMSTS, GUR2, and Trillium in isolation box.

Den and I moved the Streckeisen, Guralp 2, and Trillium seismometers to the isolation box in order to measure the noise of the Streckeisen while we have the Trillium.

  6977   Mon Jul 16 11:50:56 2012 MashaUpdatePEMSTS-1

It seems that the STS-1 ADC channels had the same mismatch issue as the GUR-2 channels. The PEM_MONITOR has STS_1 listed as channels 6, 7, 8 (+1 on the actual ADC) whereas it was plugged into channels 13, 14, 15 (+1 on the actual ADC as well) with nothing in channels 6, 7, 8. Thus, I moved the cables and reset STS_1. The readout, however, is still only a magnitude of ~10 counts (I checked, however, that this is indeed the readout when the seismometer is plugged in vs. when it is unplugged), but hopefully it will stabilize during the day, as did GUR 2.

  5059   Fri Jul 29 12:25:54 2011 Ishwita, ManuelUpdatePEMSTS-2 seismometer box

The 'Bacardi' STS-2 seismometer was tested with the "purple" breakout box and it was found out that all the three axes gave a voltage of 11 V (as shown on the screen of the oscilloscope) before pressing the auto-zero button and after pressing it the voltage shown was 6 V. We tried again the blue box and it was working perfectly after pushing the auto zero button (the auto zero took a few seconds). The power of the purple box is still on, we will wait a few hours, to see if something changes.

  5018   Fri Jul 22 14:22:13 2011 Ishwita, ManuelUpdatePEMSTS-2 seismometer hardware testing

We have two STS-2 seismometer boxes... the blue box & the purple box. Initially we used the blue box for the STS-2 seismometer (named Bacardi by Jenne).

  • Oscilloscope powered on battery was used to test the blue box by observing the velocity output of the three axes (X, Y, Z).  It was found out that the mean value of DC volt of...

X = +10 V

Y = +11 V

Z = -0.1 V

Thus, X and Y axes showed abnormally high DC volt. It was also found out that in AC coupling mode of the oscilloscope... changes were observed in the signal received from Z axis when some seismic wave was generated near the Bacardi by jumping near it. No such changes were observed from signals received from X & Y axes.

  • We removed the blue box and used the purple box for the same Bacardi seismometer & used the oscilloscope powered on battery to test it. It was found out that the mean value of DC volt of...

X = +4.4 V

Y = +4.4 V

Z = +4.4 V

In Ac coupling mode of the oscilloscope... changes were observed in the signals from X, Y, Z axes when someone jumped near Bacardi.

  • The above voltages from the two STS-2 seismometer boxes are unsuitable for the ADC box since it works with voltages ranging from +2 V to -2 V.... meaning it will consider any voltage signal above +2 V as +2 V and any signal below -2 V as -2 V. Hence we need to find out how to use these STS-2seismometer boxes with the ADC box.
  • We also tried measuring the DC volt from the shield and the center of a BNC connector corresponding to Y axis of the purple box (lets call it 'BNC-test') by using BNC-to-banana adaptors and banana wires. Signal from shield of BNC-test was sent to oscilloscope's channel 1 (connected to center of its BNC connector) and signal from center of BNC-test was sent to oscilloscope's channel 2 (connected to center of its BNC connector). On the oscilloscope screen it was observed that both the signals gave the same mean voltage output (-2.2V).
ELOG V3.1.3-