40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 119 of 350  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  15728   Thu Dec 10 16:24:13 2020 gautamUpdateEquipment loanNoliac PZT --> Paco

I gave one Noliac PZT from the two spare in the metal PMC kit to Paco. There is one spare left in the kit.

  15879   Mon Mar 8 12:54:54 2021 gautamUpdateEquipment loan40m-->Cryo
  1. Busby box
  2. SR554 transformer preamplifier
  16176   Wed Jun 2 17:50:50 2021 PacoUpdateEquipment loanBorrow red cart

I borrowed the little red cart 🛒 to help clear the path for new optical tables in B252 West Bridge. Will return once I am done with it.  

Attachment 1: IMG_20210602_172858.jpg
IMG_20210602_172858.jpg
  16180   Thu Jun 3 17:49:46 2021 PacoUpdateEquipment loanBorrow red cart

Returned today.

Quote:

I borrowed the little red cart 🛒 to help clear the path for new optical tables in B252 West Bridge. Will return once I am done with it.  

 

  16226   Fri Jun 25 19:14:45 2021 JonUpdateEquipment loanZurich Instruments analyzer

I returned the Zurich Instruments analyzer I borrowed some time ago to test out at home. It is sitting on first table across from Steve's old desk.

Attachment 1: ZI.JPG
ZI.JPG
  14518   Fri Apr 5 11:40:57 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • Attachment #1 shows the present experimental setup. The photodiode is now replaced with PDA255. The farther end of the fiber (output of the delayed arm) is coupled through a collimator and aligned such that the beam from the delayed path fall on the detector along with the undelayed path of MZI. We tried to measure the frequency noise of the laser with this setup, but we didn’t get anything sensible.
  • One of the main draw backs of the measurement was the polarisation was not aligned properly in the setup. So, then the next step was to identify the polarisation at different locations in the beam path and to maximise the polarisation to either S or P component.

  • So, we introduced HWP at the input beam path after isolator as shown in attachment #1. Also, the polarisation was tested at positions P1, P2, P3, and P4 shown in attachment #1 by placing a polarisation beam splitter at these locations and then by observing the transmitted (P component) and reflected light (S component) using power meter.

  • The observations at different locations are as the follows

Position Input power (mW) P component (mW) S component (mW)
P1 279 145 123
P2 255 113 137
P3 129 67 58
P4 124 66 53

 

  • These observations show that the P and S components are almost equal, and this is not a good polarisation arrangement. At this point, we also had to check whether the incoming beam is linearly polarised or not.

  • To test the same, the PBS was placed at position P1 and the P and S components were observed with power meter as the HWP is rotated.Attachment # 2 shows the results of the same, that is the variation in P and S component as the HWP is rotated.

  • This result clearly shows that the input beam is linearly polarised. The HWP was then adjusted such that the P component is maximum and coupled to the MZI. With this orientation of HWP, the polarisation observed at different positions P1, P2, P3, and P4 are as follows.

Position Input (mW) P component (mW) S component (mW)
P1 283 276 5
P2 248 228 7
P3 126 121 2
P4 128 117 1
  • This shows that the polarisation is linearly polarised as well as it is oriented along the P direction (parallel to the optical table).

  • We have the polarisation maintaining fiber (PM 980) as the delay fiber. The polarisation of the light as it propagates through a PM fiber depends on how well the input beam is coupled to the axis (slow or fast) of the fiber. So, the next task was to couple the light to one of the axes of the fiber.

  • The alignment key on the fiber is a good indication of the axis of the fiber. In our case, the alignment key lines up with the slow axis of the fiber. We decided to couple the light to the fast axis of the fiber. Since the incoming beam is P polarised, the output fiber coupler was  aligned such that the fast axis is parallel to optical table as possible.

  • A PBS was then introduced after the fiber output collimator . There is a HWP (marked as HWP2 in attachment 1) in front of the input coupler of the fiber as well. This HWP was then rotated and observed the P and S component from the PBS that is now placed after the output coupler with a power meter.The idea was , when the light is coupled to the fast axis of the fiber, we will see the maximum at the P componet at the output

  • Attachment # 3 shows the observation. 

  • In this way I tried to find the orientation of the HWP2 such that the P component is maximum at the output. But I was not succeeded in this method and observed that the output was fluctuating when the fiber was disturbed. One  doubt we had was whether the fiber is PM or not . Thus we checked the fiber end with fiber microscope and confirmed that it is PM fiber. 

  • Thus, we modifed the setup as shown in attachement # 4.The photodetector (PDA55) was monitoring the S component and the output of the detector was observed on an oscilloscope. We rotated the HWP2 such that the S component is almost minimum. At the same time, we were disturbing the fiber and was observing whether the output is fluctuating. The HWP2 angle was tweaked around the minimum of S component and observed the output with disturbing the fiber. This way we found the orientation of HWP2  such that the light is coupled to the fast axis of the fiber and the output was not fluctuating while we disturb the fiber. We tested it  by heating the fiber with a heat gun as well and confirmed that the output is not fluctuating and thus the light is coupled to the fast axis of the fiber.

Attachment 1: Modified_experimental_setup.JPG
Modified_experimental_setup.JPG
Attachment 2: Checking_polarisation.pdf
Checking_polarisation.pdf
Attachment 3: Checking_the_polarisation_alignment_of_the_delay_fiber.pdf
Checking_the_polarisation_alignment_of_the_delay_fiber.pdf
Attachment 4: Setup_to_test_the_polarisation_alignment_of_delay_fiber.JPG
Setup_to_test_the_polarisation_alignment_of_delay_fiber.JPG
  14520   Sat Apr 6 02:07:40 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • The alignment of the output beam from the delayed path of MZI to the photodetector was disturbed when we did the polarisation characterisation yesterday. So, today we tried to align the output beam from the delayed path of MZI to the detector .
  • We then observed the beat output from the detector on oscilloscope.We initialy observed a dc shift . We then applied a frequency modulation on the input laser and observed the output on oscilloscope. We expected to see variation in output frequency in accordance with variation of input frequency modulation. But we didnt observe this and we were not really getting the interference pattern. 
  • We tried to make the alignment better. With a better alignment, we could see the interference pattern. We also observed that the output frequency was varying in accordance with variation in the input frequency modulation. We would expect a better result with proper mode matching of the two beams on the photodetector.
  14529   Wed Apr 10 00:33:09 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • Attachement #1 shows the input (ch4-green) modulation frequency and the photodiode output (ch1-yellow) when the modulation frequency is about 100 Hz
  • Attachement #2 shows the input (ch4-green) modulation frequency and the photodiode output (ch1-yellow) when the modulation frequency is about 30 Hz
  • The output frequency is varying in accordance with variation in modulation frequency. It is observed that, for a given modulation frequency also, the output frequency is fluctuating. There could be multiple reasons for this behaviour. One of the main reasons is the frequency noise of the laser itself. Also, there could be acoustic noise coupled to the system (eg, by change in length of the fiber).
  • The experimental setup is then modified as shown in attachment #3. The thick beam spliiter is replaced with a thinner one. The mount is also changed such that the transmitted beam can be now coupled to an other photodiode (earlier  the transmitted light was blocked by the mount). One more photodiode (PDA55) is introduced .So now the two photodiodes in the setup are PDA520 and PDA 55. 
  • We then applied frequency modulation on the input laser and observed the output of the two photodiodes. But we didn't get the results as we expected and observed earlier (shown in attachment #1 &2). Looks like, the problem is poor mode matching between the two beams. 
Quote:
  • The alignment of the output beam from the delayed path of MZI to the photodetector was disturbed when we did the polarisation characterisation yesterday. So, today we tried to align the output beam from the delayed path of MZI to the detector .
  • We then observed the beat output from the detector on oscilloscope.We initialy observed a dc shift . We then applied a frequency modulation on the input laser and observed the output on oscilloscope. We expected to see variation in output frequency in accordance with variation of input frequency modulation. But we didnt observe this and we were not really getting the interference pattern. 
  • We tried to make the alignment better. With a better alignment, we could see the interference pattern. We also observed that the output frequency was varying in accordance with variation in the input frequency modulation. We would expect a better result with proper mode matching of the two beams on the photodetector.
Attachment 1: Modulation_frequency_100Hz.jpg
Modulation_frequency_100Hz.jpg
Attachment 2: Modulation_frequency_30Hz.jpg
Modulation_frequency_30Hz.jpg
Attachment 3: Modified_setup.JPG
Modified_setup.JPG
  14540   Fri Apr 12 01:22:27 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

The alignement was disturbed after the replcement of the beam splitter. We tried to get the alignment back . But we are not succeeded yet in getting good interfernce pattern. This is mainly because of poor mode matching of two beams. We will also try with the spooled fiber.

Quote:

 

  • The experimental setup is then modified as shown in attachment #3. The thick beam spliiter is replaced with a thinner one. The mount is also changed such that the transmitted beam can be now coupled to an other photodiode (earlier  the transmitted light was blocked by the mount). One more photodiode (PDA55) is introduced .So now the two photodiodes in the setup are PDA520 and PDA 55. 
 
 
  14544   Mon Apr 15 22:39:10 2019 gautamUpdateFrequency noise measurementAlternate setup with PSL pickoff

[anjali, gautam]

just main points, anajli is going to fill out the details.

To rule out mode-matching as the reason for non-ideal output from the MZ, I suggested using the setup I have on the NW side of the PSL enclosure for the measurement. This uses two identical fiber collimators, and the distance between collimator and recombination BS is approximately the same, so the spatial modes should be pretty well matched. 

The spooled fiber we found was not suitable for use as it had a wide key connector and I couldn't find any wide-key FC/PC to narrow-key FC/APC adaptors. So we decided to give the fiber going to the Y end and back (~90m estimated length) a shot. We connected the two fibers at the EY table using a fiber mating sleeve (so the fiber usually bringing the IR pickoff from EY to the PSL table was disconnected from its collimator). 

In summary, we cannot explain why the contrast of the MZ is <5%. Spatial mode-overlap is definitely not to blame. Power asymmetry in the two arms of the MZ is one possible explanation, could also be unstable polarization, even though we think the entire fiber chain is PM. Anjali is investigating.

 


We saw today that the Thorlabs PM beam splitters (borrowed from Andrew until our AFW components arrive) do not treat the two special axes (fast and slow) of the fiber on equal footing. When we coupled light into the fast axis, we saw huge asymmetry between the two split arms of the beamsplitter (3:1 ratio in power instead of the expected 1:1 for a 50/50 BS). Looking at the patch cord with an IR viewer, we also saw light leaking through the core along it. Turns out this part is meant to be used with light coupled to the slow axis only.

  14547   Wed Apr 17 00:43:38 2019 gautamUpdateFrequency noise measurementMZ interferometer ---> DAQ
  1. Delay fiber was replaced with 5m (~30 nsec delay)
    • The fringing of the MZ was way too large even with the free running NPRO (~3 fringes / sec)
    • Since the V/Hz is proportional to the delay, I borrowed a 5m patch cable from Andrew/ATF lab, wrapped it around a spool, and hooked it up to the setup
    • Much more satisfactory fringing rate (~1 wrap every 20 sec) was observed with no control to the NPRO
  2. MZ readout PDs hooked up to ALS channels
    • To facilitate further quantitative study, I hooked up the two PDs monitoring the two ports of the MZ to the channels normally used for ALS X.
    • ZHL3-A amps inputs were disconnected and were turned off. Then cables to their outputs were highjacked to pipe the DC PD signals to the 1Y3 rack
    • Unfortunately there isn't a DQ-ed fast version of this data (would require a model restart of c1lsc which can be tricky), but we can already infer the low freq fringing rate from overnight EPICS data and also use short segments of 16k data downloaded "live" for the frequency noise measurement.
    • Channels are C1:ALS-BEATX_FINE_I_IN1 and C1:ALS-BEATX_FINE_Q_IN1 for 16k data, and C1:ALS-BEATX_FINE_I_INMON and C1:ALS-BEATX_FINE_I_INMON for 16 Hz.

At some point I'd like to reclaim this setup for ALS, but meantime, Anjali can work on characterization/noise budgeting. Since we have some CDS signals, we can even think of temperature control of the NPRO using pythonPID to keep the fringe in the linear regime for an extended period of time.

  14571   Thu Apr 25 03:32:25 2019 AnjaliUpdateFrequency noise measurementMZ interferometer ---> DAQ
  • Attachment #1 shows the time domain output from this measurement. The contrast between the maximum and minimum is better in this case compared to the previous trials.
  • We also tried to extract the frequency noise of the laser from this measurement. Attachment #2 shows the frequency noise spectrum. The experimental result is compared with the theoretical value of frequency noise. Above 10 Hz, the trend is comparable to the expected 1/f characteristics, but there are other peak also appearing. Similarly, below 10 Hz, the experimentally observed value is higher compared to the theory.
  • One of the uncertainties in this result is because of the length fluctuation of the fiber. The phase fluctuation in the system could be either because of the frequency noise of the laser or because of the length fluctuation of the fiber.  So,one of the reasons for the discrepancy between the experimental result and theory could be because of  fiber length fluctuation. Also, there were no locking method been applied to operate the MZI in the linear range.
  • The next step would be to do a heterodyne measurement. Attachment #3 shows the schematic for the heterodyne measurement. A free space AOM can be inserted in one of the arms to do the frequency shift. At the output of photodiode, a RF heterodyne method as shown in attachment #3 can be applied to separate the inphase and quadrature component. These components need to be saved with a deep memory system. Then the phase and thus the frequency noise can be extracted.
  • Attachment #4 shows the noise budget prepared for the heterodyne setup. The length of the fiber considered is 60 m and the photodiode is PDA255. I also have to add the frequency noise of the RF driver and the intensity noise of the laser in the noise budget.
Quote:
  1. Delay fiber was replaced with 5m (~30 nsec delay)
    • The fringing of the MZ was way too large even with the free running NPRO (~3 fringes / sec)
    • Since the V/Hz is proportional to the delay, I borrowed a 5m patch cable from Andrew/ATF lab, wrapped it around a spool, and hooked it up to the setup
    • Much more satisfactory fringing rate (~1 wrap every 20 sec) was observed with no control to the NPRO
  2. MZ readout PDs hooked up to ALS channels
    • To facilitate further quantitative study, I hooked up the two PDs monitoring the two ports of the MZ to the channels normally used for ALS X.
    • ZHL3-A amps inputs were disconnected and were turned off. Then cables to their outputs were highjacked to pipe the DC PD signals to the 1Y3 rack
    • Unfortunately there isn't a DQ-ed fast version of this data (would require a model restart of c1lsc which can be tricky), but we can already infer the low freq fringing rate from overnight EPICS data and also use short segments of 16k data downloaded "live" for the frequency noise measurement.
    • Channels are C1:ALS-BEATX_FINE_I_IN1 and C1:ALS-BEATX_FINE_Q_IN1 for 16k data, and C1:ALS-BEATX_FINE_I_INMON and C1:ALS-BEATX_FINE_I_INMON for 16 Hz.

At some point I'd like to reclaim this setup for ALS, but meantime, Anjali can work on characterization/noise budgeting. Since we have some CDS signals, we can even think of temperature control of the NPRO using pythonPID to keep the fringe in the linear regime for an extended period of time.

Attachment 1: Time_domain_output.pdf
Time_domain_output.pdf
Attachment 2: Frequency_noise.pdf
Frequency_noise.pdf
Attachment 3: schematic_heterodyne_setup.png
schematic_heterodyne_setup.png
Attachment 4: Noise_budget_1_micron_in_Hz_per_rtHz.pdf
Noise_budget_1_micron_in_Hz_per_rtHz.pdf
  14573   Thu Apr 25 10:25:19 2019 gautamUpdateFrequency noise measurementHomodyne v Heterodyne

If I understand correctly, the Mach-Zehnder readout port power is only a function of the differential phase accumulated between the two interfering light beams. In the homodyne setup, this phase difference can come about because of either fiber length change OR laser frequency change. We cannot directly separate the two effects. Can you help me understand what advantage, if any, the heterodyne setup offers in this regard? Or is the point of going to heterodyne mainly for the feedback control, as there is presumably some easy way to combine the I and Q outputs of the heterodyne measurement to always produce an error signal that is a linear function of the differential phase, as opposed to the sin^2 in the free-running homodyne setup? What is the scheme for doing this operation in a high bandwidth way (i.e. what is supposed to happen to the demodulated outputs in Attachment #3 of your elog)? What is the advantage of the heterodyne scheme over applying temperature feedback to the NPRO with 0.5 Hz tracking bandwidth so that we always stay in the linear regime of the homodyne readout?

Also, what is the functional form of the curve labelled "Theory" in Attachment #2? How did you convert from voltage units in Attachment #1 to frequency units in Attachment #2? Does it make sense that you're apparently measuring laser frequency noise above 10 Hz? i.e. where do the "Dark Current Noise" and "Shot Noise" traces for the experiment lie relative to the blue curve in Attachment #2? Can you point to where the data is stored, and also add a photo of the setup?

  14576   Thu Apr 25 15:47:54 2019 AnjaliUpdateFrequency noise measurementHomodyne v Heterodyne

My understanding is that the main advantage in going to the heterodyne scheme is that we can extract the frequecy noise information without worrying about locking to the linear region of MZI. Arctan of the ratio of the inphase and quadrature component will give us phase as a function of time, with a frequency offset. We need to to correct for this frequency offset. Then the frequency noise can be deduced. But still the frequency noise value extracted would have the contribution from both the frequency noise of the laser as well as from fiber length fluctuation. I have not understood the method of giving temperature feedback to the NPRO.I would like to discuss the same.

The functional form used for the curve labeled as theory is 5x104/f. The power spectral density (V2/Hz) of the the data in attachment #1 is found using the pwelch function in Matlab and square root of the same gives y axis in V/rtHz. From the experimental data, we get the value of Vmax and Vmin. To ride from Vmax to Vmin , the corrsponding phase change is pi. From this information, V/rad can be calculated. This value is then multiplied with 2*pi*time dealy to get the quantity in V/Hz. Dividing V/rtHz value with V/Hz value gives  y axis in Hz/rtHz. The calculated value of shot noise and dark current noise are way below (of the order of 10-4 Hz/rtHz) in this frequency range. 

I forgor to take the picture of the setup at that time. Now Andrew has taken the fiber beam splitter back for his experiment. Attachment #1 shows the current view of the setup. The data from the previous trial is saved in /users/anjali/MZ/MZdata_20190417.hdf5

 

Quote:

If I understand correctly, the Mach-Zehnder readout port power is only a function of the differential phase accumulated between the two interfering light beams. In the homodyne setup, this phase difference can come about because of either fiber length change OR laser frequency change. We cannot directly separate the two effects. Can you help me understand what advantage, if any, the heterodyne setup offers in this regard? Or is the point of going to heterodyne mainly for the feedback control, as there is presumably some easy way to combine the I and Q outputs of the heterodyne measurement to always produce an error signal that is a linear function of the differential phase, as opposed to the sin^2 in the free-running homodyne setup? What is the scheme for doing this operation in a high bandwidth way (i.e. what is supposed to happen to the demodulated outputs in Attachment #3 of your elog)? What is the advantage of the heterodyne scheme over applying temperature feedback to the NPRO with 0.5 Hz tracking bandwidth so that we always stay in the linear regime of the homodyne readout?

Also, what is the functional form of the curve labelled "Theory" in Attachment #2? How did you convert from voltage units in Attachment #1 to frequency units in Attachment #2? Does it make sense that you're apparently measuring laser frequency noise above 10 Hz? i.e. where do the "Dark Current Noise" and "Shot Noise" traces for the experiment lie relative to the blue curve in Attachment #2? Can you point to where the data is stored, and also add a photo of the setup?

 

Attachment 1: Experimental_setup.JPG
Experimental_setup.JPG
  14579   Fri Apr 26 12:10:08 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

From the earlier results with homodyne measurement,the Vmax and Vmin values observed were comparable with the expected results . So in the time interval between these two points, the MZI is assumed to be in the linear region and I tried to find the frequency noise based  on data available in this region.This results is not significantly different from that we got before when we took the complete time series to calculate the frequency noise. Attachment #1 shows the time domain data considered and attachment #2 shows the frequecy noise extracted from that. 

As discussed, we will be trying the heterodyne method next. Initialy, we will be trying to save the data with two channel ADC with 16 kHz sampling rate. With this setup, we can get the information only upto 8 kHz. 

Attachment 1: Time_domain_data.pdf
Time_domain_data.pdf
Attachment 2: Frequency_noise_from_data_in_linear_region.pdf
Frequency_noise_from_data_in_linear_region.pdf
  14586   Tue Apr 30 17:27:35 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

We repeated the homodyne measurement to check whether we are measuring the actual frequency noise of the laser. The idea was to repeat the experiment when the laser is not locked and when the laser is locked to IMC.The frequency noise of the laser is expected to be reduced at higher frequency  (the expected value is about 0.1 Hz/rtHz at 100 Hz ) when it is locked to IMC . In this measurement, the fiber beam splitter used is Non PM. Following are the observations

1. Time domain output_laser unlocked.pdf : Time domain output when the laser is not locked. The frequency noise is estimated from data corresponds to the linear regime. Following time intervals are considered to calculate the frequency noise (a) 104-116 s (b) 164-167 s (c) 285-289 s

2. Frequency_noise_laser_unlocked.pdf: Frequency noise when the laser is not locked. The model used has the functional form of 5x104/f as we did before. Compared to our previous results, the closeness of the experimental results to the model is less from this measurement. In both the cases, we have the uncertainty because of the fiber length fluctuation. Moreover, this measurement could have effect of polarisation fluctuation as well.

3.Time domain output_laser locked.pdf :Time domain output when the laser is locked. Following time intervals are considered to calculate the frequency noise (a) 70-73 s (b) 142-145 s (c) 266-269 s. 

4. Frequency_noise_laser_locked.pdf : Frequency noise when the laser is locked

5. Frequency noise_comparison.pdf : Comparison of frequency noise in two cases. The two values are not significantly different above 10 Hz. We would expect reduction in frequency noise at higher frequency once the laser is locked to IMC. But this result may indicate that we are not really measuring the actual frequency noise of the laser.

Attachment 1: Homodyne_repeated_measurement.zip
  1   Wed Oct 17 18:46:33 2007 ranaConfigurationGeneraleLog Change
This is the first entry in the new 40m eLog.

Its GWs or bust now! Big grin



[Hnull][/Hnull]
  3   Thu Oct 18 15:03:14 2007 ajwRoutineGeneralthis is only a test

  7   Mon Oct 22 12:02:59 2007 ajwRoutineGeneralSTACIS as microseismic shaker
In case we ever want to use our Stacis systems as shakers, check this:
link
  10   Tue Oct 23 11:08:20 2007 steveOtherGeneralbrush fires
There are big brush fires around LA
40 days plot show no effect in the 40m lab
Attachment 1: brushfires.jpg
brushfires.jpg
  11   Wed Oct 24 01:43:32 2007 Andrey RodionovOtherGeneralPDF-file -> Will report about first results for XARM during Wednesday meeting

Here is the pdf-file with some graphs showing first results for XARM optimization.

We will discuss alltogether during our Wednesday meeting which starts at 2.40PM. Probably it would be necessary to project this pdf-file to the big screen,
so someone should bring laptop and probably connect it to the projector. I do not have a laptop.

See you on that meeting.
Attachment 1: Andrey_October_24.pdf
Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf Andrey_October_24.pdf
  41   Wed Oct 31 19:26:08 2007 Andrey RodionovRoutineGeneralPhotographs of "Mode-Cleaner Entrance"

Here are the pictures of "inside the chamber".
Attachment 1: MC-Pictures-1.pdf
MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf
Attachment 2: MC-Pictures-2.pdf
MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf
Attachment 3: MC-Pictures-3.pdf
MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf
Attachment 4: MC-Pictures-4.pdf
MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf
Attachment 5: MC-Pictures-5.pdf
MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf
Attachment 6: MC-Pictures-6.pdf
MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf
Attachment 7: MC-Pictures-7.pdf
MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf
Attachment 8: MC-Pictures-8.pdf
MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf
Attachment 9: MC-Pictures-9.pdf
MC-Pictures-9.pdf MC-Pictures-9.pdf
  48   Thu Nov 1 16:51:33 2007 d40AoGGeneralD40
If you vant see D40 againn, you leave one plate goulash by N2 tank in morning.

Vit the good paprikash this time!!!
Attachment 1: PB010001.JPG
PB010001.JPG
  94   Mon Nov 12 14:09:19 2007 robDAQGeneraltpman dead on fb40m
The testpoint manager was dead on fb40m. I know I re-started it sometime after the power outage, so something must have killed it. If you get an error from DTT like
"diagnostic kernel does not support: testpoints", then log into fb40m as root, check for the tpman with a ps -ef | grep tpman. If it's not there, then run /usr/controls/tpman & and close the terminal window.
  150   Fri Nov 30 20:13:57 2007 dmassSummaryGeneralHeNe UniPhase Laser
Data for the Uniphase 1.9 mW HeNe laser (labeled: "051507 From ISCT-BS") SN: 1284131 Model: 1103P

I used the Photon Beamscanner to obtain all data, then fit w(z) as shown on the plot with parameters w_0, z_R, and hidden parameter delta,
where z = delta + x, z is waist distance, x is distance from the laser.

Copies of the matlab code used to fit (/plot) are attached in .zip below.
Attachment 1: Matlabcode.zip
Attachment 2: UniPhaseWaist.jpg
UniPhaseWaist.jpg
  218   Sun Dec 30 02:36:35 2007 pkpUpdateGeneralAnother update
So I followed suggestions 1 and 3 so far and have started writing up what all needs to be done in order to compile and use the camera. I wrote a program to ping the camera and get its properties and am working on a program to get an image. The reason why I want to write my own programs to do this, is that it will be easier to reuse and also to compile/use in the first place. The programs currently rest in /cvs/cds/caltech/target/Prosilica/ . Unfortunately I will be away for the next couple of days and will have another update on the 2nd.
  238   Mon Jan 14 23:11:26 2008 tobinConfigurationGeneralfiber
John and I removed the fiber that ran from the SP table to the cleanroom. We plan to build a MZ interferometer with this fiber inserted into one of the arms, for the purpose of measuring its phase noise.
  247   Thu Jan 17 20:50:55 2008 tobinUpdateGeneralfiber coupling
Sam, John, and I matched the beam from an NPRO into a fiber on the SP table today. In doing so we used our GigE camera for a physics application for perhaps the first time, viewing the transmitted mode from the fiber during initial alignment. (I used my laptop running Windows and a 100 megabit switch.)
  250   Fri Jan 18 20:53:56 2008 tobinConfigurationGeneralETMY oplev
I monkeyed around with the ETMY oplev, adding a folding mirror and moving the HeNe so that John, Sam, and I have more room for our auxiliary laser setup. (The ISCT-EY has more room than ISCT-EX; the latter has an extra photodiode for IP ANG.) I believe I successfully recommissioned the oplev, though it might not be up to the SV standard. I verified that wiggling the ETMY alignment sliders showed corresponding wiggles in the oplev signals. However, it seems poorly diagonalized.

Our current plan is to have an NPRO, EOM, and fiber coupler on the SP table. This fiber will take light to ISCT-EY where we'll have a mode-matching telescope and inject light to the Y arm via a polarized beamsplitter. This auxiliary beam will have polarization orthogonal to the beam from the PSL.
  262   Thu Jan 24 22:52:18 2008 AndreyBureaucracyGeneralAnts around a dirty glass (David - please read!)

Dear coleagues,

there are rains outside these days, so ants tend to go inside our premises.

David was drinking some beverage from a glass earlier today (at 2PM) and left a dirty glass near the computer.

There are dozens, if not hundreds, of ants inside of that glass now.

Of course, I am washing this glass.

A.
  263   Fri Jan 25 08:55:26 2008 robConfigurationGeneralChanges to Dataviewer channels (XARM)

As a general rule,


Quote:
clicking random blue buttons chaotically


is not a good problem solving technique. It is thus now explicitly discouraged as an option in the LIGO 40m Lab.
  269   Fri Jan 25 17:11:07 2008 Max , AndreyConfigurationGeneralNEW_FETCH_SHOUROV and GET_DATA do not work

The problem which started yesterday after Andrey's framebuilder restart still persists.

It is still impossible to read data in the past from the channels using "get_data" which in turn uses "new_fetch_shourov".

Max was trying to read data from the channel
"C1:LSC-DARM_CTRL",

and he got the same error messages as Andrey.

Andrey tried earlier today to read data from "C1:SUS-ITMS_SUS" or "C1:SUS-ETMX_SUS" with the error meassge
Error in ==> new_fetch_shourov at 22
at (start_time+duration) > stops(end)

So, it seems that Robert Ward fixed just one problem out of two problems.

Robert revived the realtime signals in Dataviewer,
but did not revive the memory of channels for new_fetch_shourov.

To be more precise, channels have memory (it is possible to see the "Playback" curves in Dataviewer"),
but "get_data" and "new_fetch_shourov" do not see the data from those channels. The problem appeared immediately after Andrey's clicking on blue buttons to restart the framebuilder.

Andrey again apologizes.
  271   Sat Jan 26 02:02:43 2008 JohnSummaryGeneralNew Channels
I added the following channels.

# C1ASC_QPDs
[C1:SUS-ETMY_QPDSUM_MON]
[C1:SUS-ETMY_QPDYAW_MON]
[C1:SUS-ETMY_QPDPIT_MON]

[C1:SUS-ETMX_QPDSUM_MON]
[C1:SUS-ETMX_QPDYAW_MON]
[C1:SUS-ETMX_QPDPIT_MON]

The old .ini file is /cvs/cds/caltech/chans/daq/C0EDCU_26_1_2008.ini
  276   Sat Jan 26 22:00:03 2008 JohnUpdateGeneralLSC-TRY_OUT and ETMY-QPD
In the path from the ETM to the trans PD and QPD at the Y end I have replaced a BS1-1064-10-2037-45P with a polariser. The power falling on these diodes has been reduced. When the arm is locked in its nominal state the transmitted power is now less than 1.

This polariser should serve as an injection point for the auxiliary arm locking. I am attempting to use crossed polarisations to separate this loop from the main arm light.
  277   Sun Jan 27 13:13:21 2008 tobinMetaphysicsGeneraldeparture
It's been grand. Thanks for having me!

GWAVES IN '08!

Sugar napoleons may be forwarded to T. F., c/o LLO, P.O. Box 940, Livingston, LA 70754-0940.
  288   Thu Jan 31 12:39:14 2008 JohnConfigurationGeneralY arm test mass cameras
I've adjusted the test mass cameras on the y arm to make the beam injected through ETMY more visible.
  328   Thu Feb 21 18:29:28 2008 JohnSummaryGeneralHP Network Analyser Analyzer
The HP 4195A network analyser may be broken, measurements below 150MHz are not reliable. Above 150MHz everything looks normal. This may be caused by a problem with its output (the one you'd use as an excitation) which is varying in amplitude in a strange way.

Analyzer
  377   Thu Mar 13 18:20:29 2008 JohnUpdateGeneralNew Focus 4003 EOM 29.489MHz
I measured the modulation index as a function of drive power using an OSA. Agrees well with spec of 0.2 rad/V.
  395   Sun Mar 23 00:43:08 2008 mevansHowToGeneralOnline Adaptive Filtering
I wrote a short document about the OAF running on the ASS. Since there is no BURT setup, I put a script in /cvs/cds/caltech/scripts to help with setting initial parameters: upass.
Attachment 1: OnlineAdaptiveFilter.pdf
OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf OnlineAdaptiveFilter.pdf
  409   Wed Apr 2 15:03:51 2008 steveUpdateGeneralreflectivity of black glass
The reflectivity of black glass, shade 12 was supplied by Donald O'Shea
of Emerald Glass Inc., Westlake, OH 44145

The reflectivity of this glass was measured as shown

Old 1064 nm Crysta Laser with poor beam quality was the source.
Attachment 1: bg12refl.pdf
bg12refl.pdf
Attachment 2: bg12refsetup.pdf
bg12refsetup.pdf
  417   Mon Apr 7 18:58:49 2008 steveUpdateGeneralreflectivity of SS304
The reflectivity of stainless steel 304 super polished # 8 was measured the same way as elog entry 409

The reflectivity: 74 +- 1 % from incident angle 10 to 80 degrees
Attachment 1: ss304s8refl.pdf
ss304s8refl.pdf ss304s8refl.pdf
  446   Thu Apr 24 23:50:10 2008 ranaUpdateGeneralSyringes in George the Freezer
There are some packets of syringes in the freezer which are labeled as belonging to an S. Waldman.
Thu Apr 24 23:48:55 2008

Be careful of them, don't give them out to the undergrads, and just generally leave them alone. I
will consult with the proper authorities about it.
  478   Thu May 15 10:40:21 2008 steveHowToGeneralLisa Goggin, PhD
Lisa Goggin successfully defended her thesis on May, 13 2008

"A Search For Gravitational Waves from Perturbed Black Hole Ringdowns in Ligo Data"

She started out as a surf student in the 40m.

Congratulation!
Attachment 1: lisa.JPG
lisa.JPG
  483   Fri May 16 17:27:55 2008 AndreyOmnistructureGeneralToilets are broken, do not use them !!!

Both toilets in 40-meter were constantly flushing, the leaking water was on the floor inside of the restrooms, so

BOTH RESTROOMS ARE CLOSED TILL MONDAY


I have heard the constant loud sound of flushing water, opened the door, and was unpleasantly surprised because all the floor was under the layer of water and the toilets were constantly flushing. I called security at X5000, a plumber came in and told that a team of plumbers needs to repair the flushing system after the weekend. The plumber today just shut off the flushing water, wiped off the floor and told not to use the restrooms in the weekend. We should expect a team of plumbers on Monday.

Sinks are working, so you can wash your hands.
  494   Fri May 23 21:21:52 2008 CarynSummaryGeneralfiltering mode cleaner with wiener filter
I tried filtering some saved MC_L data (from Mon May19 4:30pm) with multiple MISO filters of different orders, with various sampling rates, at different times. Plotted the max rms error (where error is signal minus signal-estimate). 2min of data (around Mon May19 4:30pm) were used to calculate each filter. And each filter was applied to data at later times to see how well it performed as time progressed. Plots are attached. There appears to have been a disturbance during the 3rd hour. Rana pointed out perhaps it would be better to use data from the evening rather than during the day.
Attachment 1: error_vs_N_for_different_times_64Hz.pdf
error_vs_N_for_different_times_64Hz.pdf
Attachment 2: error_vs_N_for_different_times_128Hz.pdf
error_vs_N_for_different_times_128Hz.pdf
Attachment 3: error_vs_N_for_different_times_256Hz.pdf
error_vs_N_for_different_times_256Hz.pdf
Attachment 4: error_vs_N_for_different_times_512Hz.pdf
error_vs_N_for_different_times_512Hz.pdf
Attachment 5: error_vs_srate_for_different_times_256.pdf
error_vs_srate_for_different_times_256.pdf
Attachment 6: error_vs_srate_for_different_times_512.pdf
error_vs_srate_for_different_times_512.pdf
Attachment 7: error_vs_srate_for_different_times_1024.pdf
error_vs_srate_for_different_times_1024.pdf
Attachment 8: error_vs_time_for_different_srates_256.pdf
error_vs_time_for_different_srates_256.pdf
Attachment 9: error_vs_time_for_different_srates_512.pdf
error_vs_time_for_different_srates_512.pdf
Attachment 10: error_vs_time_for_different_srates_1024.pdf
error_vs_time_for_different_srates_1024.pdf
  546   Thu Jun 19 20:22:03 2008 ranaUpdateGeneralFE Computer Status
I called Rolf (@LLO) who called Alex (@MIT) who suggested that we power cycle every crate
with an RFM connection as we did before (twice in the past year).

Rob and I followed Yoichi around the lab as he turned off and on everything. There
was no special order; he started at the Y-end and worked his way into the corner and
finishing at the X-End. Along the way we also reset the 2 RFM switches around fb0.

This cured the EPICS problem; the FEs could now boot and received the EPICS data.

However, there are still some residual channel hopping-ish issues which Rob and Yoichi are
now working on.
  551   Sun Jun 22 21:38:49 2008 robHowToGeneralIFO CONFIGURE

Now that we're getting back into locking, it's nice to have a stable alignment of the interferometer.
Thus, after you're done with your experiment using subsets of the interferometer (such as a single arm),

please use the IFO_CONFIGURE screen, and click "Restore last Auto-Alignment" in the yellow "Full IFO" section.

If you don't know what this means/how to do this, you shouldn't be using the interferometer on your own.
  555   Mon Jun 23 21:51:19 2008 AlbertoUpdateGeneralArm Cavity Length Measurement
We measured the arm cavity lengths sweeping the ETM mirror position and looking at the reflected demodulated output. We excited the mirror by a sine wave of 0.2 Hz and amplitude of 30000 counts. From the time series of the occurrences of the resonances of the sidebands and of the carrier we evaluated the free spectral range of the cavities and thus the lengths. The details of the procedure are explained in the attached document. As discussed in it, for each cavity we obtain two possible values of the length depending on which of the sideband resonances is that corresponding to the upper sideband and which corresponds to the lower one instead. The numbers are:
Lx=(38.30 +/- 0.08)m / (38.45 +/- 0.08)m
Ly=(38.16 +/- 0.08)m / (38.70 +/- 0.08)m

Since the difference between the two possibilities is quite large, we should be able to decide which one is correct by somehow measuring directly the cavity length. We want to try it tomorrow by a tape meter.


Alberto and Koji
Attachment 1: 40mLengthMeasure.pdf
40mLengthMeasure.pdf 40mLengthMeasure.pdf
  556   Tue Jun 24 10:24:43 2008 KojiUpdateGeneralAbs. Len. Meas. ~ Cavity Swing Measurement (2)
At the entry 555, Alberto reported the results of the cavity length measurement using cavity sweeping.
As expected, each result inevitably has an ambiguity depending on which resonance do we take as an upper sideband.

In order to exclude this ambiguity Steve and Koji performed a primitive non-optical measurement using a tape and photos:
This morning Steve and Koji did tape measurements to know the lengths between the ITM/ETM chambers.
Yesterday, Koji took photos of the optical tables in vacuum to know the actual positions of the suspensions.

The results are shown in the figures attached. From those non-optical measurements the lengths of the X/Y arm are known to be 38.48+-0.03 / 38.67+-/0.03 [m].

Then, we could exclude the shorter lengths of the values in the entry 555. i.e. The Y arm is longer than the X arm about 0.2 m.

These approximate lengths will be used in the further precise measurements which use precise scans of the FSR frequencies.
Attachment 1: armlength.png
armlength.png
Attachment 2: armlength2.png
armlength2.png
  561   Wed Jun 25 00:35:40 2008 KojiSummaryGeneralOptical Layout on the AP table
I have visited the AP table in order to investigate where we are going to put the optical setup for the abs. length meas.
I have attached the PNG and PDF files to share the optical layout. It is not complete. Any comments or corrections are welcome.
Attachment 1: optical_layout_ap_table.png
optical_layout_ap_table.png
Attachment 2: optical_layout_ap_table.pdf
optical_layout_ap_table.pdf
ELOG V3.1.3-