40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 245 of 339  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  5201   Fri Aug 12 00:18:30 2011 Ishwita, ManuelUpdatePEMCoherence of Guralp1 and STS2(Bacardi, Serial NR 100151)

 

 We moved the seismometer STS2(Bacardi, Serial NR 100151) as we told in this Elog Entry, so the distance between Guralp1 and STS2 is 31.1m. Following is the coherence plot for this case:

coher_gur1_sts1_31m.png

then we also moved the Guralp1 under the BS and plugged it with the Guralp2 cable (at 7:35pm PDT), so now the distance between the two seismometers is 38.5m. Following is the coherence plot for this case:

coher_gur1_sts1_38.png

  5213   Fri Aug 12 17:05:22 2011 Manuel, IshwitaConfigurationPEMSTS2 Cable configuration

The WWF_M connector is the end of the STS2 seismometer orange cable and the S1 connector is the end of the gray 26-pin-cable

01050901.PDF

  5366   Thu Sep 8 13:20:07 2011 steveUpdatePEMvac envelope at atm for 36 days

We tried not to open chambers above 10,000 particles of 0.5 micron cf/min

New items going in:                       2 rasor beam traps, 5 badly oxidized old silver plated  setscrew with spring loaded tips......to be replaced in the future, viton tips for eq screws....some are lose, gold plated allen wrench installed at ITMX bottom, reglued magnet on ITMX

Bad hardware things found:          nylon ball "locking elements" on OSEM locking set screws with screwdriver  slot, lose  1064 nm filter on OSEM pd

Attachment 1: vent70.jpg
vent70.jpg
  5407   Wed Sep 14 15:05:52 2011 steveUpdatePEMair cond maintenance

Jeff has changed our AC filters inside the lab this morning. Now he is checking on the main filters at CES.  He will finish the roof units tomorrow.

Met One #1 counter is on the top of IOO chamber.  It is measuring 1 and 0.5 micron size particles.  One year of lab condition plot below.

 

Attachment 1: ac1y.jpg
ac1y.jpg
  5567   Wed Sep 28 18:39:50 2011 MirkoUpdatePEMBLRM seismic channels in c1pem

[Mirko,Jenne]

Created 5-band BLRMS for seismometer data (Gur1, Gur2 and STS1 each in x,y,z respectively) and accelerometer 1 through 6.

Bands are:
0.1Hz-0.3Hz
0.3Hz-1Hz
1Hz-3Hz
3Hz-10Hz
10Hz-30Hz
each with a fitting 4th order butterworth bandpass.

Data is recorded at 256Hz as e.g. C1:PEM-ACC1_RMS_RMS_0p3_1_OUT_DQ. For the 75 channels we have that corresponds to the data rate of just 1.2 16kHz channels.

c1pem execution time increased fom 6-7us to 15-16us out of 480us available.

  5700   Wed Oct 19 15:48:20 2011 MirkoUpdatePEMMoved the STS1 from x-arm end to vortex

[Jenne, Mirko]

We moved our one STS1 from the x-arm end to the vortex. We record the data as STS1 in c1pem @ 256Hz. x is still north-south.

JD:  This is actually an STS-2.  We just call it C1:PEM-SEIS_STS1.... to differentiate the 3 STSs that we have from one another (assuming we plug in the other two).

19102011061.jpg

  5986   Wed Nov 23 02:34:28 2011 MirkoUpdatePEMSeismic spectrum & Striptool

The Striptool for the BLRMS seismic channels is running now. Channels are ( still ) recorded as slow EPICS channels.

A big peak in the 0.1 - 0.3Hz seismic region in both GUR1 and STS1 irritated us for a while. I added an extra LP filter @ 0.05Hz to the RMS_LP modules.

SeismicSpectrum.pdf

 

  6058   Thu Dec 1 11:25:10 2011 steveUpdatePEM40m infrastructure holds up well in strong wind condition

 Santa Anna wind speed was locked around 60 kmph last night on campus. The strongest in 30 years.  The lab hold up well. We did not lose  AC power either.

Threes and windows were blown out and  over on campus.

We have 4 sliding glass windows without "heavy-laser proved" inside protection.

We should plan to upgrade ALL  sliding glass windows with metal protection from the inside.The strongest in 30 years.

Attachment 1: santaannawind.png
santaannawind.png
Attachment 2: wind.png
wind.png
  6139   Tue Dec 20 15:49:21 2011 steveUpdatePEMoptical table top

3/4 " thick colored acrylic material will be used in this air tight design. Surgical tubing for o-ring. We may have to put an o-ring into the bottom to have it really air tight.

Feedtrouhs: www.roxtec.com

The top drawing is not ready. It will have handle and industrial grade L-handle lock pin to hold cover down. There will be 2  one inch od post in the midle of the table to hold the cover and lock  the ball pin.

I'm waiting for your inputs, so I can send this preliminary design out for quote.

 

Attachment 1: 05150901.PDF
05150901.PDF
  6190   Thu Jan 12 10:11:59 2012 steveUpdatePEMoptical table top with 1" wall

Quote:

3/4 " thick colored acrylic material will be used in this air tight design. Surgical tubing for o-ring. We may have to put an o-ring into the bottom to have it really air tight.

Feedtrouhs: www.roxtec.com

The top drawing is not ready. It will have handle and industrial grade L-handle lock pin to hold cover down. There will be 2  one inch od post in the midle of the table to hold the cover and lock  the ball pin.

I'm waiting for your inputs, so I can send this preliminary design out for quote.

 

 The present plan to go with clear cast acrylic plexiglass 1" thick side wall  and  two  clear  1/2 thick top cover.

The inside would be lined with light braun YAG safety window sheets 0.14"  VLT ~25%  OD 4 @ 532nm & OD 5 @ 1064nm

 

Attachment 1: 101122012atc.PDF
101122012atc.PDF
  6191   Thu Jan 12 11:08:23 2012 Leo SingerUpdatePEMFunky spectrum from STS-2

I am trying to stitch together spectra from seismometers and accelerometers to produce a ground motion spectrum from Hz to 100's of Hz.  I was able to retrieve data from two seismometers, GUR1 and STS_1, but not from any of the accelerometers.  The GUR1 spectrum is qualitatively similar to other plots that I have seen, but the STS_1 spectrum looks strange: the X axis spectrum is falling off as ~1/f, but the Y and Z spectra are pretty flat.  All three axes have a few lines that they may share in common and that they may share with GUR1.

See attached plot.

Attachment 1: spectrum.jpg
spectrum.jpg
  6210   Wed Jan 18 12:38:44 2012 steveUpdatePEMAcrylic plexiglass transmittance

Acrylite-Gp.pptx

Transparent- clear plexyglass from tree different sources were measured in 1064 and 532 nm light.

Samples: a, clear Acrylic-GP 0F00  from Ridout Plastics in thickness 0.7" ,  made by  Evonic Ind

                   b, clear cast acrylic from Mc Master Carr in thickness 0.94" , likely  made by Reynolds-Cast

                   c, clear cell cast  plexyglass from Delvie's Plastics - Utah in thickness  0.93" , maker not known

PMC reflected beam was used at 92 mW and 6 mm diameter at incident angle 0-25 degrees.

All tree samples agreed on Transmittance of ~90%, Reflectivity ~3-4% and calculated Adsorption ~6-7%

 

Transparent Colored Acrylic orange-amber #2422   from www.eplastics.com in 0.12" thickness gave  T 96%,  R 1% and  Ab-calc ~3% in the beam of 92 mW 1064  nm at 6 mm diameter.

 

Transparent , colored   Light Red #26 thin film filter   policarbonate-polyester   0.002" thick   from Roscolux measured T 81% of 115 mW 1064 nm

 

Now I changed power meter FieldMate to Ophir and the light source to laser pointer 2.2 mW  ~532 nm  with 1-2 mm beam diameter.

Orange - amber #2422  sample, 0.12" thick,  T 1% ,  R 4%  and  Ab-calculated ~95%, estimated visibility  ~50% It does cut out the green at this low power level.

 Light red #26  sample  T 0.5%  at 2.5 mW of 532 nm . The transparent green is not visible.  The softening point of this sandwiched polycarbonate-polyecter filter is 160C. Estimated VLT of this film ~40%

 

SUMMERY:

Clear and colored acrylics'  @ 1064 nm  transmittance 90% or higher  regardless of thickness. Softenig point 115 degrees C

Colored acrylic and colored policarbonate film are adsorbing the low power green and they  transmit the 1064nm beam.

Options to consider: a, acrylic laser safety shield liner of  0.125" thick inside of 1" thick clear acrylic  box, OD +5 @1064 and OD +4 @ 532nm,  amber color VLT 27%,  150$/sqft

                                      b, thin metal liner for 1" wall acrylic box, VLT 0%

                                     

 

Attachment 2: roscogel_red#26_film.pdf
roscogel_red#26_film.pdf
  6237   Mon Jan 30 16:18:51 2012 steveUpdatePEMRoscolux colored film transmittance at 1064 nm

 

 Roscolux filter films  #74 night blue,  0.003" thick  and  #26 light red, 0.002" thick  were measured in the beam path of  ~6 mm diameter,  1W 1064 nm .

T 90%  + - 5% at 0-30 degrees of  incident angles and R ~10 % 

These sandwitched thin films of policarbonate-polyester filters are not available in thicker forms. Rosco is recommending them to be cooled by air if used in high power beam.

These filters did not get warm at all in 1W, so absorption must be very small.

  6245   Fri Feb 3 14:47:51 2012 steveUpdatePEMlaser interlock drawing

 Rough draft of      updated interlock drawing by Ben is here.

 

  6247   Fri Feb 3 16:13:49 2012 steveUpdatePEMLED lights for chamber illumination

Cold LED lights replaced hot halogen ones. Flat LED MYAL 6S,  model #112560002  24VAC

This is a LATE ENTRY.  They were purchased  in Jan 2010 and installed 6 of them around May 2010

Attachment 1: P1080526.JPG
P1080526.JPG
  6271   Fri Feb 10 15:47:38 2012 ranaUpdatePEMseismic noise back to normal

 

 Kiwamu and Steve maybe don't know about how to trend seismic noise. If you just take the mean of the time series, you don't prove that the seismic noise got any higher. The STS has a nominally zero DC output, so the long period level shifts that you see tell you just that there was a DC offset.

This is NOT an increase in seismic noise. To see a seismic trend you should plot the trend of the BLRMS channels that we made especially for this purpose.

  6272   Fri Feb 10 15:52:35 2012 JenneUpdatePEMseismic BLRMS loud too

Quote:

 

 Kiwamu and Steve maybe don't know about how to trend seismic noise. If you just take the mean of the time series, you don't prove that the seismic noise got any higher. The STS has a nominally zero DC output, so the long period level shifts that you see tell you just that there was a DC offset.

This is NOT an increase in seismic noise. To see a seismic trend you should plot the trend of the BLRMS channels that we made especially for this purpose.

 So, none of our PEM BLRMS channels are recorded as of right now.  All we have for long-term record is the StripTool on the wall.  The 0.1-0.3Hz and 0.3-1 Hz traces both show these weirdo things, but the 1Hz and up BLRMS don't have any unusual noise.

  6273   Fri Feb 10 15:54:27 2012 steveUpdatePEMAC turned back ON

The air cond was off for 2 hrs.  I just switched it back on at 15:51

  6275   Fri Feb 10 23:58:30 2012 ranaUpdatePEMseismic BLRMS loud too

Quote:

 

 So, none of our PEM BLRMS channels are recorded as of right now.  All we have for long-term record is the StripTool on the wall.  The 0.1-0.3Hz and 0.3-1 Hz traces both show these weirdo things, but the 1Hz and up BLRMS don't have any unusual noise.

 Seems like a problem to solve on Monday so that we don't end up without trends like this again.

  6276   Mon Feb 13 11:30:51 2012 JenneUpdatePEMseismic BLRMS loud too

Quote:

Quote:

 

 So, none of our PEM BLRMS channels are recorded as of right now.  All we have for long-term record is the StripTool on the wall.  The 0.1-0.3Hz and 0.3-1 Hz traces both show these weirdo things, but the 1Hz and up BLRMS don't have any unusual noise.

 Seems like a problem to solve on Monday so that we don't end up without trends like this again.

 Tragically, this is more tricksy than I would have thought. The channels we need are "cdsEpicsOutput"s in the model.  They don't show up in Dataviewer (fast or slow channels) or the regular fast channel .ini file.  Jamie and I don't remember where these channels live and how to get them saved to frames.  I'm on top of it though.

I did notice however, that the striptool for seismic trends is showing the wrong channels for 3-10 and 10-30 Hz.  The other 3 channels are correctly the output after the sqrt is taken, but those two (orange and red on striptool) are before the sqrt, but after the bandpass and low pass.  I'll fix that now...

  6277   Mon Feb 13 12:02:17 2012 KojiUpdatePEMseismic BLRMS loud too

I reported the procedure to add slow channels to the FB. I guess you already have done Step.1

http://nodus.ligo.caltech.edu:8080/40m/5991

Quote:

 Tragically, this is more tricksy than I would have thought. The channels we need are "cdsEpicsOutput"s in the model.  They don't show up in Dataviewer (fast or slow channels) or the regular fast channel .ini file.  Jamie and I don't remember where these channels live and how to get them saved to frames.  I'm on top of it though.

 

  6328   Mon Feb 27 21:26:22 2012 DenUpdatePEMseis box

I did liso simulation of the circuit in the seis box. I think that AD620 (first amplifier in the circuit) noise might be much less with the signal from guralps from 0.01 Hz. Here is the TF of AD620 output / circuit input.

ad620.pdf

The noise spectrum is at this node is

noise.pdf

The psd of the seismic noise below 1 Hz ~ 1u m/s => circuit input signal is ~1mv.

The TF of the whole circuit is

whole.pdf

This result differs from the graph on the circuit sheet, but may be it was done before the resistor parameteres changed. Back of the envelop calculations also show that it is not possible to acheive DC gain 200 while 50-800 Hz gain = 5000. I'll check with the spectrum analyzer.

AD620 might be a weak point in the simulation since this is not a "classical" operational amplifier, it contains a resistor that adjusts the gain. During the liso simulation I assumed that we have an ordinary opamp (with noise, gain and gbw parameters taken from the real ad620 datasheet) with a resistor parallel to the opamp = 50k and a resistor before the inverted input that corrsponds to R2. In this case the gain of the simulated opamp is the same as of the real one given by the formula 1 + 49.9k / R2, though noise parameters may change. This should be also checked with the spectrum analyzer.

  6338   Wed Feb 29 01:02:06 2012 DenUpdatePEMseis box measured

I've measured the input signal to the seismic box from seismometer Guralp 1. The spectrum of the signal in the "input +" (TP 1) is

input.png

 

The spectrum below 1 Hz is ~250 uV/sqrt(Hz). As the input is differential, then the input voltage is 0.5 mV/sqrt(Hz). The spectrum of the "output +" signal (TP 2) is

output.png

 

So the gain at ~ 1Hz is ~20. I've measured the transfer function between the "input +" and "output +" (TP1 and TP2) for all 9 circuits

tf.png

The channels 1-6 are of new modification and have gain ~20 at the frequencies 0.2 - 100 Hz. Below 0.2 Hz the gain is reduced. 100 Hz - cut off frequency of the low-pass filters. Meanwhile channels 7-9 (old configuration) have much more gain and 10_50 Hz filters work here.

The coherence between  "input +" and "output +" (TP1 and TP2) for 9 circuits is

 

coherence.png

We can see that channel VERT 3 is very bad. For others coherence is lost below 0.2 Hz. The spectrum analyzer noise measured is ~1000 times less then the signal at these frequencies. I'll pay more attention to this loss of coherence at low frequencies. Something is noisy.

  6343   Thu Mar 1 00:05:23 2012 DenUpdatePEMseis box noise

I've moved GUR1 seismometer from MC2 to the working tables in order not to disturb the MC while working with the seismometer box. The new place for the GUR1 for a few days is near the printer, cables and blue boxes. I've cleaned all mess and wires from the floor, so that seismometer now looks like that

DSC_3959.JPG

I've connected 2 inputs of the N/S 1 circuit of the seismometer box with a 50 Ohm resistor and measured the noise at the output. The comparison with the seismic signal is

noise.png

The noise increased at 0.5 Hz and is pretty big. This might explain the loose of coherence at low frequencies.

  6345   Thu Mar 1 21:48:34 2012 DenUpdatePEMseis box noise

Quote:

The noise increased at 0.5 Hz and is pretty big. This might explain the loose of coherence at low frequencies.

 This is because spectrum analyzer did not plot the real noise spectrum at the first few points at low frequencies. I've remeasured the noise at 1mHz - 3Hz at "output -" (TP9) and compared it to the seismometer signal

noise2.png

The noise seems to be much less then the signal. I've measured the noise several times and once I got a huge amount of noise

noise.png

 

I made another measurement in some time and got the low noise again. A circuit might have a bad contact somewhere.

The plan is to change AD620 adjustable resistor (R2) from 5.49kOhm to 500Ohm to increase the gain from 20 up to 200.

  6346   Fri Mar 2 11:05:28 2012 DenUpdatePEMseis box gain

I've replaced R2 resistor that adjusts the gain of the AD620 amplifier. Previous value 5491Ohm, new value 464Ohm, so the gain should increase up to ~200-250. Only at the N/S 1 circuit!

LISO simulation of the circuit transfer function and noise are

tf_new.pdf

noise_new.pdf

LISO predicts gain ~45-46 dB = 200 and noise at the level of 10uV at 1Hz. The transfer function and noise measured are

tf_analyzer.png

 noise_analyzer.png

The noise measured is 5 times higher then predicted by LISO. Though I described AD620 as an ordinary amplifier with 49.9kOhm resistor connecting output and inverted input. I specified the noise spectrum 10 nV and 1/f corner frequency 30 Hz. In the AD620 datasheet noise spectrum is 10 - 100 nV depending on the gain. However, the gain is 200 and noise spectrum should be 10 nV. May be in reality it is not the case. It also possible that the noise model used by LISO is not valid for AD620 as it is not an ordinary operational amplifier.

  6349   Fri Mar 2 18:55:06 2012 DenUpdatePEMseis box

I've put the seismometer box back to the 1x1, Guralp is back under MC2. When the seismometer is not plugged in, the noise is

dv_noise.png

Now, I'm going to collect some data from GUR 1 and MC_F and see if the problem with adaptive filter (increasing errror while decreasing mu) will be gone.

 

  6356   Mon Mar 5 15:15:15 2012 DenUpdatePEMRCG

[Alex / Den]

I've encountered a problem that C1:PEM-SEIS_GUR1_X_IN1 is saved in the int format. It turned out that inside the code the signal is also in the int format.  It is not just a saving error. It should not be so as ADC works at 64k and the model runs at 2k.

Why? There is a bug somewhere in the generation of the code. c1pem.c looks suspicious to Alex because there is a mismatch in the ADC numbers with the simulink model.

Solution: upgrade to 2.4 version - most probably it was fixed there. If not, Alex will handle this problem.

  6372   Wed Mar 7 13:30:17 2012 JimUpdatePEMadded TPs and JIMS channels to PEM front-end model

[Jim Ryan]

The PEM model has been modified now to include a block called 'JIMS' for the JIMS(Joint Information Management System) channel processing. Additionally I added test points inside the BLRMS blocks that are there. These test points are connected to the output of the sqrt function for each band. I needed this for debugging purposes and it was something Jenny had requested.

The outputs are taken out of the RMS block and muxed, then demuxed just outside the JIMS block. I was unable to get the model to work properly with the muxed channel traveling up or down levels for this. Inside the JIMS block the information goes into blocks for the corresponding seismometer channel.

For each seismometer channel the five bands are processed by comparing to a threshold value to give a boolean with 1 being good (BLRMS below threshold) and 0 being bad (BLRMS above threshold). The boolean streams are then split into a persistent stream and a non-persistent stream. The persistent stream is processed by a new library block that I created (called persist) which holds the value at 0 for a number of time steps equal to an EPICS variable setting from the time the boolean first drops to zero. The persist allows excursions shorter than the timestep of a downsampled timeseries to be seen reliably.

The EPICS variables for the thresholds are of the form (in order of increasing frequency):

C1:PEM-JIMS_GUR1X_THRES1

C1:PEM-JIMS_GUR1X_THRES2

etc.

The EPICS variables for the persist step size are of the form:

C1:PEM-JIMS_GUR1X_PERSIST

C1:PEM-JIMS_GUR1Y_PERSIST

etc.

I have set all of the persist values to 2048 (1 sec.) for now. The threshold values are currently 200,140,300,485,340 for the GUR1X bands and 170,105,185,440,430 for the GUR1Y bands.

The values were set using ezcawrite. There is no MEDM screen for this yet.

PEM model was restarted at approx. 11:30 Mar. 7 2012 PST.

 

  6389   Fri Mar 9 10:17:06 2012 steveHowToPEMdo not leave tables open

Type: How not to

Please do not leave optical tables open! You will be held responsible for creating dirty optics.

Attachment 1: P1080547.JPG
P1080547.JPG
  6427   Sun Mar 18 00:29:24 2012 DenUpdatePEMsts-2

I've turned off the power of the STS-2 readout box as it provides outputs with ~10 Volts DC offset! AA filter box works in the range -2 +2 Volts, so we do not have any useful information anyway. I'll adjust the mass positions in the seismometer.

  6430   Tue Mar 20 16:53:48 2012 steveUpdatePEMcranes maintenance & certified inspection of 2012

Fred Goodbar of Konecrane has completed the annual certified crane inspection and maintenance of our cranes as required in safety document.

They are in good working condition and safe to use.

  6468   Thu Mar 29 20:13:21 2012 jamieConfigurationPEMPEM_SLOW (i.e. seismic RMS) channels added to fb master

I've added the PEM_SLOW.ini file to the fb master file, which should give us the slow seismic RMS channels when the framebuilder is restarted. Example channels:

[C1:PEM-RMS_ACC6_1_3]
[C1:PEM-RMS_GUR2Y_0p3_1]
[C1:PEM-RMS_STS1X_3_10]
etc.

I also updated the path to the other _SLOW.ini files.

I DID NOT RESTART FB.

I will do it first thing in the am tomorrow, when Kiwamu is not busy getting real work done.

Here's is a the diff for /opt/rtcds/caltech/c1/target/fb/master:h

controls@pianosa:/opt/rtcds/caltech/c1/target/fb 1$ diff -u master~ master
--- master~	2011-09-15 17:32:24.000000000 -0700
+++ master	2012-03-29 19:51:52.000000000 -0700
@@ -7,11 +7,12 @@
 /opt/rtcds/caltech/c1/chans/daq/C0EDCU.ini
 /opt/rtcds/caltech/c1/chans/daq/C1MCS.ini
 /opt/rtcds/caltech/c1/target/gds/param/tpchn_c1mcs.par
-/cvs/cds/rtcds/caltech/c1/chans/daq/SUS_SLOW.ini
-/cvs/cds/rtcds/caltech/c1/chans/daq/MCS_SLOW.ini
-/cvs/cds/rtcds/caltech/c1/chans/daq/RMS_SLOW.ini
-/cvs/cds/rtcds/caltech/c1/chans/daq/IOP_SLOW.ini
-/cvs/cds/rtcds/caltech/c1/chans/daq/IOO_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/SUS_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/MCS_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/RMS_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/IOP_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/IOO_SLOW.ini
+/opt/rtcds/caltech/c1/chans/daq/PEM_SLOW.ini
 /opt/rtcds/caltech/c1/target/gds/param/tpchn_c1rfm.par
 /opt/rtcds/caltech/c1/chans/daq/C1RFM.ini
 /opt/rtcds/caltech/c1/chans/daq/C1IOO.ini
controls@pianosa:/opt/rtcds/caltech/c1/target/fb 1$

 

  6484   Wed Apr 4 13:25:29 2012 jamieConfigurationPEMPEM_SLOW (i.e. seismic RMS) channels aquiring

Quote:

I've added the PEM_SLOW.ini file to the fb master file, which should give us the slow seismic RMS channels when the framebuilder is restarted. Example channels:

[C1:PEM-RMS_ACC6_1_3]
[C1:PEM-RMS_GUR2Y_0p3_1]
[C1:PEM-RMS_STS1X_3_10]
etc.

 The framebuilder seems to have been restarted, or restarted on it's own, so these channels are now being acquired.

Below is a minute trend of a smattering of the available RMS channels over the last five days.

2012-04-04-132346_1182x914_scrot.png

  6499   Fri Apr 6 19:04:35 2012 JenneUpdatePEMSTS releveled, GUR2 plugged in

[Den, Jenne]

We were wondering why the STS-2 signal was funny.  When I went to look at it, the X-axis indicator was pointing ~45deg from the x-axis, so that it was pointing between the arms of the IFO.  Also, the bubble in the level was totally stuck on one side.  We locked the masses, and I put the seismometer back to the correct orientation, and then leveled it.  We unlocked the masses and turned the power back on, and hit the auto-zero button a few times.  Right now the X-axis signal is fine, but Y and Z are still railed, but it's been like 24 seconds, not 24 hours since we last hit auto zero, so there's still some time to wait.

Also, GUR2 was unplugged on both ends of the cable.  We plugged it back in.  However, it looks like the *seismometer* labeled #1 is now plugged into *channels* GUR2, and the seismometer labeled #2 is plugged into channels GUR1.  Recall that Den has only modified X, Y, Z for GUR1 channels, not any other channels in the breakout box.

  6529   Thu Apr 12 20:56:07 2012 DenUpdatePEMdaq

GUR1 XYZ, GUR2 XYZ, MC_F channels are now recorded at 256 Hz.

EDIT by JCD:  What Den means to say here is that (a) he modified some .ini files, and (b) he restarted the fb.

  6536   Mon Apr 16 09:10:37 2012 DenUpdatePEMgur2_x

Already not for the first time I notice that GUR2 readjusts its X zero position

seisms.png

 

As a result the coherence between GUR1X and GUR2X is lost, but between GUR2X and GUR2Y shows up. It seems that these two signals mix at some point.

gur12_coh.jpg

  6537   Mon Apr 16 09:44:54 2012 JenneUpdatePEMgur2_x

Quote:

Already not for the first time I notice that GUR2 readjusts its X zero position

As a result the coherence between GUR1X and GUR2X is lost, but between GUR2X and GUR2Y shows up. It seems that these two signals mix at some point.

 Can you go back in time before the X-position jumped to plot the x1-x2 and x2-y2 coherences?  Just to see what things look like?

  6538   Mon Apr 16 14:37:01 2012 DenUpdatePEMgur2_x

Quote:

Quote:

Already not for the first time I notice that GUR2 readjusts its X zero position

As a result the coherence between GUR1X and GUR2X is lost, but between GUR2X and GUR2Y shows up. It seems that these two signals mix at some point.

 Can you go back in time before the X-position jumped to plot the x1-x2 and x2-y2 coherences?  Just to see what things look like?

DAQ is not working now but ordinary the coherence between GUR1X and GUR2X is ~1 at 0.1 - 10 Hz and between GUR2X and GUR2Y is ~0.

  6557   Mon Apr 23 23:20:07 2012 DenUpdatePEMmicrophones

Tonight I wanted to measure the ambient noise level using Blue Bird mics and figure out if Panasonic WM61a or Primo EM172/173 will be good enough or not. Blue Bird that is in the control room does not seem to work. May be the problem is with the pre-amplifier. The output measured by ADC/Oscilloscope is noise ( amplitude=5mV ). I will return to this issue tomorrow.

  6558   Tue Apr 24 09:58:37 2012 steveUpdatePEMearthquake 3.9 magnitude

Local eq shakes the lab

Attachment 1: eq3.9.png
eq3.9.png
  6559   Tue Apr 24 11:27:51 2012 steveUpdatePEMnew chairs

We received 6 new  chairs stools for the work benches that have 36" heights.

The control room east side and general office desks require 18" seat height. The new chairs stools have  minimum seat heights  26"

Please label chairs that we are getting rid of.

P4241026.JPG

  6563   Tue Apr 24 16:15:24 2012 DenUpdatePEMmicrophones

I've installed Blue Bird microphone to listen to the acoustic noise at the PSL near PMC.

DSC_4271.JPG     DSC_4272.JPG

Coherence between MC_F and Blue Bird output (C1:PEM-ACC_MC2_Z for now) is changing from low to high value at frequencies 20 - 200 Hz with period ~1 min. Maybe HEPA works with some periodicity. Now it works pretty hard, ~80% of max.

micro_mc_low.png    micro_mc_high.png

  6564   Tue Apr 24 22:16:59 2012 DenUpdatePEMBlue Bird Pre-Amplifier

 I detached Clyde (pre-amp that was in the control room) to understand why it is not working. I seems that the board circuit is burnt near R40, R47, R45.

DSC_4273.JPG     DSC_4274.JPG

  6565   Wed Apr 25 00:20:01 2012 DenUpdatePEMacoustic noise at 40m

 Blue Bird Mic is suspended close to PMC now and outputs ~10 counts when pre-amp gain is 8 dB. This means that the mic outputs ~2.42 mV. Its sensitivity is 27 mV/Pa => acoustic noise is ~0.1 Pa or ~75 dB SPL.

If we buy Panasonic WM61A with their sensitivity -35 dB => they will output ~1.7 mV. We can amplify this signal without adding significant noise. For WM61A S/N ratio is given to be 62 dB. This is for some standard signal that is not specified. For Blue Bird mic it is specified according to IEC 651. So I assume SPL of the standard signal = 94 dB => noise level of WM61A is 32 dB (pretty bad compared to 7 dB-A of Blue Bird). But in our case for PSL S/N ratio is ~43 dB that is not too bad. PSL is noisy due to HEPA, acoustic noise level close to MC2 stack will be less. So we may want to consider Primo EM172/173 where the noise level is claimed to be 18 dB less. I think we should buy several WM61A and EM172.

  6566   Wed Apr 25 11:45:34 2012 JenneUpdatePEMBlue Bird Pre-Amplifier

It looks like we should change the "R40" and "R47" diodes.  If you do it this week, ask Jamie or Koji to check that you've got them oriented correctly before soldering them and plugging it in.

  6567   Wed Apr 25 18:59:47 2012 ranaUpdatePEMBlue Bird Pre-Amplifier

Usually R is for resistors and D is for diodes. Do you think from the schematic that we should put diodes into the R slots?

  6568   Wed Apr 25 19:32:57 2012 DenUpdatePEMBlue Bird Pre-Amplifier

Quote:

Usually R is for resistors and D is for diodes. Do you think from the schematic that we should put diodes into the R slots?

 That guys are resistors.

  6572   Thu Apr 26 11:56:10 2012 DenUpdatePEMBlue Bird Pre-Amplifier

Quote:

Quote:

Usually R is for resistors and D is for diodes. Do you think from the schematic that we should put diodes into the R slots?

 That guys are resistors.

 You are right, they just looked like they were too small to be resistors when I glanced at them. 

  6581   Fri Apr 27 13:32:06 2012 DenUpdatePEMseism channels

A few weeks ago I found that GUR2_X signal is biased from 0 to 800 counts in average. I decided that the corresponding channel in the readout box is bad - adds DC voltage to the signal. I stopped using GUR2_XYZ channels of the seism readout box. Now the same thing happened with the GUR1_XYZ channels. I checked the signals coming out from the seism box with the oscilloscope and they were fine. So the problem is not in the readout box. Then I applied 1 V sine wave to the input of AA board to the GUR1_X and ACC_MC1_Z channels. GUR1_X channel still shows noise. Something is wrong with these channels inside the AA board or in the ADC.

pem.png

 

Edited by Den: GUR1_XYZ_IN1 signals are empty though GUR1_XYZ are fine. So the problem is just that GUR1_XYZ_IN1 are not acquired for now though some of the ACC_IN1 channels contain the signal. I need to correct .ini files.

ELOG V3.1.3-