40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 148 of 344  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  5427   Thu Sep 15 22:26:32 2011 PaulUpdateSUSITMY Oplev QPD dark noise PSD

 I took a dark noise measurement for the ITMY QPD, for comparison with measurements of the oplev noise later on. Initially I was plotting the data from test points after multiplication by the oplev matrix (i.e. the OLPIT_IN1 / OLYAW_IN1), but found that the dark noise level seemed higher than the bright noise level (!?). Kiwamu realised that this is because at that test point the data is already divided by QPD SUM, thus making the dark noise level appear to be greater than the bright level, since QPD SUM is much smaller for the dark measurements. The way around this was to record the direct signals from each quadrant before the division. I took a power spectrum of the dark noise from each quadrant, then added them in quadrature, then divided by QPD SUM at the end to get an uncalibrated PSD. Next I will convert these into the equivalent for pitch and yaw noise spectra. To calibrate the plots in radians per root Hz requires some specific knowledge of the oplev path, so I won't do this until I have adjusted the path.

Attachment 1: ITM_dark_QPD_PSD.pdf
ITM_dark_QPD_PSD.pdf
  5428   Thu Sep 15 22:31:44 2011 ManuelUpdateSUSSummary screen

I changed some colors on the Summary of Suspension Sensor  using my italian creativity.

I wrote a script in Python to change the thresholds for the "alarm mode" of the screen.

The script takes a GPS-format start time as the 1st argument and a duration time as the second argument.

For every channel shown in the screen, it compute the mean value during this time.

The 3rd argument is the ratio between the mean and the LOW threshold. The 4th argument is the ratio between the mean and the LOLO threshold.

Then it sets the thresholds simmetrycally for HIGH and HIHI threshold.

It does that for all channels skipping the Gains and the Off Sets because this data are not stored.

For example is ratio are 0.9 and 0.7 and the mean is 10, thresholds will be LOLO=7, LOW=9, HIGH=11, HIHI=13.

You can run the script on pianosa writing on a terminal '/opt/rtcds/caltech/c1/scripts/SUS/set_thresholds.py' and the arguments.

I already run my program with those arguments: 1000123215 600 0.9 0.7

The time is of this morning at 5:00 for 10 minutes

 

This is the help I wrote

HELP: This program set the thresholds for the "alarm mode" of the C1SUS_SUMMARY.adl medm screen.

 Written by Manuel Marchio`, visiting student from University of Pisa - INFN for the 2011 summer at Ligo-Caltech. Thrusday, 15th September 2011.

The 1st argument is the time in gps format when you want to START the mean

The 2nd argument is the DURATION

The 3rd argument is the ratio of the LOW and the HIGH thresholds. It must be in the range [0,1]

The 4th argument is the ratio of the LOLO and the HIHI thresholds. It must be in the range [0,1]

Example: path/set_thresholds.py 1000123215 600 0.9 0.7

and if the the mean is 10, thresholds will be set as LOLO=7, LOW=9, HIGH=11, HIHI=13

 

Attachment 1: sussum.png
sussum.png
  5429   Fri Sep 16 00:08:30 2011 PaulUpdateSUSITMY Oplev QPD dark and bright noise spectra

 I tried again at plotting the ITMY_QPD noise spectra in for dark and bright operation. Before we had the strange situation where the dark noise seemed higher, but Kiwamu noticed this was caused by dividing by the SUM before the testpoint I was looking at. This time I tried just multiplying by the measured SUM for bright and dark to normalise the spectra against each other. The results looks more reasonable now, the dark noise is lower than the bright noise for a start! However, the dark noise spectrum now doesn't look the same as the one I showed in my previous post.

Attachment 1: ITMY_oplev_dark_noise_vs_bright_noise.pdf
ITMY_oplev_dark_noise_vs_bright_noise.pdf
  5430   Fri Sep 16 03:22:11 2011 AnamariaUpdateLSCMore Refl PDs Work and Attempt at DRMI

Kiwamu, Keiko, Anamaria

I started today with a different input beam, so I had to realign the REFL path again. Then we measured the RF signal out of the 4 REFL PDs and found them to be too low. We increased the power to around 10mA for each diode, and we can see the right modulation frequency on each diode, though REFL165 is way too weak so we might need an RF amplifier on it. We will measure demod board noise tomorrow.

We had an issue with REFL165 not giving the right DC level, low by a factor of 10, even though it was receiving the same optical power as the others. We fifteen-checked clipping and alignment, then pulled it out and measured it on the test stand - found it to be ok. So I uplugged its power cable at the rack and connected it to the AS165 slot. Problem sloved. Not sure what was wrong with the other power slot.

Then we found REFL55 to be clipping on its black glass, we fixed that. But the REFL55 DC power still changes a lot with seemingly not huge motions of the PRM. We'll investigate more tomorrow.

We added a lens in the path to REFL165 because unlike the others it is a 1mm diode. All diodes have about half a turn to a full turn flatness of maximum (on tiny steering mirror).

We set the whitening gain on all four diodes to 21 db.

Not sure if we should set the power to be different on these diodes since their sensitivity is different to RF, and now REFL11 sees huge signal.

We continued the DRMI locking attempt and brought in the SRC, using AS55I to control it. It kind of works/stays locked. We did manage to get MICH and PRC better controlled than last night, but with SRC in the mix, something is wrong. We have to redo f2a filters on SRM and hopefully things will be better after Jenne's suspension work tomorrow. Oplevs not optimized yet either.

We intend to realign POY beam path so we can monitor power in cavities.

  5431   Fri Sep 16 11:15:12 2011 KojiUpdateIOOPZT1 situation

[Koji Kiwamu]

- We have checked the situation of the broken Piezo Jenna PZT (called PZT1)

- Tested PZT1 by applying a dc voltage on the cables. Found that pitch and yaw reasonably moving and the motions are well separated each other.
  The pitch requires +20V to set the IPPOS spot on the QPD center.

- Made a high-voltage (actually middle voltage) amp to convert +/-10V EPICS control signal into -5 to +30V PZTout. It is working on the prototype board and will be put into the actual setup soon.


Details:

- The Piezo Jenna driver box has 4 modules. From the left-hand side, the HV module, Yaw controller, Pitch controller, and Ben abbot's connector converter.

- We checked the voltage on Ben's converter board. (Photo1)
  It turned out that the red cable is the one have the driving voltage while the others stays zero.

- We hooked a 30V DC power supply between the red cable and the shield which is actually connected to the board ground.

- Applying +/-10V, we confirmed the strain gauge is reacting. If we actuated the pitch cable, we only saw the pitch strain gauge reacted. Same situation for yaw too.

- Kiwamu went to IPPOS QPD to see the spot position, while I change the voltage. We found that applying +20V to the pitch cable aligns the spot on the QPD center.

------------------------

- I started to make a small amplifier boards which converts +/-10V EPICS signals into -5V to +30V PZT outs.

- The OPAMP is OPA452 which can deal with the supply voltages upto +/-40V. We will supply +/-30V. The noninerting amp has the gain of +2.

- It uses a 15V zener diode to produce -15V reference voltage from -30V. This results the output voltage swing from -5V to +35V.
The actual maximum output is +30V because of the supply voltage.

- On the circut test bench, I have applied +/-5V sinusoidal to the input and successfully obtained +5V to +25V swing.

- The board will be put on Ben's board today.

Attachment 1: P9151574.JPG
P9151574.JPG
Attachment 2: P9161576.JPG
P9161576.JPG
Attachment 3: P9161577.JPG
P9161577.JPG
  5432   Fri Sep 16 14:03:53 2011 PaulUpdateSUSSRM oplev QPD noise measurement

 I checked the dark and bright noise of the SRM oplev QPD. The SRM QPD has a rather high dark level for SUM of 478 counts. The dark noise for the SRM QPD looked a little high in the plot against the bright noise (see first attachment), so I plotted the dark noise with the ITMY QPD dark noise (see second attachment). It seems that the SRM QPD has a much higher dark noise level than the ITMY! In case anyone is wondering, to make these traces I record the data from the pitch and yaw test points, then multiply by the SUM (to correct for the fact that the test point signal has already been divided by SUM). I will check the individual quadrants of the SRM QPD to see if one in particular is very noisy. If so, we/I should probably fix it.

Attachment 1: SRM_oplev_dark_noise_vs_bright_noise.pdf
SRM_oplev_dark_noise_vs_bright_noise.pdf
Attachment 2: SRM_ITMY_QPD_dark_noise_comparison.pdf
SRM_ITMY_QPD_dark_noise_comparison.pdf
  5433   Fri Sep 16 14:43:43 2011 SureshUpdateComputer Scripts / ProgramsChanged c1ioo model and restarted fb

I had to change the c1ioo model and restart the fb since the paths allowing us to select various signals to demodulate using the lockins were not correct. The signal selection vector was not flexible enough to permit us to select the signals to demod.

fb was restarted twice at following times.  The changes have been commited to the svn.

Fri Sep 16 13:35:47 PDT 2011

Fri Sep 16 14:36:21 PDT 2011


 

  5434   Fri Sep 16 16:07:28 2011 steveUpdateSAFETYvisitors safety training

Paul, Mirko and Katrin visiting grad students received the 40m basic safety training.

Attachment 1: P1080241.JPG
P1080241.JPG
  5435   Fri Sep 16 16:29:05 2011 kiwamuUpdateSUSf2a filters on SRM

New f2a filters were installed on SRM.

The lock of DRMI should be more stable than last night.

Quote from #5417

Once the SRM oplev project settles down, I will adjust the f2a filters on SRM too.

 

Attachment 1: F2ASRM_Sep16.png
F2ASRM_Sep16.png
  5436   Fri Sep 16 16:34:54 2011 PaulUpdateSUSITMY SRM oplev telescope plan

I've calculated a suitable collimating telescope for the ITMY/SRM oplev laser, based on the specs for the soon-to-arrive 2mW laser (model 1122/P) available here: http://www.jdsu.com/ProductLiterature/hnlh1100_ds_cl_ae.pdf

Based on the fact that the 'beam size' value and 'divergence angle' value quoted don't match up, I am assuming that the beam radius value of 315um is _not_ the waist size value, but rather the beam size at the output coupler. From the divergence angle I calculated a 155um waist, (zR = 12cm). This gives the quoted beam size of about 316um at a distance of 8.5" away from the waist. This makes me think that the output coupler is curved and the waist is at the back of the laser, or at least 8.5" from the output coupler.

The collimating telescope gives a waist of size 1142um (zR=6.47m) at a distance of 1.427m away from the original laser waist, using the following lens combo:

 

L1 f=-0.15 @ 0.301m

L2 f=0.3 @ 0.409m

 

This should be fine to get a small enough spot size (1-2mm) on the QPDs.

 

Attachment 1: ITMY_SRM_telescope.png
ITMY_SRM_telescope.png
  5437   Fri Sep 16 17:09:07 2011 PaulUpdateSUSITMX oplev plan

 I just drew a basic picture of how the ITMX oplev path could be reworked to minimise the number of optics in the path. Only possible problem with this might be the turning mirror onto the ITMX getting in the way of the collimating lenses. Should be easy to solve though. Does anyone know if there is a ITMX pick off beam I should be careful to avoid?

Attachment 1: ITMX_oplev_plan.png
ITMX_oplev_plan.png
  5438   Fri Sep 16 17:16:15 2011 JenneUpdateSUSInput matrix diagonalization: Fail!

[Jenne, Anamaria]

I put the new matricies in from the free swinging test for the: ITMX, ITMY, ETMX, ETMY, PRM, BS

Some of the optics damped okay, but ETMX and BS were not good at all.  ETMX was ringing up when I turned on the damping.  BS wasn't, but when I gave it a kick, it wouldn't damp.  No good.

I tried ITMY, and it was totally fine, with nice damping Qs of ~5.  So, I don't know what's going on. 

Anamaria is trying a new 4x4 matrix-inverter, so we can look at the inversion of just the face osems.  We'll see how it goes. 

Since things were crappy, I did a BURT restore, so things are as they were earlier this morning.

  5439   Fri Sep 16 17:46:13 2011 kiwamuUpdateSUSSome screens fixed

The bad medm screens have been fixed. There are no blank fields and all the links are correct.

Quote from #5409

I've found that a few of the screens still have Whited-Out fields due to naming changes (OL SUM and ALS-> TM OFFSET). I attach a screen shot of it.

The OL screens have the wrong SUM names and the IFO ALIGN screen is pointing to the wrong SUS screens.

 

  5440   Fri Sep 16 21:26:12 2011 KeikoUpdateLSC3f demodulation board check

The demodulation phases and gains for the all existing channels, AS11, REFL11,REFL55, REFL165, and REFL33, were adjusted by the command "ezcawrite" commands. 

Scripts are: 

REFL165 ezcawrite C1:LSC-REFL165_Q_GAIN 0.934340 && ezcawrite C1:LSC-REFL165_PHASE_D -81.802479

REFL33

ezcawrite C1:LSC-REFL33_Q_GAIN 0.984244 && ezcawrite C1:LSC-REFL33_PHASE_D -89.618

REFL11

ezcawrite C1:LSC-REFL11_Q_GAIN 1.173418 && ezcawrite C1:LSC-REFL11_PHASE_D -442.882697

AS11
ezcawrite C1:LSC-AS11_Q_GAIN 0.975576 && ezcawrite C1:LSC-AS11_PHASE_D -93.12492

AS55

ezcawrite C1:LSC-AS55_Q_GAIN 0.999164 && ezcawrite C1:LSC-AS55_PHASE_D -89.300986
  5441   Fri Sep 16 21:36:25 2011 KeikoUpdateLSCPOY11 and POY55 were added

 New channels, POP55 and POY11 are connected to the rack and now available on the data system.

POX11 I is not working. I didn't investigate what was wrong. Please make sure when you come to need POX11.

The orthogonalities of POY11 and POP55 were measured and already adjusted. The results are below:

POY11

ABS = 0.973633 

PHASE = 92.086483 [deg]

ezcawrite C1:LSC-POY11_Q_GAIN 1.027081 && ezcawrite C1:LSC-POY11_PHASE_D 92.086483

POP55

ABS =  1.02680579

PHASE =  88.5246 [deg]

ezcawrite C1:LSC-POP55_Q_GAIN 0.973894 && ezcawrite C1:LSC-POP55_PHASE_D 88.524609

 

 


  5442   Fri Sep 16 22:11:21 2011 PaulUpdateSUSITMY transfer function

First of all I moved the lenses on the ITMY/SRM oplev path to get a smaller spot size on the QPDs. I couldn't get the beam analyzer to work though, so I don't know quite how successful this was. The software brought up the error "unable to connect to framegrabber" or something similar. I don't think the signal from the head was being read by the software. I will try to get the beam analyzer working soon so that we can characterize the other oplev lasers and get decent spot sizes on the QPDs. I searched the elog for posts about the analyzer, and found that it has been used recently, so maybe I'm just doing something wrong in using it. 

After this I measured the transfer function for the ITMY oplev yaw. I did a swept sine excitation of the ITMY in yaw with an amplitude of 500, and recorded the OSEM yaw values and the oplev yaw values. This should show a flat response, as both the QPD and the OSEMS should have flat frequency response in the measurement band. This measurement should therefore just yield a calibration from OSEM yaw to oplev yaw. If the OSEM yaw values were already calibrated for radians, we would then immediately have a calibration from oplev yaw values to radians. However, as far as I'm aware, there is not a calibration factor available from OSEM yaw values to radians. Anyway, the TF I measured did not appear to be very flat (see attached plot). Kiwamu suggested I should check the correlation between the OSEM measurements and the oplev QPD measurements - if the correlation is less than 1 the TF is not reliable. Indeed the coherence was poor for this measurement. This was probably because at frequencies above the pendulum frequency, the excitation amplitude of 500 was not enough to cause a measurable change in the optic angle. So, the plot attached is not very useful yet, but I learned something while making it.

 

Attachment 1: ITMY_osem_to_oplev_TF.pdf
ITMY_osem_to_oplev_TF.pdf
  5443   Fri Sep 16 22:51:52 2011 PaulUpdateSUSCalibration plan for the oplevs

 In order to estimate the amount of noise that the oplevs are injecting into the GW channel, we first need to calibrate oplev signals in terms of angular change in the optic. I said in my previous post that there wasn't a calibration factor for OSEM values to radians, but I found that Kakeru had estimated this in 2009 - see entry 1413. However, Kakeru found that this was quite a rough estimate, and that it didn't agree with his calibrated oplev values well. He does quote the 2V/mm calibration factor for the OSEM readings though - does anyone know the provenance of this factor? I searched for OSEM calibration and found nothing.

 
Kiwamu and Suresh suggested a way to calibrate the oplevs without needing to calibrate the OSEMs in the way that Kakeru describes in entry 1413. This should give a calibration for the OSEMs _and_ the oplevs in fact. The method should be as follows:
 
1) Change the coil driver values in DC to give tip or tilt the optic. Measure the resulting change in spot position at a known distance from the optic, perhaps just using a ruler. Record the spot position and OSEM values for each coil driver value. This will definitely require a smaller spot size, so I'll implement the new telescopes first.
 
2) Knowing the length of the lever arm from the optic to the spot measurement position, we can calibrate the OSEM values to radians.
 
3) We can now put the beam onto the oplev QPD, and either change the coil driver values again in the same way (but over a smaller range), or excite the test mass in pitch or yaw, this time measuring both the OSEM values and the oplev QPD values. Since we can already convert from OSEM values to radians, we can now convert from oplev values to radians too.
 
4) I should be careful to consider the input sensing matrix for both the OSEMs and the oplevs in these measurements. Should I divide those out of the calibration to avoid that if they change the calibration factor changes too?
  5444   Fri Sep 16 23:22:36 2011 kiwamuUpdateSUSETMX input matrix : bad YAW-SIDE coupling

With the new input matrix, it looks like YAW and SIDE are not quite decoupled on ETMX.

It needs one more kick and free swinging test.

 

- - - details

 To see what exactly is going on, I changed the input matrix from the default to the new one, which Jenne computed (#5421) on ETMX.

I started putting the elements of the input matrix from POS through SIDE, one by one.

It seemed that POS and PIT worked fine. However the YAW signal looks containing a lot of the SIDE signal.

Similar to YAW, SIDE also interact with the YAW motion and somehow rings up both YAW and SIDE signals as Jenne reported ( #5438).

So right now the YAW and SIDE rows are partially reburted to the default elements in order to avoid ringing up.

Quote from #5438

but ETMX and BS were not good at all.  ETMX was ringing up when I turned on the damping. 

 

  5445   Sat Sep 17 01:53:41 2011 KeikoUpdateLSCPOY and POP beams clipped

 Keiko, Paul, Kiwamu

We found that POP beam is clipped by the steering mirrors inside the tank. POY beam is also likely to be clipped inside. Also the hight of POY beam is too high (about 5 cm higher than the normal paths) at the first lens. These imply the input pointing is bad.

  5446   Sat Sep 17 02:07:10 2011 kiwamuUpdateSUSETMX input matrix : bad YAW-SIDE coupling

Excited all the optics. They will be automatically back after 5 hours.

Sat Sep 17 02:02:07 PDT 2011
1000285342

Quote from #5444

It needs one more kick and free swinging test.

 

  5447   Sat Sep 17 14:04:45 2011 KojiUpdateIOOPZT1 driver in place

The PZT driver is now in place. The actual PZTs are not connected yet!

It is accommodated on Ben's connector adapter board.

The panel has additional connectors now: two inputs and a power supply connector.

The supply voltage is +/-30V (actual maximum +/-40V), and the input range is +/-10V
which yields the output range of -5V to 30V. The gain of the amplifier is +2.

It is confirmed that the HV outputs react to the epics sliders although the PZT connector is not connected yet
so as not to disturb the locking activity.

When we engage the PZT connector, we should check the HV outputs with an oscilloscope to confirm they
have no oscillation with the capacitances of the PZTs together with the long cable.

Attachment 1: P9171579.JPG
P9171579.JPG
Attachment 2: P9171580.JPG
P9171580.JPG
  5448   Sun Sep 18 14:08:52 2011 ranaUpdateSUSCalibration plan for the oplevs

We don't need a high quality calibration for the optical levers. ~50% accuracy is fine.

For that you can use the OSEM calibration of ~1.7 V/mm (its less than 2 since the OSEMs have been degrading) or you can use the cavity power method that Kakeru used; it worked just fine. There's no benefit in trying for a 1% number for optical levers.

  5449   Sun Sep 18 15:34:09 2011 KojiUpdateAdaptive FilteringModifications to LSC, RFM models, added OAF model

[Koji Kiwamu]

This modification of the LSC model made the rows of the LSC output matrix shifted. This caused the ASS scripts nonfunctional.

Kiwamu fixed the channel names in the ASS script.

Quote:

[Jenne, Mirko, with supervision from Jamie]

I modified the c1lsc model to have shmem outputs that go from the degrees of freedom to the OAF, and shmem inputs from the OAF's output to sum into the DoFs, just like Yoichi's FF stuff.  I also removed the old OAF_OUT, because it would only allow me to select one DoF at a time, and I will eventually want the ability to do multiple amounts of OAFing at the same time.  Hopefully.

 

  5450   Sun Sep 18 15:57:00 2011 KojiUpdateIOOThe PZT driver engaged to PZT1

[Koji Kiwamu]

The pzt driver for PZT1 has been installed.
As there was unknown resistive connection in the vacuum chamber as described below,
the PZT out cable at the PJ driver module should always be disconnected.
The sensor cables have no problem to be connected to the controller.
In fact, they are a good monitor for the state of the PZTs.

In this configuration, Pitch and Yaw direction of PZT1 is under the control of the EPICS value as we expected.


Details:

- At the beginning, we tested the PZT driver output with low voltage level (~10V). We did not see any oscillation of the opamps.
  The pitch output was observed to be OK, while the YAW output exhibited a half of the expected output voltage.
  The opamp was holding correct voltage, however the voltage after the 1K output resister was about a half.
  This indicated there was a voltage division happening.

- The cause of the voltage division was tracked. We found that the yaw red (=hot) line is connected to pitch black
  in the vacuum chamber with a resistance of 1.4kOhm. The black cables are shorted to the ground level in the PJ driver.

- We decided to unplug the PJ's cable so that we can isolate the black cables while hoping the PZTs were drived only
  by the red and white cables. And they did.

- This means that we should not connect the PZT driving cable to the PJ's driver. The sensors have no problem to be connected.

- Pinouts:

DSUB25
|. .|
|. .|
|. o|  5
|o  | 17
|  o|  4 
|o  | 16   Yaw Black
|  o|  3   Pitch Black
|o  | 15   Yaw White
|  o|  2   Yaw Red
|o  | 14   Pitch White
 \ o|  1   Pitch Red
  \-+

* Pitch White and Yaw White are connected to the ground at the amplifier side.
* Yaw Red and Pitch Black is connected with 1.4kOhm and isolated from the others.


  5452   Mon Sep 19 01:07:32 2011 kiwamuUpdateSUSf2a filters on ITMs and ETMX

The f2a filters were installed on ITMs and ETMX.

Now all of the suspensions has the f2a filters.

Attachment 1: f2a_ITMX.png
f2a_ITMX.png
Attachment 2: f2aITMY.png
f2aITMY.png
Attachment 3: f2a_ETMX.png
f2a_ETMX.png
  5453   Mon Sep 19 01:38:00 2011 kiwamuUpdateLSCtoday's locking activity

[Anamaria / Kiwamu]

 The incident beam pointing was improved by using PZT1 and PZT2. 

With some triggers the lock of PRMI became smoother.

For the DRMI lock, the MICH and SRCL signals on AS55 are not quite decoupled, so we should find cleaner signals for them.

 

(what we did)

 + locked the Y arm

 + aligned incident beam by using PZT1(#5450) and PZT2. The spot positions on ITMY and ETMY are now well-centered.

 + tried activating C1ASS but failed. It needs some gain changes due to the new PZT1 response.

 + locked the X arm

 + aligned the TRX PD (Thorlab signal PD) and set the trigger.

 + C1ASS also doesn't work for the X arm

 + realigned the PRM and BS oplevs. the PRM oplev was clipped at a steering mirror on the optical bench

 + locked PRMI and aligned the PRM mirror such that the optical gain was maximized

 + optimized the demod phase of AS55 and REFL11

 + checked the UGF of the MICH and PRCL lock. The UGF of MICH is about 100Hz with gain of -20, and the UGF of PRCL was 85 Hz with gain of 0.1

 + adjusted the output matrix such that the MICH control doesn't couple into the PRCL control.

 + set the triggers for the MICH and PRCL control to make the lock acquisition smoother.

 + tried locking DRMI and it was sort of locked. However the SRCL signal showed up a lot in AS55_Q, where the MICH signal is extracted.

  5454   Mon Sep 19 02:08:24 2011 kiwamuUpdateLSCfixed POP clipping

Actually the clipping of POP wasn't in the chamber but it was on the first lens on the optical bench.

So I repositioned the lens to avoid the clipping and now there are no clipping on POP.

Quote from #5445

We found that POP beam is clipped by the steering mirrors inside the tank.

 

  5457   Mon Sep 19 12:23:30 2011 PaulUpdateSUSITMY and SRM oplev beam size reduced + next steps

I replaced the lenses that were there with a -150mm lens followed by a +250mm lens. This gave a significantly reduced beam size at the QPDs. With the beam analyzer up and running it should be possible to optimize this later this afternoon. Next I will remove the SRM QPD from the path and make measurements of the beam spot position movement and corresponding OSEM values for different DC mirror offsets. I will then repeat the process for ITMY.

  5458   Mon Sep 19 13:13:10 2011 PaulUpdateSUSITMY oplev available for use: SRM not for the moment

 I've got the bench set up for the measurement of the beam spot change with DC SRM alignment offsets. The ITMY oplev is aligned and fine to use, but the SRM one isn't until further notice (probably a couple of hours).

  5460   Mon Sep 19 15:30:22 2011 PaulUpdateSUSSRM oplev OSEM yaw calibration curve

 I made the first measurements towards oplev calibration measurements: calibrating the oplevs in SRM YAW. The measurements seemed fine, I had a range of between -1.5 and 1.5 in SRM DC alignment before clipping on mirrors on the oplev bench became a problem. This seemed to be plenty to get a decent fit for the spot position against DC alignment value - see attached plot. The fitted gradient was -420um oplev yaw count. I calculated oplev yaw values as UL+LL-UR-LR. Pitch next.

Attachment 1: SRM_YAW_calib_curve.png
SRM_YAW_calib_curve.png
  5461   Mon Sep 19 15:41:48 2011 JenneUpdateSUSSUS diag stuff... just so I remember what I'm doing

The following optics were kicked:
ETMX
Mon Sep 19 15:39:44 PDT 2011
1000507199

  5462   Mon Sep 19 15:44:32 2011 MirkoUpdateLSCRF modulation depth measurement

Earlier measurements of the modulation index were less than optimal because we had too low transmission through the cavity. Contrary to what was believed you actually need to modematch onto the cavity.

Earlier transmitted power was about 8.5uW.

With a 250mm lens we archived 41uW.

Impinging power on the cavity is 1.7mW.

PD TF approx 0.1V / uW.

Carrier power: 4.1V => 41uW

41uW/1.7mW = 2.4 % transmission. Manufacturer clain for peak transmission: 20-30%.

11MHz SB: 28.8mV => m=0.17

55MHz SB:36mV => m=0.19


As you can see on the pic the SNR of the SBs is not too good.

P9190138.JPG

  5463   Mon Sep 19 16:20:35 2011 kiwamuUpdateLSCAS55 whitening gain decreased

The gain of whitening filters on AS55 was decreased from 21 dB to 0 dB for the Y arm locking.

 

- - (Background)- -

Since the modulation depths became bigger from the past (#5462), the PDH signal from Y arm was saturated in the path of AS55.

Due to the saturation the lock of the Y arm became quite difficult so I decreased the gain of of the whitening filter from 21 dB to 0 dB.

In this condition, a required gain in C1:LSC-YARM_GAIN is about -0.3, which is 10 times bigger from the default number.

For the MICH locking tonight, it may need to be back to a big gain.

  5465   Mon Sep 19 16:56:29 2011 PaulUpdateSUSSRM oplev pitch calibration

 Same measurements for SRM pitch (as previously done for yaw in entry 5460) are complete. The QPD is back in the path and aligned. I will be doing the same measurements for ITMY now though, so please ask before activating the SRM or ITMY oplev servos, as I may be blocking the beam.

  5466   Mon Sep 19 17:45:39 2011 ranaUpdateSUSSome screens fixed

Quote:

Kiwamu:       The bad medm screens have been fixed. There are no blank fields and all the links are correct.

Quote from #5409

I've found that a few of the screens still have Whited-Out fields due to naming changes (OL SUM and ALS-> TM OFFSET). I attach a screen shot of it.

The OL screens have the wrong SUM names and the IFO ALIGN screen is pointing to the wrong SUS screens.

 

 Really? I found this one with ~15 seconds of clicking around.

Untitled.png

  5467   Mon Sep 19 18:05:27 2011 ranaUpdateSUSSummary screen

Quote:

I changed some colors on the Summary of Suspension Sensor  using my italian creativity.

I wrote a script in Python to change the thresholds for the "alarm mode" of the screen.

I've started to fix up the script somewhat (as a way to teach myself some more python):

* moved all of the SUS Summary screen scripts into SUS/SUS_SUMMARY/

* removed the hardcoded channel names (a list of 190 hand-typed names !!!!!!!)

* fixed it to use NDS2 instead of try to use the NDS2 protocol on fb:8088 (which is an NDS1 only machine)

* it was trying to set alarms for the SUS gains, WDs, Vmons, etc. using the same logic as the OSEM PD values. This is non-sensical. We'll need to make a different logic for each type of channel.

New script is called setSensors.py. There are also different scripts for each of the different kinds of fields (gains, sensors, vmons, etc.)

Some Examples:

pianosa:SUS_SUMMARY 0> ./setDogs.py 3 5
Done writing new values.

sussum.png

  5470   Mon Sep 19 21:19:25 2011 KatrinUpdateGreen LockingBroadband photodiode characterization

Another Hamasutu S3399 photodiode was tested with the electronic circuit as described in LIGO-D-1002969-v.

RF transimpedance is 1k although the DC transimpedance is 2k.

The noise level is 25pA/sqrt(Hz) which corresponds to a dark current of 1.9mA or 1.7mA in the independent measurement.

At all frequencies the noise is larger compared to Koji's measurement (see labbook page 4778).

 


In file idet_S3399.pdf the first point is not within its error bars on the fitted curved. This point corresponds to the dark noise measurement

I made this measurement again. Now it is on the fitted curve. In the previous measurement I pushed the save button a bit too early. The

averaging process has not been ready while I pushed the 'save'  button.

Dark current is 1.05mA and noise is lower than in the previous measurement.

New file are the XXX_v2.pdf files

current_noise_S3399_v2.pdf

 idet_S3399_v2.pdf

 


 idet_S3399.pdf

 current_noise_S3399.pdf

S3399_response.pdf

  5471   Mon Sep 19 22:47:44 2011 JenneUpdateSUSSUS diag stuff... just so I remember what I'm doing

 The last person out tonight should run the following scripts:

In Matlab: 

/opt/rtcds/caltech/c1/scripts/SUS/peakFit/writeMultiSUSinmat.m

In command line:

/opt/rtcds/caltech/c1/scripts/SUS/freeswing all

 

Then in the morning, someone should do a BURT restore to early today (to get the default matricies back), and also restore the watchdogs.

Thanks!
 

  5472   Mon Sep 19 23:19:40 2011 KeikoUpdateIOOAM modulation mistery

 Keiko, Anamaria

We started to investigate the AM modulation mistery again. Checking just after the EOM, there are AM modulation about -45dBm. Even if we adjust the HWP just before the EOM, AM components grow up in 5 mins. This is the same situation as before. Only the difference from before is that we don't have PBS and HWP between the EOM and the monitor PD. So we have a simpler setup this time.

We will try to align the pockells cell alignment tomorrow daytime, as it may be a problem when the crystal and the beam are not well parallel. This adjustment has been done before and it didn't improve AM level at that time.

  5473   Tue Sep 20 02:21:10 2011 KojiUpdateLSCLSC MEDM screen cleaning up

I have made some cleaning up of the LSC-related MEDM screens.

- LSC overview screen: ADC OVFL and WFAA indicators are now correctly matched to it associated PD signals.

- Whitening screens now have the correct indication of the associated PD signals.

- LSC Ctrl screen, which is invoked from the overview screen by clicking the servo filters, now has the switches of the servo filters.

- LSC tab of the sitemap was cleaned up by removing the broken links.

  5474   Tue Sep 20 03:02:23 2011 KeikoUpdateLSClocking activity tonight

 Keiko, Anamaria, Koji

We were not able to establish the stable DRMI tonight. We could lock MICH and PRCL quite OK, and lock the three degrees of freedom at somewhere strange for several seconds quite easily, but the proper DRMI lock was not obtained.

When MICH and PRC are locked to the carrier, REFL DC PD reading dropps from ~3000 counts to 2600~2700 counts as REFL beam is absorbed to PRC. We'll try to lock PRC to sidebands - but flipping gain sign didn't work today, although it worked a few days ago. 

POP beam (monitor) is useful to align PRM.

  5475   Tue Sep 20 03:12:14 2011 AnamariaUpdateSUSJenne's Scripts started

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

  5476   Tue Sep 20 04:12:26 2011 JenneUpdateSUSJenne's Scripts started

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

  5477   Tue Sep 20 09:44:44 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

  5478   Tue Sep 20 13:57:44 2011 kiwamuUpdateIOOincident beam to MC aligned

Since the MC wasn't able to capture the 00 mode in this morning I aligned the incident beam going to MC.

As a result C1:IOO-RFPD_DCMON went down to 0.6. However the beam on IPPOS is almost falling off from the QPD.

  5479   Tue Sep 20 14:53:13 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

 So, clearly this was a kind of dumb idea.  There is nothing mechanical going on between our sensor inputs and our Pit/Pos/Yaw/Side DoF filter banks.  It's just math.  On the other hand, we now have a 3rd set of in-vac free swinging data, so I can (after all the suspensions are working) have a look at the drift in matrix elements over time.

In other news, after some meditation, and fitzing with DoF gain values, all of the IFO optics except for SRM now have their new input matricies, and are damping pretty nicely.  I need to go through and do an "eyeball" check to make sure that everything has a Q of ~5ish.  So far, I've kicked the optics, and watched that they damped fairly quickly, but I don't have a guesstimate of the Q's for each optic, for each DoF.

So, still to do:

Use another set of data and invert the SRM matrix DONE

Plug in the MC matricies, make sure they're okay. DONE

Check the Q's for all optics, all DoFs. 

  5480   Tue Sep 20 15:23:16 2011 JenneUpdateSUSfree swinging test in vacuum condition

This is using data for the SRM from: 20 Sept 2011 03:20:00 PDT = 1000549215

You can see that there are still some funny peaks between Pit and Yaw, but I finnessed the peak-finding, and I was able to fit all of the correct peaks, and invert the matrix:

 SRM now has its new matrix, and is damping happily.

Optic The Plot Matrix Badness
SRM SRM.png                pit     yaw     pos     side    butt
UL    0.877   0.983   1.105  -0.288   1.092 
UR    1.010  -1.017   1.123  -0.145  -1.055 
LR   -0.990  -1.002   0.895  -0.091   0.848 
LL   -1.123   0.998   0.877  -0.234  -1.006 
SD    0.089   0.064   3.752   1.000  -0.009
 4.4076

 

 

  5481   Tue Sep 20 15:39:57 2011 KojiUpdateSUSfree swinging test in vacuum condition

Can't we use Yuta's auto-Q adjust script?

 http://nodus.ligo.caltech.edu:8080/40m/3723

Edit by KI :

Of course we can use it but first we have to fix some pynds sentences since his script was written for the OLD pynds.

  5482   Tue Sep 20 15:54:42 2011 kiwamuUpdateCamerasMC refl camera is available

[Suresh / Kiwamu]

 The MC REFL camera is now available. The camera name is "MCR" and you can call it from the videoswitch script.

 

(what we did)

 + repositioned and aligned the MCR camera.

 + checked the MCR camera.

  => found the camera view shows a negative image (i.e. the beam spot is dark and the background is bright !!)

 + replaced the camera by a spare one.

 + modified the videoswitch script because the input channel 3 was wrongly assigned to MCR.

  MCR was correctly assigned to the input channel 18.

  5483   Tue Sep 20 16:31:24 2011 KeikoUpdateIOOSmall modulation depth

 Modulation resonator box is removed and the modulation depth is small right now.

I have broke the BNC connector on the modulation resonator box. The connector was attached by the screw inside very loosely and when we connect and disconnect the BNC cables from outside, extra force was applied to the cable inside and it was broke. It is being fix by Kiwamu and will be back in a bit.

 

 

 

 

ELOG V3.1.3-