40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 70 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  7458   Mon Oct 1 17:03:01 2012 steveUpdateSUSETMY oplev relayed

Quote:

Quote:

Quote:

 

 The typical sign of a dying gas laser is that it glows for a few minutes only. The power supplies are fine.

Two new  JDS - Uniphase 1103P lasers ( NT64-104 )  arriving on Monday, May 21

 Yesterday I swapped in new He/Ne laser with output power 3.5 mW  The return spot on qpd is large ~6mm in diameter and 20,500 counts

The spot size reduction require similar layout as ETMX oplev.

 The oplev path is relayed and the spot size on the qpd is reduced. I still have to clean up and replace "Miki Mouse" lens holder.

There was no IP-ANG coming out of the chamber at this time!

 I did relayed the oplev path with new  f 500 mm lens

Attachment 1: IMG_1673oplevETMY.jpg
IMG_1673oplevETMY.jpg
  8734   Thu Jun 20 17:47:44 2013 AnnalisaConfigurationSUSETMY oplev servo

[Jenne, Annalisa]

The ETMY Oplev servo didn't work properly, when it was activated the ETMY moved too much.

We measured the oplev TF for Pitch and Yaw and it turned out that the gain was too low by a factor 3, so we increased the gain from -.250 to -.750 on both.

We also locked the Y arm and we could see that the mirror's oscillations are actually suppressed.

 

  6706   Tue May 29 15:55:22 2012 steveUpdateSUSETMY oplev spot size reduced

Quote:

Quote:

 

 The typical sign of a dying gas laser is that it glows for a few minutes only. The power supplies are fine.

Two new  JDS - Uniphase 1103P lasers ( NT64-104 )  arriving on Monday, May 21

 Yesterday I swapped in new He/Ne laser with output power 3.5 mW  The return spot on qpd is large ~6mm in diameter and 20,500 counts

The spot size reduction require similar layout as ETMX oplev.

 The oplev path is relayed and the spot size on the qpd is reduced. I still have to clean up and replace "Miki Mouse" lens holder.

There was no IP-ANG coming out of the chamber at this time!

Attachment 1: ETMYoplev.jpg
ETMYoplev.jpg
Attachment 2: IMG_1243.JPG
IMG_1243.JPG
  6710   Tue May 29 21:34:08 2012 JenneUpdateSUSETMY oplev spot size reduced

Quote:

Quote:

Quote:

 

 The typical sign of a dying gas laser is that it glows for a few minutes only. The power supplies are fine.

Two new  JDS - Uniphase 1103P lasers ( NT64-104 )  arriving on Monday, May 21

 Yesterday I swapped in new He/Ne laser with output power 3.5 mW  The return spot on qpd is large ~6mm in diameter and 20,500 counts

The spot size reduction require similar layout as ETMX oplev.

 The oplev path is relayed and the spot size on the qpd is reduced. I still have to clean up and replace "Miki Mouse" lens holder.

 Flipped the sign on the ETMY oplev servo gain, since it was wrong.  (It was "-" for both, now it is "+" for both)

  5523   Thu Sep 22 20:12:54 2011 kiwamuUpdateSUSETMY oplev whitening engaged

The whitening filters for the ETMY oplevs are back.

The whitening board had been in the rack but the ADC was connected directly to the oplev interface board without going through the whitening board.

In fact the interface board and the whitening board had been already connected. So the ADC was making a shortcut.

I disconnected the ADC from the interface board and plugged it to the output of the whitening board.

Here is an example of the new open-loop transfer function with the whitening filters.

OLETMY_WF.png

 Note :

before the measurement I increased the control gain by an arbitrary number to obtain gain of more than 1 around 1 Hz.

Quote from #5521

I will check the whitening filters.

  6766   Wed Jun 6 14:36:58 2012 steveUpdateSUSETMY oplev work finished

Quote:

Quote:

Quote:

 

 The typical sign of a dying gas laser is that it glows for a few minutes only. The power supplies are fine.

Two new  JDS - Uniphase 1103P lasers ( NT64-104 )  arriving on Monday, May 21

 Yesterday I swapped in new He/Ne laser with output power 3.5 mW  The return spot on qpd is large ~6mm in diameter and 20,500 counts

The spot size reduction require similar layout as ETMX oplev.

 The oplev path is relayed and the spot size on the qpd is reduced. I still have to clean up and replace "Miki Mouse" lens holder.

 Late entry for Monday morning June 4, 2012

Cables were stress relieved. Cable entry - exit ports enlarged. Air gaps were minimized.

  8827   Thu Jul 11 09:15:10 2013 SteveUpdateendtable upgradeETMY optable grounded

ETMY optical table top was grounded to the ETMY chamber through 1 Mohms this morning. I  also strain releifed relieved a few cables that were pulling on components directly.

  4722   Sun May 15 19:55:15 2011 kiwamuUpdatePhotosETMY optical bench

Just for a record. This is the latest picture of the ETMY optical bench.

I will upload this picture on the wiki after the wiki gets up.

ETMY_ss.jpg

  4723   Sun May 15 21:27:51 2011 JenneUpdatePhotosETMY optical bench

I didn't notice it the other day when I was working on putting in the trans QPD, but do we need to switch the mirror mount for the first turning mirror of the IR trans beam, which the green transmits through to go into the cavity?  It seems like we've set ourselves up for potential clipping.

Quote:

Just for a record. This is the latest picture of the ETMY optical bench.

I will upload this picture on the wiki after the wiki gets up.

ETMY_ss.jpg

 

  11897   Tue Dec 22 16:39:42 2015 SteveUpdateendtable upgradeETMY optical table enclosure

I think there should be a scientifically based aveluation of the ETMY enclosure so we can make the ETMX better.

Meanwhile I'm counting pieces to move on with the south end table cover.

 

Attachment 1: IMG_0028.JPG
IMG_0028.JPG
Attachment 2: IMG_0027.JPG
IMG_0027.JPG
Attachment 3: ETMY-ISCT_EISOL.jpg
ETMY-ISCT_EISOL.jpg
  11591   Fri Sep 11 10:56:47 2015 SteveUpdateendtable upgradeETMY optical table feedthrough

The ETMY enclosure feedthrough - north is installed. The sealing material is hard to work with.

The upper empty blocks will be replaced by something soft to make changing cables easy.

 

Attachment 1: ETMY-Nfeedt.jpg
ETMY-Nfeedt.jpg
  11600   Tue Sep 15 16:49:08 2015 SteveUpdateendtable upgradeETMY optical table feedthrough

ETMY optical table enclosure feedthrough- south is in. Now it is time to see how air tightness increases performance.

Quote:

The ETMY enclosure feedthrough - north is installed. The sealing material is hard to work with.

The upper empty blocks will be replaced by something soft to make changing cables easy.

 

 

Attachment 1: ETMYsFeedt.jpg
ETMYsFeedt.jpg
  11608   Thu Sep 17 02:22:53 2015 SteveUpdateendtable upgradeETMY optical table feedthrough

I doubt we'll see any effect until we carefully seal the holes. If there's 1 hole in your boat it still sinks.

Quote:

ETMY optical table enclosure feedthrough- south is in. Now it is time to see how air tightness increases performance.

 

  12384   Tue Aug 9 00:44:43 2016 gautam UpdateSUSETMY patch-up

Summary:

Given that ETMX looks to be in good shape and the optic and suspension tower are ready for vacuum and air bakes respectively, I set about re-gluing the knocked off magnet of ETMY. In my previous elog, I had identified the knocked off magnet as the UL magnet. But in fact, it was the LR magnet that broke off. This is actually one of the magnets that was knocked off when Johannes was removing the optic from the vacuum chamber. I have edited the old elog accordingly. 

Step 1: Removing epoxy residue

  • I used the teflon+glass rig Steve put together for this purpose
  • After soaking for ~2 hours in acetone, I was able to remove approximately half of the ring residue by lightly pushing with a wipe.
  • The other half wouldn't budge so I let it soak for another 4 hours
  • After 6 hours of soaking, I was able to get all of the epoxy residue off - it doesn't simply dissolve in the acetone, I had to push a little with one of the cotton-tipped paddles in the cleanroom
  • I gave the portion exposed to acetone a quick drag wipe with isopropanol. I didn't spend too much time trying to clean the AR side given that we will be using first contact anyways.
  • I have not touched the HR side for now, even though a small portion of it was exposed to acetone. While cleaning the HR face with first contact, this portion can be inspected and cleaned if necessary

Step 2: Putting the optic in the magnet gluing jig

  • I transferred the optic to the magnet gluing jig
  • Given that we weren't touching any side magnets, I reasoned I did not have to go through the elaborate shimming routine to account for the wedge of the optic that we had to do in the recent past
  • However, I did not think to put a thicker teflon spacer on the lower side of the wedge, and as a result, I knocked off the UR magnet as well as the jig did not have sufficient clearance
  • Fortunately, the UR magnet came off cleanly, there was hardly any epoxy residue left on the optic. The UR magnet was NOT one of the magnets knocked off by Johannes while removing the optic from the vacuum chamber
  • I gave the area formerly occupied by the UL magnet 3-4 wipes with acetone and then 1-2 wipes with isopropanol
  • At this stage, I proceeded to re-insert the magnet-gluing jig. I used the two scribe lines on the outer side of the jig to fix the rotation of the jig, and used the remaining two attached face magnets to fix the overall position of the jig (by centering these magnets relative to the apertures on the jig). In order to center well, I had to unscrew the stuck silver plated screw on the jig by 1 turn
  • Having arranged the jig satisfactorily, I proceeded to remove epoxy residue off the dumbbell of the recently knocked off UL magnet using first a razor blade, then sandpaper and finally made some new grooves with a razor blade. I then cleaned the surface of the dumbbell to be in contact with the optic with isopropanol. All of this was done for the LR magnet two weeks ago right after it was knocked off

Step 3: Gluing the magnets

  • I prepared the magnets in the pickle pickers
  • I discarded 1 full squeeze of the epoxy after it reached the tip of the mixing fixture, and then extracted another full squeeze of the gun for mixing and gluing the magnets
  • I mixed the epoxy in an Al foil vessel for 3-4 minutes, and then placed a few drops on a piece of Al foil for a test bake at 200F for ~15 minutes
  • The test bake went well, so I proceeded to apply glue to the dumbbells and re-glue the magnets to the optic
  • The gluing was done around midnight, so we should be able to have a look at this post lunch tomorrow.

Provided the gluing goes well, the plan for tomorrow is:

  1. Bring ETMY suspension tower from the vacuum chamber to the cleanroom along with its OSEMs
  2. Suspend ETMY with a new length of wire (this should be much more straightforward than our ETMX exploits as both standoffs are already glued)
  3. Insert OSEMs, check that all 4 face magnets are well centered w.r.t. their coils and also that at least one side magnet is well aligned relative to its coil and can be used 
  4. If step 3 goes well, then ETMY is also ready for a vacuum bake. I guess we can also air bake the ETMY suspension tower, there's plenty of room in the oven
  12386   Tue Aug 9 15:27:57 2016 gautam UpdateSUSETMY patch-up

The pickle pickers came off nicely and both magnets seem to be glued on okay. The alignment of the face magnets look pretty good, but we will only really know once we suspend the mirror, check the pitch balance, and put in the OSEM coils.

I brought the ETMY suspension tower + OSEM coils out of the vacuum chamber into the cleanroom. Given that the old wire had a pretty sharp kink in it, I removed it with the intention of suspending the optic with a new length of wire. I noticed a few potential problems:

Attachment #1 - ETMY tower is different from ETMX tower: 

  • The ETMY suspension seems to be of an older generation - it does not have the the two secondary wire clamps. 
  • The top piece was attached to the body of the tower using non-silver-plated screws. Steve tells me this is the wrong type, and we can switch these out when we put it back together.
  • The wire clamp itself doesn't have much of a groove from the wire. But the wires have made asymmetric grooves in the tower itself (the left groove is deeper than the right as seen in Attachment #1), that are clearly visible. Should we get these grooves removed before attempting re-suspension? How do we want to remove it? Steve thinks the best option is to send it to the shop for milling, as there is hardly any room to rub sandpaper along the piece because of the pins, and these pins don't come out. 
  • Or do we just not care about these grooves for now, if we are planning to use new wire anyways after air-baking the towers? 
  • Steve thinks we should have a few spares of these top blocks handy (the latest version, with the secondary clamps), he wants to know if we should place an order for these (we already have 10 spare wire clamp pieces available for if/when we need them)

Attachment #2 - the base of the tower is significantly rusty:

  • A few wipes with an acetone soaked rag yielded quite a lot of rust
  • Steve thinks this is because the wrong type of stainless steel was used
  • Does this have to do with the cage being of an older variety? After a few vigorous wipes, no more rust came off, but the rusting process will presumably keep generating new rust? Is this a concern? Do we want to change this piece before putting the tower back in?

I am holding off on attempting to re-suspend the optic for now, until we decide if the old wire grooves need to be removed or not. If we are okay with re-using the same piece as is, or if we are okay with using sandpaper and not the machine shop to remove the grooves, I will resume the re-suspension process. 

Eric suggested another alternative, which is to use the old ETMX tower. I don't recall it being rusted, but this has to be checked again. The other problem of the wire-grooves would possibly still be an issue.


Regarding the vacuum bake of the ETMs, Bob tells us that the best case scenario we are looking at is September.

 

Attachment 1: IMG_2996.JPG
IMG_2996.JPG
Attachment 2: IMG_2997.JPG
IMG_2997.JPG
  12390   Wed Aug 10 03:08:03 2016 gautam UpdateSUSETMY patch-up

[lydia, gautam]

Rana felt it was alright to use the wire clamp and suspension cage in its existing condition for checking the ETMY magnet-OSEM coil alignment. So we set about trying to re-suspend ETMY. The summary of our attempts:

  • Transferred optic from magnet gluing rig to the suspension cage
  • Adjusted bottom EQ stops till the scribe lines on both sides were at 5.5" as verified with the microscope
  • Looped cleaned length of wire around optic, attached free ends to winches, placed the wires under light tension by finger-pulling the slack out
  • Lowered the bottom EQ stops
  • Winched the optic to the right height
  • Clamped the wire with the only wire clamp on this variant of the suspension cage. We used the same torque wrench at the same torque setting as was successful for ETMX. But after removing the winches, and releasing the face EQ stops, the optic seems to have sagged a lot - it now touches all the bottom EQ stops, and the more I lower it, the more it seems to come down. Perhaps it is the effect of the wire grooves in the cage, or that the wire-clamp itself is slightly different from the piece used on the ETMX cage, but 1.3Nm of torque doesn't seem to have tightened the wire clamp sufficiently
  • We can still probably salvage the situation by re-attaching the winches to the top of the cage, setting the optic to the right height again, and clamping the wire clamp with more torque (as this is just a check to see that the reglued magnet configuration is compatible with the OSEM coil positions on the cage). Before air baking the cage, we will have the old wire grooves removed, and then suspend the optic with a fresh loop of wire after the bake
  • We could not check the magnet-OSEM alignment because of the slipping of the wire through the clamp. We decided against pushing on tonight
  • Optic is currently in the cage, resting on the bottom EQ stops and with all face EQ stops within 1mm of the optic. The OSEM coils have not been inserted into the holders

Regarding the vacuum bake of the optics: why do we want to do this again? Koji mentioned that the EP30-2 curing process does not require a bake, and there is also no mention of requiring a vacuum bake in the EP30-2 gluing guide. Is there any other reason for us to vacuum bake the optic?

  5194   Thu Aug 11 16:07:37 2011 steveUpdateSUSETMY rack cables strain releived
Attachment 1: P1080159.JPG
P1080159.JPG
Attachment 2: P1080160.JPG
P1080160.JPG
  12397   Wed Aug 10 23:45:03 2016 gautam UpdateSUSETMY re-suspended

Summary:

  • ETMY has been re-suspended
  • Reglued magnets (and also those that weren't knocked off) quite well with OSEM coils (see attachments)
  • Pitch balance is off by ~2.8mrad (8mm over 1.5m lever arm) after inserting and centering OSEMs
  • The same damping scheme used during the ETMX re-suspension process works reasonably well with ETMY as well

Details:

  • I suspected that I had not tightened the wire clamp enough yesterday, and that the wire had slipped once the winches were removed
  • Steve and I looked into the torque wrench situation today, and I realised that I had not been using the torque wrench correctly. What I thought were clicks indicating that the set torque has been reached was in fact just the sound the piece makes when going the opposite way relative to the direction set by the clip on the torque wrench. Anyways, the point is that while I thought I was tightening the screws with ~1.3Nm of torque, what was actually being applied was much less (although I don't have a good way to quantify how much less)
  • So today I put the winches back on top of the tower, and winched the optic back up to the correct height using the ususal scribe line + microscope prescription
  • I then tightened the wire clamp by hand. This is obviously not very repeatable, but it will have to do until we get a torque wrench with the correct range
  • This seems to have done the trick - I did the tightening shortly after lunch, and after ~10 hours, there is no evidence of any wire sag
  • I then proceeded to insert the OSEMs, first not all the way in to check the clearance available to the magnet, and once I was satisfied there was no danger of knocking anything off, went ahead and inserted the coils till the PD readouts were approximately half of the maximum (i.e. fully un-occluded) values. I used the OSEM coils originally on the ETMY tower, but all the other readout and drive electronics in the signal chain (satellite box included) belong to the ETMX setup (so as to avoid any cable routing over 80m from the Y end to the cleanroom). After some adjustment of the OSEM holding plates, I was able to center the magnets relative to the coils 
  • The tower only allows for a side OSEM to be inserted on one side. The other side does not have a threaded hole for a set screw. So we are forced to use the reglued magnet and not the side magnet that was not knocked off. By eye, it looks like the magnet may never completely occlude the LED, but the Striptool trace I was using to monitor the output of the PD did not yield any conclusive evidence. The optic was moving around a lot and I did not perform this check after turning the damping on
  • I was able to damp the optic as well as we were able to damp ETMX on the clean bench (with the HEPA turned OFF). I had to turn the YAW gain down from 100-->75 to avoid some oscillations 
  • I then proceeded to check the pitch balance with the HeNe. The spot is low on an iris 1.43m away by ~8mm, which corresponds to a pitch misalignment of ~2.8mrad. I am not sure what to make of this - but perhaps its not unreasonable that we see this? Is there any record of what fine pitch balancing was achieved when the optic was put together back in 2010? This is also very sensitive to how far in/out the OSEM coils are, and though I've tried to center the coils as best as I can, I obviously have not done a perfect job...

What's next?

  • Is the observed pitch imbalance a deal breaker? If so, I guess we need to re-glue a standoff? 
  • Are we willing to accept the side OSEM situation? (Tomorrow, I need to do a check to see what, if any, dynamic range we lose, with the damping on)
  • If both the above are not problems we need to worry about, then:
    • ETMY + ETMX -------> Vacuum bake on 22nd August (? - Bob also told me earlier today that he will try and put in some old turbo pump next week, and if that works, we could possibly get in the queue even before the 22nd)
    • ETMY tower -------> Steve for sanding and removing wire grooves -------> Air bake
    • ETMX tower -------> Air bake (provided the latest round of wire tightening has not left any grooves in the top piece of the tower, if it has, this needs to be cleaned up too)
    • Some lengths of SOS wire (for re-suspending optics after bake) -------> Air bake

Attachments:

Attachment #1: Striptool trace showing all OSEM coils have been pushed in till the PD readout is approximately half the fully open value

Attachment #2: Pitch balance is off by ~2.8mrad (the Iris center is 5.5" above the table)

Attachment #3: UR magnet

Attachment #4: UL magnet

Attachment #5: LR magnet

Attachment #6: LR magnet

Attachment #7: SD magnet

Attachment 1: ETMY_OSEMStrip.PDF
ETMY_OSEMStrip.PDF
Attachment 2: IMG_2998.JPG
IMG_2998.JPG
Attachment 3: IMG_3000.JPG
IMG_3000.JPG
Attachment 4: IMG_3001.JPG
IMG_3001.JPG
Attachment 5: IMG_3002.JPG
IMG_3002.JPG
Attachment 6: IMG_3003.JPG
IMG_3003.JPG
Attachment 7: IMG_3004.JPG
IMG_3004.JPG
  12398   Thu Aug 11 00:20:41 2016 KojiUpdateSUSETMY re-suspended

How much pitch bias do you need in order to correct this pitch misalignment?
That may give you the idea how bad this misalignment is.

  12401   Thu Aug 11 11:56:40 2016 gautamUpdateSUSETMY re-suspended
Quote:

How much pitch bias do you need in order to correct this pitch misalignment?
That may give you the idea how bad this misalignment is.

I needed to move the pitch slider on the IFO align screen to -2.10 (V?) from 0 to get the HeNe spot to the center of the iris. The slider runs from -10V to 10V, so this is something like 10% of its range. I am not sure if it means anything, but the last saved backup value of this pitch slider was -3.70. Of course, application of the bias will affect all the coils, and when the optic is pitch balanced, the lower magnets are a little too far out and the upper magnets are a little too far in (see Attachment #1), as we expect for a downward pitch misalignment to be corrected. I suppose we can iteratively play with the coil positions and the bias such that the coils are centered and we are well balanced (maybe this explains the old value of -3.70). 

I also checked that the side magnet can completely occlude its PD. With the damping on, by pushing the coil all the way in, the output of the side PD went down to 0.

Attachment 1: pitchBalancingWithBias.PDF
pitchBalancingWithBias.PDF
  4047   Mon Dec 13 18:06:43 2010 JenneUpdateSUSETMY resuspended, ready to install. Tip Tilt realigned, ready to install.

[Koji, Jenne]

I wish I could use a bigger font for this, but, the suspension work is totally done for the upgrade!!!

Now, nobody break any suspensions, or we're not going to be friends for a while. 

Koji and I put ETMY back in its tower, and made sure that both scribe lines are at the correct height.  We also confirmed that the balance is good (as Suresh mentioned in a previous elog, since we balanced using the AR surface, the HR surface is pointing downward a little bit, but it's well within the OSEMs ability to correct.

While we were in there, we also looked at Tip Tilt number 002.  As mentioned in elog 3645, the pitch pointing was off by a little bit.  Since the TTs don't have actuators, the pointing has to be pretty good.  We tweaked the balancing, and now the reflected beam goes completely back into the laser aperture, so it's as balanced as it's going to get.  This TT is now ready for installation onto the ITMY table as part of the SRC.

Kiwamu confirmed that he's going to install these optics tomorrow, since he's doing some other alignment work today.

Just for good measure, the Table:

StatusTable.png

  14562   Mon Apr 22 22:43:15 2019 gautamUpdateSUSETMY sensor diagnosis

Here are the results from this test. The data for 17 April is with the DC bias for ETMY set to the nominal values (which gives good Y arm cavity alignment), while on 18 April, I changed the bias values until all four shadow sensors reported values that were at least 100 cts different from 17 April. The times are indicated in the plot titles in case anyone wants to pull the data (I'll point to the directory where they are downloaded and stored later).

There are 3 visible peaks. There was negligible shift in position (<5 mHz)  / change in Q of any of these with the applied Bias voltage. I didn't attempt to do any fitting as it was not possible to determine which peak corresponds to which DoF by looking at the complex TFs between coils (at each peak, different combinations of 3 OSEMs have the same phase, while the fourth has ~180 deg phase lead/lag). FTR, the wiki leads me to expect the following locations for the various DoFs, and I've included the closest peak in the current measured data in parentheses:

DoF Frequency [Hz]
POS 0.982 (0.947)
PIT 0.86 (0.886)
YAW 0.894 (0.886)
SIDE 1.016 (0.996)

However, this particular SOS was re-suspended in 2016, and this elog reports substantially different peak positions, in particular, for the YAW DoF (there were still 4). The Qs of the peaks from last week's measurements are in the range 250-350.

Quote:

Repeat the free-swinging ringdown with the ETMY bias voltage adjusted such that all the OSEM PDmons report ~100 um different position from the "nominal" position (i.e. when the Y arm cavity is aligned). Investigate whether the resulting eigenmode frequencies / Qs are radically different. I'm setting the optic free-swinging on my way out tonight. Optic kicked at 1239690286.

Attachment 1: ETMY_sensorSpectra_consolidated.pdf
ETMY_sensorSpectra_consolidated.pdf ETMY_sensorSpectra_consolidated.pdf
  9262   Wed Oct 23 09:17:33 2013 SteveUpdateSUSETMY sensors compared to ETMX

 ETMY sensors are glitching or getting kicked up.

Atm3, There is no seismic activity here.

 

Attachment 1: ETMYglitching.png
ETMYglitching.png
Attachment 2: OSEMsensorsETMY&X.png
OSEMsensorsETMY&X.png
Attachment 3: ETMYgettingKickedUp.png
ETMYgettingKickedUp.png
Attachment 4: drive-damp.png
drive-damp.png
  9263   Wed Oct 23 11:42:28 2013 ranaUpdateSUSETMY sensors compared to ETMX

  This is not really definitive. The 0.1-0.3 Hz band is not the right one to look for seismic transients - it should be the higher frequency ones.

The other test to do is to turn off the ETMY damping and then look for glitching in the sensors. And then, of course, check to see that no one has bumped the satellite box with a cart or a mop...

  9265   Wed Oct 23 15:48:06 2013 ranaUpdateSUSETMY sensors compared to ETMX

I noticed by eye that during one event when ETMY was getting kicked up, its CPU meter (C1:FEC-47_CPU_METER) went RED.

Thinking that this might be a clue I tried to trend this channel. Even though this channel is in the SCY EDCU file and the 'rtcds install' command claims to be 'installing C1EDCU_SCY', many of the channels named in the file are not actually showing up in ur dataviewer SLOW channels list.

I smell a cockroach in our RCG build process, but I can't find the log file for the make-install part of the build nor can I find the Makefile from which the make-install is born. Help us Jamie!

remote-control-cockroach.jpg

I have deleted a few filters from c1scy to see if that could reduce the CPU time and I have killed the c1tst process to see if that can cool down the entire computer. Next, we can try to open the rack doors and put a fan on there to see if we can shave a couple microseconds. I have a StripTool running on pianosa to see if we see some correlations between FEC47 and the ETMY SUS watchdog RMSs. Don't close it.

  9266   Wed Oct 23 17:30:17 2013 jamieUpdateSUSETMY sensors compared to ETMX

c1scy has been running slow (compared to c1scx, which does basically the exact same thing *) for many moons now.  We've looked at it but never been able to identify a reason why it should run slower.  I suspect there may be some bios setting that's problematic.

The RCG build process is totally convoluted, and really bad at reporting errors.  In fact, you need to be careful because the errors it does print are frequently totally misleading.  You have to look at the error logs for the full story.  The rtcds utility is ultimately just executing the "standard" build instructions.  The build directory is:

    /opt/rtcds/caltech/c1/rtbuild

The build/error logs are:

    <model>.log     <model>_error.log 
I'll add a command to rtcds to view the last logs.

(*) the phrase "basically the exact same thing" is LIGO code for "empirically not at all the same"
  9267   Wed Oct 23 18:24:56 2013 ranaUpdateSUSETMY sensors compared to ETMX

 

 While that would be good - it doesn't address the EDCU problem at hand. After some verbal emailing, Jamie and I find that the master file in target/fb/ actually doesn't point to any of the EDCU files created by any of the FE machines. It is only using the C0EDCU.ini as well as the *_SLOW.ini files that were last edited in 2011 !!!

So....we have not been adding SLOW channels via the RCG build process for a couple years. Tomorrow morning, Jamie will edit the master file and fix this unless I get to it tonight. There a bunch of old .ini files in the daq/ dir that can be deleted too.

  9268   Wed Oct 23 18:28:01 2013 JenneUpdateSUSETMY sensors compared to ETMX

We have now watched the ETMY computer situation for a little over 150 minutes, and have seen one 'event' where the CPU time of the scy model hit 62 microseconds, and a glitch in the ETMY OSEM sensors happened at the same time.  We also see no such glitches at any other time, which makes sense with our latest hypothesis, since this event was the only time that the CPU time reported being greater than 61 microseconds.  (1/16384 Hz = 61.1696 microseconds). 

I have now restarted the c1tst model, to see if that increases the rate of glitches (assuming that running another model heats up the whole computer a bit more, and that makes things run a little bit slower).

Screenshot-Untitled_Window.png


Wed Oct 23 21:05:28 2013 

RXA: It looks like there was a real effect. Its between -2.5 and 0 on the plot below.

 

Screenshot-Untitled_Window-1.pngI've stopped the process of c1tst again to make it get better. At 9:20, I also went and opened the front rack door (the back one was already open). One reason its hot may be that the exhaust vents on the top of c1iscey are blocked by one of the custom multi-pin adaptor boxes. In the morning, we should drop the computer down by 1 or 2 notches in the rack so that it can air cool itself better. Make sure to poweroff the computer from the terminal before moving it though.

I checked the cabling somewhat. The fat grey cable which comes out of the old Sander Liu AA chassis was connected to the blue adaptor box but the strain relief screws were not being used. I tightened them (we need to buy a set of small screwdrivers for the toolboxes at each end). While doing this, the Cat6 cable in the back labeled 'c1iscey' popped out and the screen went white. This cable has a broken latch on it so it doesn't stay put - needs to be replaced too during the computer move.

  9277   Thu Oct 24 10:31:25 2013 SteveUpdateSUSETMY sensors compared to ETMX

Atm1,  The strong glitches are back.

Atm2,  SUS-ETMX & Y_SENSOR_LL Damping OFF at (ref0 & ref1). damping ON (red & blue)

ETMY sus looks OK

 

Attachment 1: 24h_glitching.png
24h_glitching.png
Attachment 2: dampingOffref.png
dampingOffref.png
  9307   Tue Oct 29 10:51:16 2013 MasayukiUpdateSUSETMY sensors compared to ETMX

[Steve, Masayuki]

We lowered the c1iscey machine to make space upside of the computer for heat flow. 

First we turned off the computer. And then we droped the computer down by 1  notches in the rack. Now the upside and downside spaces are almost same. We restarted the computer after that and we leave the door open.

 


  9311   Tue Oct 29 22:33:57 2013 ranaUpdateSUSETMY sensors compared to ETMX

Quote:

I've stopped the process of c1tst again to make it get better. At 9:20, I also went and opened the front rack door (the back one was already open). One reason its hot may be that the exhaust vents on the top of c1iscey are blocked by one of the custom multi-pin adaptor boxes. In the morning, we should drop the computer down by 1 or 2 notches in the rack so that it can air cool itself better. Make sure to poweroff the computer from the terminal before moving it though.

 After some torture Masayuki admitted that he and Steve ignored this elog and just turned off the power button. He blames Steve entirely.

to keep from damaging our computers and our data, NEVER DO THAT.

Scratch-n-SniffStinkyDooBabyShowerGame1.jpg

  12364   Wed Aug 3 10:52:03 2016 SteveUpdateGeneralETMY soaking dish

ETMY UL epoxy soaking dish. All teflon in glass.

 

Attachment 1: SD1.jpg
SD1.jpg
Attachment 2: SD2.jpg
SD2.jpg
Attachment 3: SD3.jpg
SD3.jpg
  4931   Fri Jul 1 18:48:13 2011 JamieUpdateSUSETMY sus controller found to be in a bad state

I'm not sure what happened to ETMY SUS, but it was in a pretty bad state.  Bad burt restore, I would guess.

Most egregiously, the inputs to all of the coil output filters were switched off.  This is a bit insidious, since these inputs being off doesn't show up on the overview screen at all.  This explains why ETMY had not been damping for the last couple of day, and why my binary whitening switching measurements were nonsense.

I also found that ETMYs damping filter was a 30 Hz high pass, instead of the 3 Hz high pass in all the other suspension controllers.  Unfortunately a messed up burt restore can't explain that.

I normalized the ETMY controller to match all of the other controllers (ie. gave it a nice new 3 Hz high pass), adjusted gains accordingly, and now ETMY is behaving nicely.

  4933   Fri Jul 1 20:22:24 2011 ranaUpdateSUSETMY sus controller found to be in a bad state

Actually, ETMY was the only good one. They should all have the 30 Hz High pass as the damping filter. I think these details are in the elog entry that we originally made while doing ETMY.

They should all also have a 3:30 in the XXSEN to compensate the whitening. The logic is supposed to be that FM1 is ON when the hardware whitening is ON. This is the opposite of the old logic and its why the damping filter has to be moved from 3 to 30 Hz.

  472   Fri May 9 08:40:24 2008 steveUpdateSUSETMY sus damping restored
ETMY lost damping at 19:10 last night.
There was no seismic event than.
Sus damping was restored this morning.
  1439   Sun Mar 29 13:44:27 2009 steveUpdateSUSETMY sus damping restored

ETMY sus damping was found to be tripped.

It was retored.

All fluorecent light were turned off. Please try to conserve some energy.

  3455   Mon Aug 23 08:28:27 2010 steveUpdateSUSETMY sus damping restored
  1447   Tue Mar 31 09:42:32 2009 steveUpdatePEMETMY sus damping restored again

The Caltech gasoline storage tank is being upgraded.

They are jack hammering and digging with bulldozer 50 yards south of  ETMY

  5029   Mon Jul 25 11:46:28 2011 steveUpdateSUSETMY sus problem hunt

[Kiwamu / Steve]

We checked some electronics noise on the ETMY shadow sensor system.

Noise from the WF, AA board and ADC are below the shadow sensor spectra on ETMY.

It means something funny is going on in the upstream side (including the satelight box and shadow sensors)

OR the coil drivers side are going crazy ??

 

As Rana pointed out in his entry (#5025), the spectra of the shadow sensors on ETMY were quite bad below 3 Hz. The floor are higher than that of ETMX by factor of 10 or so.

To check if the noise comes from some of the electronics, we disconnected D15-sub from pd to whitening in.

The spectra with/without shadow sensors are attached below.

The curves in brown and green are the ones taken when the shadow sensors were disconnected from the WF board.

So these two curves represent the summed noise of the WF, AA and ADC.

This tells us to look toward the OSEM.

 

Attachment 1: ETMY_AA_ADC.png
ETMY_AA_ADC.png
  12428   Mon Aug 22 13:06:11 2016 gautamUpdateSUSETMY suspended

Today morning, I suspended ETMY and made the same checks dscribed below. The clamping went smoothly, 5 in. lb. of torque seems sufficient, in the limited observation time, there has been no evidence of wire sag. Today afternoon, we will go about putting the OSEM coils in, setting their equilibrium points etc. This may need to be re-done once the optic is in the chamber and the first contact has come off, but at least we can coarsely place them in the relative convenience of the cleanroom. 

GV EDIT 9.15pm 22 Aug: Eric had a look at both towers and pointed out that I had neglected to use washers on the wire stops. After consultation with Steve, I decided that it is not worth it to remove the clamp and re-suspend the optic - it is likely that the current suspension process will have caused new grooves in the suspension block, which will have to be removed, and the sanding process did not work so well last time. In any case, the net effect of this will be that the actual torque with which the clamp is tightened will be slightly different from 5 in. lb., but since there is no evidence that the clamp isn't tight enough / is too tight, I think it is okay to push ahead. 

Quote:
  • ETMX has been successfully suspended
  • I've used one of the new wire clamps, and also the new suspension wire 
  • Because the HR face has first contact, pitch balancing cannot be checked at this point. But since the pitch balance was checked after the standoff was glued, there is no reason to believe it would have changed
  • Heights of the two scribe lines were checked with the microscope and verified to be at 5.5" above the tabletop. Also checked the position of the scribe line on the bottom of the optic to make sure the optic wasn't somehow rotated
  • Checked that wire was in the groove in the standoff on both sides, and that the optic was freely hanging with no EQ stops engaged. I also verified that there are no obvious kinks/other funny features where the wire is in contact with the optic barrel below the standoffs.
  • Wire clamps were tightened with the new torque wrench and 5 in. lb. (0.56 N m) of torque. Primary clamp was successfully tightened. However, the wire snapped between the primary and secondary clamps on one side. It is unclear to me how or why this happened. But since the primary wire clamp is the important one, I don't think it is worth re-suspending ETMX all over again
  • I've left the cage on the flow bench for now, with EQ stops engaged. OSEM coils have yet to be inserted, but I suppose we want to do this in the vacuum chamber now to do the fine rotation to minimize the bounce mode in the OSEM signals
  • I've prepared ETMY and its cage for suspension, will work on it tomorrow

 

Attachment 1: IMG_3019.JPG
IMG_3019.JPG
  14615   Thu May 16 23:31:55 2019 gautamUpdateSUSETMY suspension characterization

Here is my analysis. I think there are still some problems with this suspension.

Attachment #1: Time domain plots of the ringdown. The LL coil has peak response ~half of the other face OSEMs. I checked that the signal isn't being railed, the lowest level is > 100 cts.

Attachment #2: Complex TF from UL to the other coils. While there are four peaks now, looking at the phase information, it isn't possible to clearly disentangle PIT or YAW motion - in fact, for all peaks, there are at least three face shadow sensors which report the same phase. The gains are also pretty poorly balanced - e.g. for the 0.77 Hz peak, the magnitude of UR->UL is ~0.3, while LR->UL is ~3. Is it reasonable that there is a factor of 10 imbalance?

Attachment #3: Nevertheless, I assumed the following mapping of the peaks (quoted f0 is from a lorentzian fit) and attempted to find the input matrix that best convers the Sensor basis into the Euler basis.

DoF f0 [Hz]
POS 1.004
PIT 0.771
YAW 0.920
SIDE 0.967

Unsurprisingly, the elements of this matrix are very different from unity (I have to fix the normalization of the rows).

Attachment #4: Pre and post diagonalization spectra. The null stream certainly looks cleaner, but then again, this is by design so I'm not sure if this matrix is useful to implement.

Next steps:

  1. Repeat the actuator diagnonality test detailed here.
  2. ???

In case anyone wants to repeat the analysis, the suspension was kicked at 1828 PDT today and this analysis uses 15000 seconds of data from then onwards.

​Update 18 May 3pm:  Attachment #5 better presentation of the data shown in Attachment #2, the remark about the odd phasing of the coils is more clearly seen in this zoomed in view.  Attachment #6 shows Lorentzian fits to the peaks - the Qs are comparable to that seen for the other optics, although the Q for the 0.77 Hz peak is rather low.

Attachment 1: ETMY_sensors_timeDomain.pdf
ETMY_sensors_timeDomain.pdf
Attachment 2: ETMY_cplxTF.pdf
ETMY_cplxTF.pdf
Attachment 3: matrixDiag.png
matrixDiag.png
Attachment 4: ETMY_diagComp.pdf
ETMY_diagComp.pdf
Attachment 5: ETMY_cplxTF.pdf
ETMY_cplxTF.pdf
Attachment 6: ETMY_pkFitNaive.pdf
ETMY_pkFitNaive.pdf
  14620   Fri May 17 17:01:08 2019 gautamUpdateSUSETMY suspension characterization

To investigate my mapping of the eigenfrequencies to eigenmodes, I checked the Oplev spectra for the last few hours, when the Oplev spot has been on the QPD (but the optic is undamped).

  1. Based on Attachment #1, I can't figure out which peak corresponds to what motion.
    • The most prominent peak (judged by peak height) is at 0.771 Hz for both PITCH and YAW
    • Assuming the peak at 0.92 Hz is the other angular mode, the PIT/YAW decoupling is poor in both peaks, only ~factor of 2 in both cases.
  2. Why are the POS and SIDE resonances sensed so asymmetrically in the PIT and YAW channels? There's a factor of 10 difference there...

So, while I conclude that my first-contact residue removal removed a constraint from the system (hence the pendulum dynamics are accurate and there are 6 eigenmodes), more thought is needed in judging what is the appropriate course of action.

Attachment 1: etmy_oplevs.pdf
etmy_oplevs.pdf
  2280   Tue Nov 17 11:09:43 2009 KojiConfigurationSUSETMY suspension conencted to megatron ADC/DAC

I have connected ETMY sus electronics to megatron ADC/DAC.
We continue this state until 15:00 of today. (Restored 13:00)

  2281   Tue Nov 17 13:39:37 2009 KojiConfigurationSUSETMY suspension conencted to megatron ADC/DAC

0) Now the connection for the ETMY suspension was restored in a usual state. It damps well.

1) I thought it would be nice to have dataviewer and DTT working.
   So far, I could not figure out how to run daqd and tpman.
   - I tried to configure
    /cvs/cds/caltech/target/fb/daqdrc
    /cvs/cds/caltech/target/fb/master
    /cvs/cds/caltech/chans/daq/C1TST.ini
(via daqconfig)

   - I also looked at
    /cvs/cds/caltech/targetgds/param/tpchn_C1.par
   but I don't understand how it works. The entries have dcuids of 13 and 14 although C1TST has dcuid of 10.
   The file is unmodified.

   I will try it later when I got a help of the experts.

2) Anyway, I went ahead. I tried to excite suspension by putting some offset.

It seems to have no DAC output. I checked the timing signal. It seems that looks wrong clock.

   I looked at DAC output by putting 5000,10000,15000,20000,25000cnt to UL/UR/LR/LL/SD coils.
   I could not find any voltage out of the DAC in any channels.

   Then, I checked the timing signal. This clock seems to have wrong frequency.
   What we are using now is a clock with +/-4V@4MHz. (Differential)
   Maybe 4194304Hz (=2^22Hz)?

   I went to 1Y3 and checked the timing signal for 16K. This was +/-4V@16kHz. (Diffrential)

   The possible solution would be
   - bring a function generator at the end and try to input a single end 4V clock.
   - stretch a cable from 1Y3 to 1Y9. (2pin lemo)

Quote:

I have connected ETMY sus electronics to megatron ADC/DAC.
We continue this state until 15:00 of today.

 

  2282   Tue Nov 17 15:23:06 2009 KojiConfigurationSUSETMY suspension conencted to megatron ADC/DAC

OK. Now, Timing/ADC/DAC are working. It's almost there.

1) As a temporaly clock, I put a function generator at the back side of the ETMY.
Set it to the rectangular +/-4V@16384Hz. Connect it to D060064 PCIX Timing Interface Board in the IO Chasis.
That is a line receiver to feed the TTL signal into ADCs/DACs.

I confirmed the actual sampling clock is supplied to the ADC/DAC boards by looking at the SMB output of the D060064.

2) Restarted the realtime code.

3) I looked at DAC output by putting 5000,10000,15000,20000,25000cnt to UL/UR/LR/LL/SD coils again.
Yes! I could see the DAC channels are putting DC voltages.

4) Then I connected DAC CH0 to ADC CH0 using SCSI breaking up boards.
Yes! I could see the coil output switching change the ADC counts!

Now, we are ready to see the suspension damped. Check it out.

  2285   Tue Nov 17 21:10:30 2009 KojiConfigurationSUSETMY suspension conencted to megatron ADC/DAC

Koji, Rana

The megatron DAC was temporaly connected to the suspension electronics for the DAC test. We went down to ETMY as we could not excite the mirror.

The DAC is putting correct voltages to the channels. However, the anti imaging filter test output does not show any signal.
This means something wrong is there in the DAC I/F box or the cables to the AI circuit. We will check those things tomorrow.

The ETMY was restored to the usual configuration.

  2290   Wed Nov 18 11:27:33 2009 Koji, josephbConfigurationSUSETMY suspension conencted to megatron ADC/DAC

Quote:

Koji, Rana

The megatron DAC was temporaly connected to the suspension electronics for the DAC test. We went down to ETMY as we could not excite the mirror.

The DAC is putting correct voltages to the channels. However, the anti imaging filter test output does not show any signal.
This means something wrong is there in the DAC I/F box or the cables to the AI circuit. We will check those things tomorrow.

The ETMY was restored to the usual configuration.

 

It appears the front panel for the DAC board is mis-labeled.  Channels 1-8 are in fact 9-16, and 9-16 are the ones labeled 1-8.  We have put on new labels to reduce confusion in the future.

  2291   Wed Nov 18 12:33:30 2009 Koji, josephbConfigurationSUSETMY suspension conencted to megatron ADC/DAC

Hurraaaah!
We've got the damping of the suspension.
The Oplev loops has also worked!

The DAC channnel swapping was the last key!

DataViewer snapshot to show the damping against an artificial excitation was attached

Quote:

Quote:

Koji, Rana

The megatron DAC was temporaly connected to the suspension electronics for the DAC test. We went down to ETMY as we could not excite the mirror.

The DAC is putting correct voltages to the channels. However, the anti imaging filter test output does not show any signal.
This means something wrong is there in the DAC I/F box or the cables to the AI circuit. We will check those things tomorrow.

The ETMY was restored to the usual configuration.

 

It appears the front panel for the DAC board is mis-labeled.  Channels 1-8 are in fact 9-16, and 9-16 are the ones labeled 1-8.  We have put on new labels to reduce confusion in the future.

 

Attachment 1: Untitled.png
Untitled.png
  2293   Wed Nov 18 16:24:25 2009 peteConfigurationSUSETMY suspension conencted to megatron ADC/DAC

/cvs/cds/caltech/target/fb/daqd -c daqdrc

This starts the FB.

Now the dataviewer and DTT work!

Quote:

0) Now the connection for the ETMY suspension was restored in a usual state. It damps well.

1) I thought it would be nice to have dataviewer and DTT working.
   So far, I could not figure out how to run daqd and tpman.
   - I tried to configure
    /cvs/cds/caltech/target/fb/daqdrc
    /cvs/cds/caltech/target/fb/master
    /cvs/cds/caltech/chans/daq/C1TST.ini
(via daqconfig)

   - I also looked at
    /cvs/cds/caltech/targetgds/param/tpchn_C1.par
   but I don't understand how it works. The entries have dcuids of 13 and 14 although C1TST has dcuid of 10.
   The file is unmodified.

   I will try it later when I got a help of the experts.

2) Anyway, I went ahead. I tried to excite suspension by putting some offset.

It seems to have no DAC output. I checked the timing signal. It seems that looks wrong clock.

   I looked at DAC output by putting 5000,10000,15000,20000,25000cnt to UL/UR/LR/LL/SD coils.
   I could not find any voltage out of the DAC in any channels.

   Then, I checked the timing signal. This clock seems to have wrong frequency.
   What we are using now is a clock with +/-4V@4MHz. (Differential)
   Maybe 4194304Hz (=2^22Hz)?

   I went to 1Y3 and checked the timing signal for 16K. This was +/-4V@16kHz. (Diffrential)

   The possible solution would be
   - bring a function generator at the end and try to input a single end 4V clock.
   - stretch a cable from 1Y3 to 1Y9. (2pin lemo)

Quote:

I have connected ETMY sus electronics to megatron ADC/DAC.
We continue this state until 15:00 of today.

 

 

  15661   Fri Nov 6 11:36:37 2020 gautamUpdateGeneralETMY suspension eigenmodes

Attachment #1 shows the main result - there are 4 peaks. The frequencies are a little different from what I have on file for ETMY and the Qs are a factor of 3-4 lower (except SIDE) than what they are in vacuum, which is not unreasonable I hypothesize. The fits suggest that the peak shape isn't really Lorentzian, the true shape seems to have narrower tails than a Lorentzian, but around the actual peak, the fit is pretty good. More detailed diagnostic plots (e.g. coil-to-coil TFs) are in the compressed Attachment #2. The condition number of the matrix to diagonalize the sensing matrix (i.e. what we multiply the "naive" OSEM 2 Euler basis matrix by) is ~40, which is large, but I wouldn't read too much into it at this point.

I see no red flags here - the PIT peak is a little less prominent than the others, but looking back through the elog, this kind of variation in peak heights doesn't seem unreasonable to me. If anyone wants to look at the data, the suspension was kicked every ~1100seconds from 1288673974, 15 times.

Quote:
 

I'm measuring the free-swinging spectra of ETMY overnight. 

Attachment 1: ETMY_pkFitNaive.pdf
ETMY_pkFitNaive.pdf
Attachment 2: ETMY.tar.bz2
ELOG V3.1.3-