40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 100 of 354  Not logged in ELOG logo
IDup Date Author Type Category Subject
  4987   Tue Jul 19 09:19:14 2011 steveUpdateSUSPRM damping restored

The PRM watchdogs were tripped. The side was kicked up to 180mV Damping was restored.

  4988   Tue Jul 19 10:18:24 2011 ranaUpdateLSCBig ol' mess

Remember, as per our marker board conversation, that the resistor noise as excitation method only works if the gain of all of the channels is set to something high (like 45 dB).

At 0 dB, the resistor noise is only 30 nV/rHz, whereas the ADC noise is more like 10000 nV/rHz...

  4989   Tue Jul 19 10:54:14 2011 steveUpdateGenerallarge sensor card can not be found

Please return sensor card to  laser log box so others can use it. We have only one larger fluorescent sensor card.

  4990   Tue Jul 19 13:45:22 2011 SureshUpdateSAFETYPainful Voltage Regulator and Circuit-Testing Lessons

There is should be a few IDC connectors in the lab (and some ribbon cable) using which you can proceed with the testing of the circuit, if you prefer.  If not we can get them from our ever helpful electronics division at Downs.  In any case there is no need to lose time waiting for parts to arrive.

 

  4991   Tue Jul 19 20:36:08 2011 ranaUpdateComputersVirtualBox + Windows 7 on rossa

I installed Virtual Box on rossa. Then I put Windows 7 in there and am now installing Altium.

You can run Windows on rossa by just clicking Applications -> System Tools -> Virtual Box.

  4992   Tue Jul 19 21:05:55 2011 haixingUpdateDAQchoose the right relay

Rana and I are working on the AA/AI circuit for Cymac. We need relays to bypass certain paths in the circuit, and we just found a nice website
explaining how to choose the right relay:

http:/zone.ni.com/devzone/cda/tut/p/id/2774

This piece of information could be useful for others.

  4993   Tue Jul 19 23:39:11 2011 Jamie, JenneUpdateLSCMajor overhaul of LSC rack; binary switching of whitening filters now working

Yesterday we started going through the LSC binary whitening switching to make sure the new switching control in the LSC model was working.  Jenne and I hooked up a fancy home-brew white noise generator [0] into all of the LSC whitening filter inputs and started switching the whitening filters to see what would happen.  We found that some of the channels were switching, but the majority were not, or worse yet switching the wrong channels.  Upon closer inspection, and after finally finding the LSC wiring schematic, we found that the LSC rack cross-connect/back-plane cabling was pretty much a complete mess, and didn't at all correspond to the channel layout in Suresh's diagram.

Given that the back-plane wiring had to be almost completely redone, we decided to completely redo the LSC electronics layout, to be a little more self-consistent and to use the given space more efficiently.  We'll post an updated electronics drawing soon.  The LSC model was also updated to reflect the new layout.

We then went through and verified that all of the whitening switching was working with the new layout.  As described previously, the first filter in the PD input filter bank is used to control the switching.  We did indeed verify that all the switching is working, but we noticed that switching logic was inverted, such that the whitening filter engaged when the filter was turned off.  This was fixed in the model and all the switching logic was verified to be working as expected.

Everything has now been hooked back up, but we need to verify that we're getting all of the PD demodulated RF and DC outputs as expected.  We need to check the RF phases, as some of the RF cable lengths have changed.

[0] a 50k resistor

Links:

 

  4994   Wed Jul 20 06:17:04 2011 SureshUpdateGreen LockingY-end green laser power issues

The Y-end green beam power is 0.47 mW.

While aligning the Y-end aux laser light into the fiber we noticed that the green power out of the doubling crystal was in microwatts.  I checked to see what was the trouble and found that the oven was cold as the temperature controller had been disabled.  I enabled it and scanned the temperature to maximise the green output.  Yet the power is less than 10% of that at the X end (7mW).

To verify I checked the power of various beams on the Y-end table.  They are listed below in the picture

Y-end_table_powers.pdf

The green beam power is proportional to the square of the IR incident power and this explains the drop in green power by a factor of (210/730)^2  thus making 7 mW -->  0.5 mW.  However we may be able to double the power at the Y-arm oven if the uncoated lenses in the IR path are exchaned for coated ones. 

 

The green beam injection into the Y-arm cavity also needs to be cleaned up as noted here.  As seen in the picture below two of the mirrors which launch the beam into the arm cavity need to be fixed as well.

 Y-end_table.png




  4995   Wed Jul 20 06:36:39 2011 SureshUpdateIOOWFS1 and 2 gains

Gains of individual quadrants in both the WFS

As a simple check of the gains on all the quadrants I hooked up the AM (Jenne) laser to put FM modulated light on to the WFS heads and observed the FM modulation frequency , 105 Hz, show up on a power spectrum of the RF outputs.   The plots below show the peak at 105Hz in all the quadrants.

WFS1_7kHz_105Hz.pdf

WFS2_7kHz_105Hz.pdf

 

However I should have put in AM modulation rather FM modulation.  I will do that using the digital system today.  The first version above was done wth a Marconi driving the AM laser modulation.

 

 

  4996   Wed Jul 20 06:52:01 2011 SureshUpdateLSCABSL - PSL beat lock

The ABSL locking setup to the PSL is down. 

According the plan, I started to use the IR beam dumped after the doubling crystal for the IR beat lock (Sonali's project).  The beat lock was disturbed when I shifted some clamps to make way for a few mirrors.  So I set about fixing the beat lock.  I reobtained the lock but noticed that the net beam power reaching the Newfocus 1611 detector was around 15mW.  10mW from the ABSL and 5mW from PSL.

This is much too high as the maximum allowed on 1611 is 2mW. 

I therefore started to adjust the power levels by using  Y1-1064-45S mirrors at non-45 deg angles.  However Rana pointed out that this would lead to amplitude noise due to the mirror vibrations.  I then switched to using beam splitters as pick offs.   This is better than using neutral density filters since the back scatter is lower this way.

David wanted some of the ABSL beam for his SURF student.  So I changed the mirror after beam expanding telescope on the ABSL route to provide this power.  We also installed a pair of half wave plates and a PBS to allow us smooth power level control on this beam.

The beat lock setup is now down and needs to be completed for PRCL and SRCL measurements.

 

 

  4997   Wed Jul 20 10:10:19 2011 SonaliUpdateGreen LockingWeekly summary

 I finished wih the set-up at the ETMY table. Instead of the neutral Density Filter , I put in a mirror(Y1-1037-45S)  which is reflective for IR , so that only 1% of the light is incident on the fibre  as per Rana's suggestion.

Now, the power incident on the fibre is measured to be 6 mW and the power measured out of the fibre is 2.76 mW after the necessary alignments.

On the PSL able, I have routed the beam that is coming out of the back of the PMC(instead of the dumped light from the oven to prevent any light from reflecting back into the laser), to the area where I am putting the set-up for the superposition of the PSL and the ETMX and ETMY beams.

Today I will proceed with the layout.

  4998   Wed Jul 20 11:13:59 2011 Larisa ThorneUpdateelogI restarted the ELOG as it seemed to have crashed

 

  4999   Wed Jul 20 11:42:47 2011 Ishwita, ManuelUpdate Weekly summary
  • We gave a white-board presentation on derivation of formula for optimum Wiener filter coefficients and wrote a latex document for the same. relevant elog entry
  • We enjoyed drilling the cover of the AA board and fixing it.
  • The AA board was fixed on rack 1X7 with Jenne's help. relevant elog entry
  • We tried writing a simulation for the transfer function of the stacks in Matlab. Once we get some satisfying results, we will post it on the elog.
  • We started reading the book 'Digital Signal Processing - Alan V. Oppenheim / Ronald W. Schafer' and are still reading it. We also tried watching lecture videos on z-transform...
  5000   Wed Jul 20 12:05:08 2011 NicoleSummarySUSWeekly Summary

Since last week Wednesday, I have since found a Pomona Electronics box (thanks to Jenne)

to use for my photosensor head circuit (to house the LED and 2 photodiodes). Suresh has

shown me how to use the 9-pin Dsub connector punch, and I have punched a hole in this box

to attach the Dsub connector. 

 

Since this past entry regarding my mechanical design for the photosensor head (Photosensor Head Lessons),

I have modified the design to use a Teflon sheet instead of a copper PCB and I have moved the LED

and photodiodes closer together, upon the suggestions of Jamie and Koji.  The distance between

components is now 0.112" instead of the initial 0.28".  Last night, I cut the PCB board for the LED

and photodiodes and I drilled holes onto the PCB board and Teflon sheet so that the two may be

mounted to the metal plate face of the Pomona box.  I still need to cut the viewer hole for and

drill screws into the face plate.

P7200054.JPG

I have also been attempting to debug my photosensor circuit (box and LED/photodiode combination).

Since this last entry (Painful Votlage Regulator and Circuit Lessons), Suresh has helped me to get the parts

that I need from the Downs Electronics lab (15 wire ribbon cable, two 9 pin D-sub connectors M,

one 15 pin D-sub connector M, one 16 pin IDC connector). Upon the suggestion of Jamie, I have

also made additional safety changes to the circuit by fixing some of the soldering connections

so that all connections are done with wires (I had a few immediate lines connected with solder).

I believe the the photosensor circuit box is finally ready for testing. I may just need some help

attaching the IDC connector to the ribbon cable. After this, I would like to resume SAFELY

testing my circuit.

 P7200055.JPG

I have also been exploring SimMechanics. Unfortunately, I haven't been able to run the

inverted pendulum model by Sekiguchi Takanori. Everytime I attempt to run it, it says

there is an error and it shuts down Matlab. In the meanwhile, I have been watching

SimMechanics demos and trying to understand how to build a model. I'm thinking that

maybe once I figure out how SimMechanics works, I can use the image of his model

(I can see the model but it will not run) to construct a similar one that will hopefully work.

 

I have also been attempting to figure out the circuitry for the pre-assembled

accelerometer (made with the LIS3106AL chip).  I have been trying to use a multi-meter

to figure out what the components are (beyond the accelerometer chip, which I have

printed out the datasheet for), but have been unsuccessful at that. I have figured out

that the small 5 pin chip says LAMR and is a voltage regulator. I am hoping that if I can

find the data sheet for this voltage regulator, I can figure out the circuitry. Unfortunately,

I cannot find any datasheets for a LAMR voltage regulator. There is one by LAMAR, but

the ones I have seen are all much larger. Does anyone know what the miniature voltage

regulator below is called and if "LAMR" is short for "LAMAR"?

 

P7200056.JPG

 

  5001   Wed Jul 20 14:42:34 2011 steveUpdateSUSoplev gains today

C1:SUS-ETMX_OLPIT_GAIN set to 1.0     OLYAW 1.0

                ETMY                                     -0.2                   -0.2

                ITMY                                        2.0                    -2.0

                ITMX                                        0.5                     0.5

                  BS                                          0.4                    -0.4

                PRM                                         0.5                    -0.7

                SRM                                         1.0                     1.0

Earlier today Rana and I made power spectra of ETMY_OPLEV_ERROR signals with servo on and off.

It was indicating that the servo is not doing anything. These gain values were not set since IFO rebuilt.

Valera's entries were searched also. He did not do such thing. Rana may know where it is in the elog if it happened.

  5002   Wed Jul 20 17:43:33 2011 sureshUpdateComputersrestarted the frame builder

I restarted the frame builder in the last 15mins. 

I was making a change to a DAC channel in the C1IOO model.

  5003   Wed Jul 20 18:44:54 2011 KojiSummarySUSWeekly Summary

Find Frank and ask him about those components.

  5004   Wed Jul 20 19:24:12 2011 ranaUpdateSUSoplev gains today

I guess Valera forgot to elog it. Steve, please email him and get the info.

I started to check out the OL servos today so that our whole interferometer is not too floppy.

  • The ETMX OPLEV DAQ channels were not in the list. Jamie ran the activateDQ.py script and it came back. Right now, we have no diagnostics to know if people have run this or not so the frames will have missing data now and again depending on how forgetful the rebooters are. Perhaps we can get activateDQ put into the make file???
  • I turned ON all of the offset buttons on the OL1, etc. filter banks. This allows for the dark offsets to be set for the OL quadrants. With these buttons off it doesn't make any sense.
  • I noticed that there are white (INVALID) fields all over the OPTLEV_SERVO screens. This is just because the new SUS models have not captured all of the functionality of the old system. Needs fixing.

Untitled.png

Some of these OL spectra are not like the others...

 a.png

  5005   Wed Jul 20 19:48:03 2011 JamieUpdateSUSRe: oplev gains today

 

 We have been modifying models that need to have their channels renamed to run activateDQ when Joe's post_build_script to is run. 

The trick is to integrate things to get the post_build_script running after every model build (getting it hooked in to the make file somehow).  We're working on it.

 I've added the following epics channels to sus_single_control model using the epicsOutput part:

  • OL_SUM
  • OL_PITCH
  • OL_YAW

These channels are now all available.  I'm not exactly sure how to ensure that they're being trended.  I'll check that tomorrow.

  5006   Wed Jul 20 20:04:54 2011 JamieUpdateCDSC1:DAQ-FB0_C1XXX_STATUS sometimes unexplainably goes red

I have been noticing this happening occasionally, but I don't understand what is causing:

status-fb-red1.png

The channel in question above is C1:DAQ-FB0_C1SCX_STATUS.  This channel is (I believe) reporting some status of the front end model communication with the frame builder, but I'm not sure exactly what.

Usually this problem goes away when I restart the model or the frame builder, but it didn't work this time.  Tomorrow I will figure out what this channel means, why it's sporadically going red, and how to correct it.

  5007   Wed Jul 20 20:44:56 2011 JamieUpdateSUSAll sus models rebuilt and restarted

There were a couple of recent improvements to the sus_single_control model that had not been propagated to all of the suspension controllers.

Rebuilt and restarted c1mcs, c1sus, c1scx, and c1scy.  Everything seems to be working fine after restart.

  5008   Wed Jul 20 22:16:27 2011 Ishwita, ManuelUpdateElectronicslying seismometer cable and plugging it

We laid the cable along the cable keeper from the BACARDI seismometer to the rack 1X6, the excess cable has been coiled under the X arm.

We plugged the cable to the seismometer and to the seismometer electronics box in rack 1X6. We also plugged the AC power cable from the box to an outlet in rack 1X7 (because the 1X6 outlets are full)

With the help of a function generator we tested the following labeled channels of AA board...

2, 3, 11, 12, 14, 15, 16, 18, 19, 20 and 24

that are the channels that can be viewed by the dataviewer, also the channel 10 can be viewed but it's labeld BAD so we cannot use it.

We leveled the seismometer and unlocked it, and saw his X,Y,Z velocity signals with an oscilloscope.

  5009   Wed Jul 20 23:31:44 2011 SureshUpdateIOOMC Trans QPD is down

 

The mode cleaner is not locking because the MC Trans QPD signal is not present.  There is light on the QPD when the MC flashes and its position has not shifted.  The cable is plugged in well into the sensor head.  The signal cable is labled "MC2 Opt Lever"  and it arrives on the 1X4 rack along with other Optical Lever cables. Pressing the connector in did not solve the problem.

 

  5010   Thu Jul 21 09:04:59 2011 valera, steveUpdateSUSoplev gains were not optimized

 

Hi Steve,

 
I did change the ETMY optical lever configuration: http://131.215.115.52:8080/40m/4795
And I left it in that state per Jamie's request.
 
I was going to work on the servo tuning but found that the whitening was not working at that time.
What I was going to do is to measure the open loop gain to make sure the servo is stable, then 
measure the noise and minimize the rms motion by tuning the gain and the filter transfer function.
 
I plan to come to the 40m lab on August 22 for two weeks.
 
Valera.
  5011   Thu Jul 21 10:08:30 2011 steveUpdateSUSsus sensor summary

OSEM voltages to be corrected at upcoming vent: threshold ~ 0.7-1.2V, ( at 22 out of 50 )

ITMX_UL, UR, LL, LR, SD

ITMY_UL

ETMX_UL, UR, LL, LR, SD

ETMY_UL

SRM_UL, UR, LL

MC2_UR_SD

BS_UR, SD

MC3_UL, LR, LL

 

Attachment 1: sus_sensor.png
sus_sensor.png
  5012   Thu Jul 21 12:19:29 2011 Jamie, KiwamuUpdateIOOMC Trans QPD working, now locking

It turns out that the MC_TRANS_SUM signal was being derived from the SUS-MC2_OL_SUM_INMON channel in the ioo.db file. 

However, this channel name was recently changed to SUS-MC2_OLSUM_INMON (no underscore between OL and SUM) when

I added the new OL_SUM epics channel to the sus_single_control library model (I forgot to mention it in my previous log on this change,

apologies).  This is why there appeared to be no signal.  This was also what was preventing the mode cleaner from locking, since

the MC_TRANS_SUM signal is used as a trigger in the MC autolocker script.

We modified the ioo.db file at /cvs/cds/caltech/target/c1iool0/ioo.db [0,1] to change the name of the channel that the

C1:IOO-MC_TRANS_SUM signal is derived from.  The diff on the ioo.db file is:

--- /cvs/cds/caltech/target/c1iool0/ioo.db	2011-07-21 11:43:44.000000000 -0700
+++ /cvs/cds/caltech/target/c1iool0/ioo.db.2011Jul21	2011-07-21 11:43:36.000000000 -0700
@@ -303,7 +303,7 @@
 {
         field(DESC,"MC2 Trans QPD Sum")
         field(PREC,"1")
-        field(INPA, "C1:SUS-MC2_OLSUM_INMON")
+        field(INPA, "C1:SUS-MC2_OL_SUM_INMON")
         field(SCAN, ".1 second")
         field(CALC, "A+0.001")
 }

We then rebooted the c1iool0 machine, and when it came back up the MC_TRANS_SUM channel was showing the correct values.

We then found that the MC autolocker was not running, presumably because it had crashed after the channel rename?

In any event, we logged in to op340m and restarted the autolockerMCmain40m script.

The mode cleaner is now locked.

[0] Rana's log where this was initially defined

[1] All of the slow channel stuff is still in the old /cvs/cds/caltech path.  This needs to be fixed.

 

  5013   Thu Jul 21 16:05:15 2011 sureshUpdateIOOPSL beam into MC realigned

 I realigned the PSL beam going into the MC.

The MC beam was realigned so as to maximise the power in the MC.  I minimised the MC_RFPD_DCMON dial on the MC_ALIGN screen while adjusting the two zig-zag mirrors at the end of the PSL table.

  5014   Thu Jul 21 16:06:35 2011 steveUpdateSUSoplev gains today checked by conlog

 Present values agree with conlog records. It can be concluded that there were no big changes made. There are some 0.1-0.2 gain  and one polarity changes during the periods of Valera's visits.

 

  5015   Thu Jul 21 23:36:51 2011 JennyUpdate Fitting beam waist with MATLAB

I am starting work on the PSL table at the 40m. My goal is to lock the laser coming from the nearby table to the FP cavity and get a measurement of the response to a temperature step on the surrounding can.

I have to mode match the beam to the cavity. Specifically, I have to mode match to the beam coming from the PMC through the EOM to the polarizing beam splitter. Yesterday David and I measured the beam width at various distances (from a particular lens through which the beam traveled), and I fit that data using MATLAB to find the beam's waist size and location. However, I'm not convinced that the fit is any good, since we only took measurements at five spots and they had large error bars.

 

z (mm) 2w_vert (mm) 2w_horiz (mm)
180 4.68 3.38
230 4.64 3.49
305 4.68 3.47
370 5.1 3.81
510 5.5 4.17

Here is the fit I obtained using fminsearch. The horizontal beam width measurements were smaller than the vertical width measurements, suggesting that the incoming beam was elliptical. I fit the data for each set of measurements separately and got two waist locations. The red trace is the fit for the horizontal width and the blue represents the vertical width of the beam. Averaging the two fitted waist locations and sizes gives

vert z_0= -1760 mm (waist location)

horiz z_0= -1540 mm (waist location)

vert w_0 = 0.286 mm (waist size)

horiz  w_0 = 0.275 mm (waist size)

avg z_0= -1650 mm

avg w_0 = 0.281 mm

 

twobeamfit2.jpg

Here is the code I used:

I defined the function spotsize.m and then made a function gaussbeam.m that called it with input parameters and returned the least squares error. I then wrote another function twobeamfits.m that ran fminsearch to minimize the least squares error and made the above plot. I've pasted the code below.

spotsize

function omega = spotsize(z_0, w_0, z)
lambda=0.001064;
omega=w_0*(1+(lambda*(z-z_0)/(pi*w_0^2)).^2).^(1/2);

 

gaussbeam

function sse = gaussbeam(params,xvals,yvals)

%This f'n takes as its inputs
%three parameters (w_0, z_0, and lambda),
%a vector of x-values (distances),
%and an associated vector of y-values (spotsizes),


%It then generates a vector of fitted y-values by applying
%an exponential approach function (single pole), with the given parameters,
%to the x-values.

%It then returns the sum of the squares of the entries of the difference
%between the fitted y-vector and the actual y-vector

z_0=params(1);
w_0=params(2);
fityvals=spotsize(z_0, w_0, xvals);

error=(fityvals - yvals);% .*xvals;
% sse stands for sum of squares error
sse=sum(error.^2);

 

twobeamfits

function [outputs] = twobeamfits(guesses, dists, vert, horiz)


%This f'n takes as its inputs
%two starting guess parameters (w_0 and z_0),
%a vector of distances (x-values),
%and two associated vectors of measured beam radii,

%the radius measured along the vertical axis

%and the radius measured along a horizontal axis (y-values).

%It then calls the gaussbeam f'n for each set of y-values and minimizes its output (sum of squares error)
%using the fminsearch f'n. It outputs the fit parameters it settles on.

%It then plots the input data, the fitted curves, and the residuals


fminopts=optimset('TolFun',1e-6,'MaxIter', 100000);
vertparams=fminsearch(@gaussbeam,guesses,fminopts,dists,vert);
fitvert=spotsize(vertparams(1), vertparams(2), dists);
resid1=(vert-fitvert)./vert;
spoterror=[.1, .1, .1, .1, .1]; %uncertainties, all in mm

fminopts=optimset('TolFun',1e-6,'MaxIter', 100000);
horizparams=fminsearch(@gaussbeam,guesses,fminopts,dists,horiz);
fithoriz=spotsize(horizparams(1), horizparams(2), dists);
resid2=(horiz-fithoriz)./horiz;


points=linspace(-2000,1000,1000);
figure(1)
hold off
clf
subplot(2,1,1)
hold on
errorbar(dists, vert, spoterror, 'x')
grid
errorbar(dists, horiz, spoterror, 'r*');
plot(points,spotsize(vertparams(1), vertparams(2), points));
plot(points,spotsize(horizparams(1), horizparams(2), points),'r');
xlabel('Distance z (mm)')
title('Gaussian Beam Fits')
ylabel('Spotsize w (mm)')
legend('Vertical Spotsize','Horizontal Spotsize','Vertical Fit',...
    'Horizontal Fit','Location','SouthEast')
hold off

subplot(2,1,2)
plot(dists,resid1,'x')
hold on
plot(dists,resid2,'r*');
xlabel('Distance (z)')
title('Residuals')
ylabel('Fractional Difference')
legend('Vertical Fit Residuals','Horizontal Fit Residuals',...
    'Location','SouthEast')
grid

outputs=[vertparams horizparams];

 

 

 

Later on I may repeat some measurements and try to gain more certainty in my fit. In the mean time I will use this beam profile for mode matching. 

 

  5016   Fri Jul 22 10:13:41 2011 steveUpdateVACRGA scan at day 213
Attachment 1: pd70m213scan.jpg
pd70m213scan.jpg
  5017   Fri Jul 22 10:24:34 2011 steveUpdateVACpressure plot at day 213

Dec 21, 2010 we pumped down the MARK4 rebuilt 40m-IFO and the malev has been pumping on it since than

Attachment 1: p.jpg
p.jpg
  5018   Fri Jul 22 14:22:13 2011 Ishwita, ManuelUpdatePEMSTS-2 seismometer hardware testing

We have two STS-2 seismometer boxes... the blue box & the purple box. Initially we used the blue box for the STS-2 seismometer (named Bacardi by Jenne).

  • Oscilloscope powered on battery was used to test the blue box by observing the velocity output of the three axes (X, Y, Z).  It was found out that the mean value of DC volt of...

X = +10 V

Y = +11 V

Z = -0.1 V

Thus, X and Y axes showed abnormally high DC volt. It was also found out that in AC coupling mode of the oscilloscope... changes were observed in the signal received from Z axis when some seismic wave was generated near the Bacardi by jumping near it. No such changes were observed from signals received from X & Y axes.

  • We removed the blue box and used the purple box for the same Bacardi seismometer & used the oscilloscope powered on battery to test it. It was found out that the mean value of DC volt of...

X = +4.4 V

Y = +4.4 V

Z = +4.4 V

In Ac coupling mode of the oscilloscope... changes were observed in the signals from X, Y, Z axes when someone jumped near Bacardi.

  • The above voltages from the two STS-2 seismometer boxes are unsuitable for the ADC box since it works with voltages ranging from +2 V to -2 V.... meaning it will consider any voltage signal above +2 V as +2 V and any signal below -2 V as -2 V. Hence we need to find out how to use these STS-2seismometer boxes with the ADC box.
  • We also tried measuring the DC volt from the shield and the center of a BNC connector corresponding to Y axis of the purple box (lets call it 'BNC-test') by using BNC-to-banana adaptors and banana wires. Signal from shield of BNC-test was sent to oscilloscope's channel 1 (connected to center of its BNC connector) and signal from center of BNC-test was sent to oscilloscope's channel 2 (connected to center of its BNC connector). On the oscilloscope screen it was observed that both the signals gave the same mean voltage output (-2.2V).
  5019   Fri Jul 22 15:39:55 2011 haixingUpdateSUSmatching the magnets

Yi Xie and Haixing,

We used the Gauss meter to measure the strength distribution of bought magnets, which follows a nice Gaussian distribution.
We pick out four pairs--four fixed magnets and four for the levitated plate that are matched in strength. The force difference is
anticipated to be within 0.2%, and we are going to measure the force as a function of distance to further confirm this.

In the coming week, we will measure various transfer functions in the path from the sensors to the coils (the actuator). The obtained
parameters will be put into our model to determine the control scheme. The model is currently written in mathematica which can
analyze the stability from open-loop transfer function.

  5020   Fri Jul 22 17:01:41 2011 Iron ManFrogsGeneralProof that Alberto lived through his Iron Man!

Alberto_IronMan_small.jpgIronman Vineman 70.3 logo

print 208 Alberto Stochino 67/129 585/1376 36:02 1:52 830 6:41 2:38:58 21.1 296 4:58 56:33 2:13:40 - 5:40:19
 
  5021   Sat Jul 23 02:24:10 2011 SureshUpdateIOOrestarted the frame builder

I restarted the fb twice during the last 15mins.   This was after I added test points into the C1IOO/WFS1.mdl and C1IOO/WFS2.mdl.

  5022   Sun Jul 24 20:36:03 2011 haixingSummaryElectronicsAA filter tolerance analysis

Koji and Haixing,

We did a tolerance analysis to specify the conner frequency for passive low-pass filtering in the AA filter of Cymac. The
link to the wiki page for the AA filter goes as follows (one can have a look at the simple schematics):
http://blue.ligo-wa.caltech.edu:8000/40m/Electronics/BNC_Whitening_AA

Basically, we want to add the following passive low-pass filter (boxed) before connecting to the instrumentation amplifier:

low_pass.png

Suppose (i) we have 10% error in the capacitor value and (ii) we want to have common-mode rejection
error to be smaller than 0.1% at low frequencies (up to the sampling frequency 64kHz), what would be
conner frequency, or equivalently the values for the capacitor and resistor, for the low-pass filter?

Given the transfer function for this low-pass filter:
transfer_function.png     f0.png
and the error propagation equation for its magnitude:
error.png
we found that the conner frequency needs to be around 640kHz in order to have
DT.pngwith Dc.png
 



  5023   Sun Jul 24 20:47:21 2011 ranaSummaryElectronicsAA filter tolerance analysis

This is sort of OK, except the capacitor connects across the (+) terminals of the two input opamps, and does not connect to ground.

Also, we don't care about the CMRR at 64 kHz. We care about it at up to 10 kHz, but not above. The sample frequency of the ADC is 64 kHz, but all of the models run at 16 kHz or less, so the Nyquist frequency is 8 kHz.

And doesn't the value depend on the resistors?

  5024   Sun Jul 24 22:19:19 2011 haixingSummaryElectronicsAA filter tolerance analysis

 

>> This sort of OK, except the capacitor connects across the (+) terminals of the two input opamps, and does not connect to ground:

low_pass_new.png

 

>> Also, we don't care about the CMRR at 64 kHz. We care about it at up to 10 kHz, but not above.

In this case, the conner frequency for the low-pass filter would be around 100kHz in order to satisfy the requirement.


>>And doesn't the value depend on the resistors?

Yes, it does. The error in the resistor (typically 0.1%)  is much smaller than that of the capacitor (10%). Since the resistor error propagates in the same as the capacitor,
we can ignore it.

Note that we only specify the conner frequency (=1/RC) instead of R and C specifically from the tolerance analysis, we still need to choose appropriate
values for R and C with the conner frequency fixed to be around 100kHz, for which we need to consider the output impedance of port 1 and port 2.

 

 

  5025   Mon Jul 25 00:35:44 2011 ranaUpdateSUSsomething wrong with ETMY LR sensor

a.png

Looks like either the LR OSEM is totally mis adjusted in its holder or the whitening eletronics are broken.

Also looks like the ETMY is just not damped at 1 Hz? How can this be?

I look at the SUS_SUMMARY screen which apparently only Steve and I look at:

bad.png

Looks like the suspensions have factor of 10-100 different gains. Why?

**  The ETMY just doesn't behave correctly when I bias it. Both pitch and yaw seem to make it do yaw. I leave this for Jamie to debug in the morning.

***  Also, the BIAS buttons are still broken - the HOPR/LOPR limits ought to be 5000 and the default slider increment be 100. Also the YAW button readback doesn't correctly show the state of the BIAS.

****  And.....we have also lost the DAQ channels that used to be associated with the _IN1 of the SUSPOS/PIT/YAW filter modules. Please put them back; our templates don't work without them.

  5026   Mon Jul 25 11:02:19 2011 kiwamuSummaryGeneralWeekly report

 Summary of the week ending July 10th.  Number of elog entries = 21

- SUS

 + The cutoff frequency of the high pass filters for the damping were set to 30Hz.
 + Turned off all the BounceRoll filters.
 + The BS oplev was checked and seemed healthy.
 

- LSC


 + All the measred data of the LSC whitening filters were fit.
 + All the zpk parameters are recorded on the wiki.

- ABSL

 

+ The setup completed.  
 + The freqeucy-lock of the ABSL laser was achieved with UGF of ~ 40kHz.
 + The temperature of the ABSL laser was adjusted to be 47.25 deg
 

- ALS

 (Fiber experiment)
 + The I-P curve of the ETMY laser was measred.
 + The current set point is 1.8 [A], which used to be 1.5 [A], corresponding to the output of power of 197 [mW] and 390 [mW] respectively.
 

  5027   Mon Jul 25 11:04:22 2011 kiwamuSummaryGeneralWeekly report

Summary of the week ending July 17th.  Number of elog entries = 20

- LSC
 * BO switching logic for the WF was installed on c1lsc
 * Channel mapping updated

- SUS
 * Oplev health check. Spectrum of each quadrant on every suspension was inspected and looked healthy.

- OAF
 * BNS interface board was attached to an AA board
 * The AA board was installed on 1X7. The Electro-optic fanout chassis on 1X7 is now sitting on a jack, this should be fixed.

- Fiber experiment (ALS)
 * Fibre from the ETMX and EMTY tables were routed to the PSL table

- Misc.
 * Alberto came over to the 40m with Wagonga
 
  5028   Mon Jul 25 11:06:38 2011 kiwamuSummaryGeneralWeekly report

Summary of the week ending July 24th.  Number of elog entries = 45


- LSC
 * Check of LSC WF switching
  -> some were switching, but the majority were not.

- SUS
 * Ran activateDQ.py for seeting some DQ channels of Oplevs
 * Turned ON all the offset buttons on the OL1, etc.
 * Rebuilt and restarted c1msc, c1sus, c1scx and c1scy as an update.
 * ETMY's shadow sensors look bad. Unknown noise below 3 Hz, which is higher than the usual floor by factor of 10.

- ABSL
 * The frequency lock was down.
 * The laser power into the RFPD had been too big, so it was reduced

- OAF
 * Seismometers were connected to the AA-board on 1X6
 * Most of the channels were acquired to the ADC, but some were not.

- Mode Cleaner
 * Gain of quadrants were checked.
 * Due to the SUS model update, the MC locking trigger hasn't worked correctly. This was fixed by changing ioo.db file

- Misc.
 * Virtual box was installed on Rossa. Altium is now available on Rossa.

  5029   Mon Jul 25 11:46:28 2011 steveUpdateSUSETMY sus problem hunt

[Kiwamu / Steve]

We checked some electronics noise on the ETMY shadow sensor system.

Noise from the WF, AA board and ADC are below the shadow sensor spectra on ETMY.

It means something funny is going on in the upstream side (including the satelight box and shadow sensors)

OR the coil drivers side are going crazy ??

 

As Rana pointed out in his entry (#5025), the spectra of the shadow sensors on ETMY were quite bad below 3 Hz. The floor are higher than that of ETMX by factor of 10 or so.

To check if the noise comes from some of the electronics, we disconnected D15-sub from pd to whitening in.

The spectra with/without shadow sensors are attached below.

The curves in brown and green are the ones taken when the shadow sensors were disconnected from the WF board.

So these two curves represent the summed noise of the WF, AA and ADC.

This tells us to look toward the OSEM.

 

Attachment 1: ETMY_AA_ADC.png
ETMY_AA_ADC.png
  5030   Mon Jul 25 13:01:24 2011 kiwamuUpdateCDSc1ioo Make problem

[Suresh / Kiwamu]

HELP US Jamieeeeeeee !! We are unable to compile c1ioo.

 

It looks like something wrong with Makefile.

We ran make c1ioo -- this was successful every time. However make install-c1ioo doesn't run.

The below is the error messages we got.

        make install-target-c1ioo
        make[1]: Entering directory `/opt/rtcds/caltech/c1/core/branches/branch-2.1'
        Please make c1ioo first

Then we looked at Makefile and tried to find what was wrong. Then found the sentence (in 36th line from the top) saying

        if test $(site)no = no; then echo Please make $$system first; exit 1; fi;\

We thought the lack of the site-name specification caused the error.

So then we tried the compile it again with the site name specified by typing

     export site=c1

in the terminal window.

It went ahead a little bit further, but it still doesn't run all through the Make commands.

 

  5031   Mon Jul 25 13:09:39 2011 JamieUpdateCDSc1ioo Make problem

> It looks like something wrong with Makefile.

Sorry, this was my bad.  I was making a patch to the makefile to submit back upstream and I forgot to revert my changes.  I've reverted them now, so everything should be back to normal.

  5032   Mon Jul 25 17:16:02 2011 JamieUpdateSUSNow acquiring SUSXXX_IN1_DQ channels

> And.....we have also lost the DAQ channels that used to be associated with the _IN1 of the SUSPOS/PIT/YAW filter modules. Please put them back; our templates don't work without them.

I have (re?)added the SUS{POS,PIT,YAW,SIDE}_IN1_DQ channels.  I did this by modifying the activateDQ.py script to always turn them on [0].  They should now always be activated after the activateDQ script is run.

[0] This script now lives in the cds_user_apps repo at cds/c1/scripts/activateDQ.py

 

  5033   Mon Jul 25 18:51:38 2011 ManuelUpdatePEMSTS-2 seismometer hardware testing with Jan

[Jan, Manuel, Jenne]

Jenne called Jan to check and figure out why the Streckeisen seismometer (SN #100151) doesn't work, hence we checked the output of the seismometer boxes as we did last friday. (This is the problem of seeing the X and Y channels saturated, when we look at them on a floating 'scope, as in the linked elog entry.)

Jan unplugged and plugged again the orange cable into the seismometer and nothing happened.   Well, what Jan was listening for was "clicks" inside the seismometer indicating that it was receiving power.  We heard these, and moved on to examining the breakout boxes.  Also, we checked that we could hear the "clicks" (one per mass) when we pushed the mass-centering button on the little green companion box.

We weren't sure that the purple box was working properly, so since we had seen the blue box work last time, we changed the purple box with the blue box in rack 1X6.

The Z-channel of the purple box returns a correct signal, that means that all the masses in the seismometer work (because the Z-signal is a linear combination of the three masses U, V, W), the X and Y channel have a DC component of about 10 Volts, Jan said that the recentering of the seismometer masses could need all the night, so we keep the power of the box on. If tomorrow morning the X and Y signal won't  both be zero mean, we will open and check the box.

The power of the box is still on so that the masses can recenter overnight.

Edits by JD

  5034   Mon Jul 25 23:43:20 2011 ManuelHowToElectronicsManual for 1201 Low Noise Preamplifier

I found the manual for the Low Noise Preamplifier Model 1201 at this link and I attached it.

The one we have in the lab (S/N 48332) miss the battery packs and miss also the remote programming options input/output. Its inside battery compartment is empty and I found 2 unscrewed screws with washers and nuts inside the preamplifier box. The battery cable are disconnected and they have 2 green tape labels (-) and 2 red tape label (+).

 

 

Attachment 1: ITHACO_1201_Instruction_&_Maintenance.pdf
ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf ITHACO_1201_Instruction_&_Maintenance.pdf
Attachment 2: DSC_3249.png
DSC_3249.png
  5035   Tue Jul 26 03:15:52 2011 JenneUpdateLockingLatest MICH noise budget

[Jenne, Rana]

We had another look at the MICH noise budget tonight. Rana has verified that my techniques / math aren't too ridiculous. 

In the first attachment, you'll notice that the MICH noise is waay above the shot noise of 1mW on the beam splitter.  We don't know why.  One problem is that the modulation depth of the 55MHz is too low by ~a factor of 10.  Kiwamu and his magical resonant circuit are working on fixing this.  This will not, however, fix the huge discrepancy here.  More investigation and meditation is required!  For this measurement, the whitening gain of AS55 was set to 42dB for both I and Q.

In the 2nd attachment, the PSL shutter is closed, so all of these are dark measurements of AS55.  (The input matrix on the LSC screen is AS55Q * 1 -> MICH_IN1, so they're the same).  All we've done is change the whitening gain before the ADC.  For 0dB and 9dB, you can see that the low freq noise didn't change - here we're still limited by the ADC noise.  With 21dB and 42dB we're clear of the ADC, so either is fine.  Unfortunately, the high freq stuff when the loop is on matches up with the high freq part of the dark noise, so that's part of the problem....

Attachment 1: MICHnoise_shotNoise_25July2011.pdf
MICHnoise_shotNoise_25July2011.pdf
Attachment 2: MICH_darkNoise_whiteningGainChanging_25July2011.pdf
MICH_darkNoise_whiteningGainChanging_25July2011.pdf
  5036   Tue Jul 26 09:01:53 2011 JennyUpdateComputer Scripts / ProgramsMode matching

I found a mode matching solution to match the beam coming to the PSL table from the AP table so that I can lock the laser beam coming onto the PSL table to the reference cavity on the table. I determined that at the polarizing beam splitter, I want a beam with a q=(147+25.1i)mm (w0=58mm). This came from applying the ABCD matrices for three distances,

  • d1=693 mm,
  • d12=660.4 mm, and
  • d2=393.7 mm, separated
  • an f=229.1 mm planoconvex lens and
  • an R=300 mm curved mirror.

to a beam with q0 = 406.4i mm (w0=0.371 mm at the PMC).

I obtained the following mode matching solution, which I will try to implement on the PSL table:

The beam I have has waist 0.281 mm at -2.74 m (I set my origin at the polarizing beam splitter--the spot where I want my beam to match the beam coming from the PMC, so all waists are behind that point). These numbers  come from the beam-profiling and MATLAB-fitting I did (see 5015).

The solution I chose was: f = 1145.6 mm at -0.95 m and f = 572.7 mm at -0.62 m. This may need to be changed however, if I need to add in some beam steering, which would increase the path length traveled by the beam.

modematchparameters.png modematchpic.png

 

ELOG V3.1.3-