40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 22 of 348  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  38   Wed Oct 31 10:31:23 2007 Andrey RodionovRoutineVACVenting is in progress

We (Steve, David, Andrey) started venting the vacuum system at 9.50AM Wednesday morning.
  41   Wed Oct 31 19:26:08 2007 Andrey RodionovRoutineGeneralPhotographs of "Mode-Cleaner Entrance"

Here are the pictures of "inside the chamber".
Attachment 1: MC-Pictures-1.pdf
MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf MC-Pictures-1.pdf
Attachment 2: MC-Pictures-2.pdf
MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf MC-Pictures-2.pdf
Attachment 3: MC-Pictures-3.pdf
MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf MC-Pictures-3.pdf
Attachment 4: MC-Pictures-4.pdf
MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf MC-Pictures-4.pdf
Attachment 5: MC-Pictures-5.pdf
MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf MC-Pictures-5.pdf
Attachment 6: MC-Pictures-6.pdf
MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf MC-Pictures-6.pdf
Attachment 7: MC-Pictures-7.pdf
MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf MC-Pictures-7.pdf
Attachment 8: MC-Pictures-8.pdf
MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf MC-Pictures-8.pdf
Attachment 9: MC-Pictures-9.pdf
MC-Pictures-9.pdf MC-Pictures-9.pdf
  46   Thu Nov 1 16:34:47 2007 Andrey RodionovSummaryComputersLimitation on attachment size of E-LOG

I discovered yesterday when I was attaching photos that it is NOT possible to attach files whose size is 10Mb or more. Therefore, 10Mb or something very close to that value is the limit.
  47   Thu Nov 1 16:42:48 2007 Andrey RodionovSummaryEnvironmentEnd of Daylight Saving Time this weekend
Useful information for everyone, as a friendly reminder:

According to the web-page

http://www.energy.ca.gov/daylightsaving.html,

this coming weekend there will be the end of Daylight Saving Time.

Clocks will be adjusted backward one hour.
  50   Thu Nov 1 19:53:02 2007 Andrey RodionovBureaucracyPhotosTobin's picture
Attachment 1: DSC_0053.JPG
DSC_0053.JPG
  51   Thu Nov 1 19:53:34 2007 Andrey RodionovBureaucracyPhotosRobert's photo
Attachment 1: DSC_0068.JPG
DSC_0068.JPG
  52   Thu Nov 1 19:54:22 2007 Andrey RodionovBureaucracyPhotosRana's photo
Attachment 1: DSC_0120.JPG
DSC_0120.JPG
  53   Thu Nov 1 19:55:03 2007 Andrey RodionovBureaucracyPhotosAndrey's photo
Attachment 1: DSC_0055.JPG
DSC_0055.JPG
  54   Thu Nov 1 19:55:59 2007 Andrey RodionovBureaucracyPhotosAndrey, Tobin, Robert - photo
Attachment 1: DSC_0092.JPG
DSC_0092.JPG
  55   Thu Nov 1 19:58:07 2007 Andrey RodionovBureaucracyPhotosSteve and Tobin's picture
Attachment 1: DSC_0023.JPG
DSC_0023.JPG
  56   Thu Nov 1 20:03:00 2007 Andrey RodionovSummaryPhotosProcedure "Drop and Drag" in pictures
Attachment 1: DSC_0072.JPG
DSC_0072.JPG
Attachment 2: DSC_0083.JPG
DSC_0083.JPG
Attachment 3: DSC_0099.JPG
DSC_0099.JPG
Attachment 4: DSC_0100.JPG
DSC_0100.JPG
  489   Tue May 20 18:33:01 2008 Andrey, JohnConfigurationIOOMode Cleaner is locked again

It was noticed by Mr.Adhikari earlier today that the MC became unlocked at about 11AM.

There is no clear understanding what caused the problem.

Trying to restore the modecleaner locking, we noticed with John that the beam was not centered on the wavesensors (WFS1. WFS2 on the screen "C1IOO_LockMC.adl"). We decided to adjust the beam position moving slightly the bias sliders for pitch and yaw degrees of freedom for MC1.
This allowed to make the MC locked.

Old positions for the MC1 sliders: Pitch = 2.9934, Yaw = -0.6168;
New positions --------//---------: Pitch = 3.0604, Yaw = -0.7258.

At the same time, FSS for PSL is still showing the values in the range 0.720 - 0.750 which is lower than the usual values. The indicator for FSS value is yellow when it is below 0.750.
  64   Mon Nov 5 22:24:38 2007 Andrey, SteveOmnistructureVACPumping down goes smoothly

We (Steve and Andrey) started pumping down at 3.25PM today. At 9 PM we turned off the rotary pump, and turned on turbomolecular pumps.

By 10.10PM we reached the pressure 1 milliTorr, and the current status is "Vacuum Normal". We leave the turbopumps on for the night, and as it is pretty late for Steve, we are going home.

P.S. Steve was very displeased with the standard selection of "Type" of messages, he would like to extend that list.
  13686   Mon Mar 19 07:37:00 2018 Angelina PanSummary Proposed QPD Optical Arrangement

I am currently working on an optical arrangement consisting of a QPD that measures the fluctuations of an incoming HeNe laser beam that is reflected by a mirror. The goal is to add a second QPD to the optical arrangement to form a linear combination that effectively cancels out the (angular) fluctuations from the laser beam itself so that we can only focus on the fluctuations produced by the mirror.

In order to solve this problem, I have written a program for calculating the different contributions of the fluctuations of the HeNe laser and fluctuations from the mirror, for each QPD (program script attached). The goal of the program is to find the optimal combination of L0, L1, L2, and f2 that cancels the fluctuations from the laser beam (while retaining  solely the fluctuations from the mirror) when adding the fluctuations of QPD 1 and QPD 2 together. 

By running this program for different combinations of distances and focal lengths, I have found that the following values should work to cancel out the effects of the oscillations from the HeNe laser beam (assuming a focal length of 0.2 m for the lens in front of the original QPD):

  • L0 = 1.0000 m (distance from laser tube to mirror)
  • L1 = 0.8510 m (distance from mirror to lens in front of QPD 1)
  • L2 = 0.9319 m (distance from beamsplitter to lens in front of QPD 2)
  • f2 = 0.3011 m (focal length of lens in front of QPD 2)

Based on these calculations, I propose to try the following lens for QPD 2:

1’’ UV Fused Silica Plano-Convex Lens, AR-Coated: 350 - 700 nm (focal length 0.3011 m). https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6508

Attachment 1: angelinaCode.py.tar.bz2
  13699   Thu Mar 22 17:47:16 2018 Angelina PanSummary Proposed QPD Optical Arrangement
Attachment 1: IMG_0869.jpg
IMG_0869.jpg
  14476   Fri Mar 8 08:40:26 2019 AnjaliConfiguration Frequency stabilization of 1 micron source

The schematic of the homodyne configuration is shown below.

Following are the list of components

Item Quantity Availability Part number  Remarks
Laser (NPRO) 1 Yes    
Couplers (50/50) 5 3 No's FOSC-2-64-50-L-1-H64F-2 Fiber type : Hi1060 Flex fiber
Delay fiber  two loops of 80 m Yes PM 980

 

One set of fiber is now kept along the arm of the interferometer

InGaAs PD (BW > 100 MHz) 4 Yes NF1611

Fiber coupled (3 No's)

Free space ( 2 No's)

SR560 3 Yes    
  • The fiber mismatch between the couplers and the delay fiber could affect the coupling efficiency
Attachment 1: Homodyne_setup.png
Homodyne_setup.png
  14479   Thu Mar 14 23:26:47 2019 AnjaliUpdateALSALS delay line electronics

Attachment #1 shows the schematic of the test setup. Signal generator (Marconi) was used to supply the RF input. We observed the IF output in the following three test conditions.

  1. Observed the spectrum with FM modulation (fcarrier of 40 MHz and fmod of 221 Hz )- a peak at 221 Hz was observed.
  2. Observed the noise spectrum without FM modulation.
  3. Observed the noise spectrum after disconnecting the delayed output of the delay line. 
  • It is observed that the broad band noise level is higher without FM modulation (2) compared to that we observed after disconnecting the delayed output of the delay line (3).
  • It is also observed that the noise level is increasing with increase in RF input power. 
  • We need to find the reason for increase in broad band noise .
Attachment 1: test_setup_ALS_delay_line_electronics.pdf
test_setup_ALS_delay_line_electronics.pdf
  14481   Sun Mar 17 13:35:39 2019 AnjaliUpdateALSPower splitter characterization

We characterized the power splitter ( Minicircuit- ZAPD-2-252-S+). The schematic of the measurement setup is shown in attachment #1. The network/spectrum/impedance analyzer (Agilent 4395A) was used in the network analyzer mode for the characterisation. The RF output is enabled in the network analyser mode. We used an other spliiter (Power splitter #1) to splitt the RF power such that one part goes to the network analzer and the other part goes to the power spliiter (Power splitter #2) . We are characterising power splitter #2 in this test. The characterisation results and comparison with the data sheet values are shown in Attachment # 2-4.

Attachment #2 : Comparison of total loss in port 1 and 2

Attachment #3 : Comparison of amplitude unbalance

Attachment #4 : Comparison of phase unbalance

  • From the data sheet: the splitter is wideband, 5 to 2500 MHz, useable from 0.5 to 3000 MHz. We performd the measurement from 1 MHz to 500 MHz (limited by the band width of the network analyzer).
  • It can be seen from attachment #2 and #4 that there is a sudden increase below ~11 MHz. The reason for this is not clear to me
  • The mesured total loss value for port 1 and port 2 are slightly higher than that specified in the data sheet.From the data sheet, the maximum loss in port 1 and port 2 in the range at 450 MHz are 3.51 dB and 3.49 dB respectively. The measured values are 3.61 dB and 3.59 dB respectively for port 1 and port 2, which is higher than the values mentioed in the data sheet. It can also be seen from attachment #1 (b) that the expected trend in total loss with frequency is that the loss is decreasing with increase in frequency and we are observing the opposite trend in the frequency range 11-500 MHz. 
  • From the data sheet, the maximum amplitude balance in the 5 MHz-500 MHz range is 0.02 dB and the measured maximum value is 0.03 dB
  • Similary for the phase unbalance, the maximum value specified by the data sheet in the 5 MHz- 500 MHz range is 0.12 degree and the measurement shows a phase unbalance upto 0.7 degree in this frequency range
  • So the observations shows that the measured values are slighty higher than that specified in the data sheet values.
Attachment 1: Measurement_setup.pdf
Measurement_setup.pdf
Attachment 2: Total_loss.pdf
Total_loss.pdf
Attachment 3: Amplitude_unbalance.pdf
Amplitude_unbalance.pdf
Attachment 4: Phase_unbalance.pdf
Phase_unbalance.pdf
  14482   Sun Mar 17 21:06:17 2019 AnjaliUpdateALSAmplifier characterisation

The goal was to characterise the new amplifier (AP1053). For a practice, I did the characterisation of the old amplifier.This test is similar to that reported in Elog ID 13602.

  • Attachment #1 shows the schematic of the setup for gain characterisation and Attachment #2 shows the results of gain characterisation. 
  • The gain measurement is comparable with the previous results. From the data sheet, 10 dB gain is guaranteed in the frequency range 10-450 MHz. From our observation, the gain is not flat pver this region. We have measured a maximum gain of 10.7 dB at 6 MHz and it has then decreased upto 8.5 dB at 500 MHz
  • Attachement #3 shows the schematic of the setup for the noise characterisation and Attachment # 4 shows the results of noise measurment. 
  • The noise measurement doesn't look fine. We probably have to repeat this measurement.
Attachment 1: Gain_measurement.pdf
Gain_measurement.pdf
Attachment 2: Amplifier_gain.pdf
Amplifier_gain.pdf
Attachment 3: noise_measurement.pdf
noise_measurement.pdf
Attachment 4: noise_characterisation.pdf
noise_characterisation.pdf
  14504   Sun Mar 31 18:39:45 2019 AnjaliUpdateAUXAUX laser fiber moved from AS table to PSL table
  • Attachment #1 shows the schematic of the experimental setup for the frequency noise measurement of 1 um laser source.

  • AUX laser will be used as the seed source and it is already coupled to a 60 m fiber (PM980). The other end of the fiber was at the AS table and we have now removed it and placed in the PSL table.

  • Attachment # 2 shows the photograph of the experimental setup. The orange line shows the beam that is coupled to the delayed arm of MZI and the red dotted line shows the undelayed path.

  • As mentioned, AUX is already coupled to the 60 m fiber and the other end of the fiber is now moved to the PSL table. This end needs to be collimated. We are planning to take the same collimator from AS table where it was coupled into before. The position where the collimator to be installed is shown in attachment #2. Also, we need to rotate the mirror (as indicated in attachment #2) to get the delayed beam along with the undelayed beam and then to combine them. As indicated in attachment #2, we can install one more photo diode to perform  balanced detection.

  • We need to decide on which photodetector to be used. It could be NF1801 or PDA255.

  • We also performed the power measurement at different locations in the beam path. The different locations at which power measurement is done is shown attachment #3

  • There is an AOM in the beam path that coupled to the delayed arm of MZI. The output beam after AOM was coupled to the zero-order port during this measurement. That is the input voltage to the AOM was at 0 V, which essentially says that the beam after the AOM is not deflected and it is coupled to the zero-order port. The power levels measured at different locations in this condition are as follows. A)282 mW B)276 mW C)274 mW D)274 mW E)273 mW F)278 mW G)278 mW H)261 mW I)263 mW J)260 mW K)131 mW L)128 mW M)127 mW N)130 mW

  • It can be seen that the power is halved from J to K. This because of a neutral density filter in the path of the beam

  • In this case, we measured a power of 55 mW at the output of the delayed fiber. We then adjusted the input voltage to the AOM driver to 1 V such that the output of AOM is coupled to the first order port. This reduced the power level in the zero-order port of AOM that is coupled to the delayed arm of the MZI. In this case we measured a power of 0.8 mW at the output of delayed fiber.

  •  We must be careful about the power level that is reaching the photodetector such that it should not exceed the damage threshold of the detector.

  • The power measured at the output of undelayed path is 0.8 mW.

  • We also must place the QWP and HWP in the beam path to align the polarisation.

Quote:

[anjali, gautam]

To facilitate the 1um MZ frequency stabilization project, I decided that the AUX laser was a better candidate than any of the other 3 active NPROs in the lab as (i) it is already coupled into a ~60m long fiber, (ii) the PSL table has the most room available to set up the readout optics for the delayed/non-delayed beams and (iii) this way I can keep working on the IR ALS system in parallel. So we moved the end of the fiber from the AS table to the SE corner of the PSL table. None of the optics mode-matching the AUX beam to the interferometer were touched, and we do not anticipate disturbing the input coupling into the fiber either, so it should be possible to recover the AUX beam injection into the IFO relatively easily.

Anjali is going to post detailed photos, beam layout, and her proposed layout/MM solutions later today. The plan is to use free space components for everything except the fiber delay line, as we have these available readily. It is not necessarily the most low-noise option, but for a first pass, maybe this is sufficient and we can start building up a noise budget and identify possible improvements.

The AUX laser remians in STANDBY mode for now. HEPA was turned up while working at the PSL table, and remains on high while Anjali works on the layout.

 

Attachment 1: Schematic_of_experimental_setup_for_frequency_stabilisation_of_1_micron_source.png
Schematic_of_experimental_setup_for_frequency_stabilisation_of_1_micron_source.png
Attachment 2: 1_micron_setup_for_frequency_noise_measurement.JPG
1_micron_setup_for_frequency_noise_measurement.JPG
Attachment 3: 1_micron_setup_for_frequency_noise_measurement_power_levels.png
1_micron_setup_for_frequency_noise_measurement_power_levels.png
  14518   Fri Apr 5 11:40:57 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • Attachment #1 shows the present experimental setup. The photodiode is now replaced with PDA255. The farther end of the fiber (output of the delayed arm) is coupled through a collimator and aligned such that the beam from the delayed path fall on the detector along with the undelayed path of MZI. We tried to measure the frequency noise of the laser with this setup, but we didn’t get anything sensible.
  • One of the main draw backs of the measurement was the polarisation was not aligned properly in the setup. So, then the next step was to identify the polarisation at different locations in the beam path and to maximise the polarisation to either S or P component.

  • So, we introduced HWP at the input beam path after isolator as shown in attachment #1. Also, the polarisation was tested at positions P1, P2, P3, and P4 shown in attachment #1 by placing a polarisation beam splitter at these locations and then by observing the transmitted (P component) and reflected light (S component) using power meter.

  • The observations at different locations are as the follows

Position Input power (mW) P component (mW) S component (mW)
P1 279 145 123
P2 255 113 137
P3 129 67 58
P4 124 66 53

 

  • These observations show that the P and S components are almost equal, and this is not a good polarisation arrangement. At this point, we also had to check whether the incoming beam is linearly polarised or not.

  • To test the same, the PBS was placed at position P1 and the P and S components were observed with power meter as the HWP is rotated.Attachment # 2 shows the results of the same, that is the variation in P and S component as the HWP is rotated.

  • This result clearly shows that the input beam is linearly polarised. The HWP was then adjusted such that the P component is maximum and coupled to the MZI. With this orientation of HWP, the polarisation observed at different positions P1, P2, P3, and P4 are as follows.

Position Input (mW) P component (mW) S component (mW)
P1 283 276 5
P2 248 228 7
P3 126 121 2
P4 128 117 1
  • This shows that the polarisation is linearly polarised as well as it is oriented along the P direction (parallel to the optical table).

  • We have the polarisation maintaining fiber (PM 980) as the delay fiber. The polarisation of the light as it propagates through a PM fiber depends on how well the input beam is coupled to the axis (slow or fast) of the fiber. So, the next task was to couple the light to one of the axes of the fiber.

  • The alignment key on the fiber is a good indication of the axis of the fiber. In our case, the alignment key lines up with the slow axis of the fiber. We decided to couple the light to the fast axis of the fiber. Since the incoming beam is P polarised, the output fiber coupler was  aligned such that the fast axis is parallel to optical table as possible.

  • A PBS was then introduced after the fiber output collimator . There is a HWP (marked as HWP2 in attachment 1) in front of the input coupler of the fiber as well. This HWP was then rotated and observed the P and S component from the PBS that is now placed after the output coupler with a power meter.The idea was , when the light is coupled to the fast axis of the fiber, we will see the maximum at the P componet at the output

  • Attachment # 3 shows the observation. 

  • In this way I tried to find the orientation of the HWP2 such that the P component is maximum at the output. But I was not succeeded in this method and observed that the output was fluctuating when the fiber was disturbed. One  doubt we had was whether the fiber is PM or not . Thus we checked the fiber end with fiber microscope and confirmed that it is PM fiber. 

  • Thus, we modifed the setup as shown in attachement # 4.The photodetector (PDA55) was monitoring the S component and the output of the detector was observed on an oscilloscope. We rotated the HWP2 such that the S component is almost minimum. At the same time, we were disturbing the fiber and was observing whether the output is fluctuating. The HWP2 angle was tweaked around the minimum of S component and observed the output with disturbing the fiber. This way we found the orientation of HWP2  such that the light is coupled to the fast axis of the fiber and the output was not fluctuating while we disturb the fiber. We tested it  by heating the fiber with a heat gun as well and confirmed that the output is not fluctuating and thus the light is coupled to the fast axis of the fiber.

Attachment 1: Modified_experimental_setup.JPG
Modified_experimental_setup.JPG
Attachment 2: Checking_polarisation.pdf
Checking_polarisation.pdf
Attachment 3: Checking_the_polarisation_alignment_of_the_delay_fiber.pdf
Checking_the_polarisation_alignment_of_the_delay_fiber.pdf
Attachment 4: Setup_to_test_the_polarisation_alignment_of_delay_fiber.JPG
Setup_to_test_the_polarisation_alignment_of_delay_fiber.JPG
  14520   Sat Apr 6 02:07:40 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • The alignment of the output beam from the delayed path of MZI to the photodetector was disturbed when we did the polarisation characterisation yesterday. So, today we tried to align the output beam from the delayed path of MZI to the detector .
  • We then observed the beat output from the detector on oscilloscope.We initialy observed a dc shift . We then applied a frequency modulation on the input laser and observed the output on oscilloscope. We expected to see variation in output frequency in accordance with variation of input frequency modulation. But we didnt observe this and we were not really getting the interference pattern. 
  • We tried to make the alignment better. With a better alignment, we could see the interference pattern. We also observed that the output frequency was varying in accordance with variation in the input frequency modulation. We would expect a better result with proper mode matching of the two beams on the photodetector.
  14529   Wed Apr 10 00:33:09 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source
  • Attachement #1 shows the input (ch4-green) modulation frequency and the photodiode output (ch1-yellow) when the modulation frequency is about 100 Hz
  • Attachement #2 shows the input (ch4-green) modulation frequency and the photodiode output (ch1-yellow) when the modulation frequency is about 30 Hz
  • The output frequency is varying in accordance with variation in modulation frequency. It is observed that, for a given modulation frequency also, the output frequency is fluctuating. There could be multiple reasons for this behaviour. One of the main reasons is the frequency noise of the laser itself. Also, there could be acoustic noise coupled to the system (eg, by change in length of the fiber).
  • The experimental setup is then modified as shown in attachment #3. The thick beam spliiter is replaced with a thinner one. The mount is also changed such that the transmitted beam can be now coupled to an other photodiode (earlier  the transmitted light was blocked by the mount). One more photodiode (PDA55) is introduced .So now the two photodiodes in the setup are PDA520 and PDA 55. 
  • We then applied frequency modulation on the input laser and observed the output of the two photodiodes. But we didn't get the results as we expected and observed earlier (shown in attachment #1 &2). Looks like, the problem is poor mode matching between the two beams. 
Quote:
  • The alignment of the output beam from the delayed path of MZI to the photodetector was disturbed when we did the polarisation characterisation yesterday. So, today we tried to align the output beam from the delayed path of MZI to the detector .
  • We then observed the beat output from the detector on oscilloscope.We initialy observed a dc shift . We then applied a frequency modulation on the input laser and observed the output on oscilloscope. We expected to see variation in output frequency in accordance with variation of input frequency modulation. But we didnt observe this and we were not really getting the interference pattern. 
  • We tried to make the alignment better. With a better alignment, we could see the interference pattern. We also observed that the output frequency was varying in accordance with variation in the input frequency modulation. We would expect a better result with proper mode matching of the two beams on the photodetector.
Attachment 1: Modulation_frequency_100Hz.jpg
Modulation_frequency_100Hz.jpg
Attachment 2: Modulation_frequency_30Hz.jpg
Modulation_frequency_30Hz.jpg
Attachment 3: Modified_setup.JPG
Modified_setup.JPG
  14534   Thu Apr 11 09:05:06 2019 AnjaliUpdateIOOSpooled fiber
  • Attchment #1,2,3 and 4 shows the results with frequency modulation of 32 Hz, 140 Hz , 300 Hz and without frequency modulation. I am trying to understand these results better.
  • A lot of fringing is there even when no modulation is applied. We hope to improve this by spooling the fiber and then encasing it in a box. 
  • As mentioned by Gautam, we have got a 50 m spooled fiber. Attachment #5 shows the photo of the same
Quote:

Steve had showed me some stock of long fibers a while back - they are from Oz Optics, and are 50m long, and are already spooled - so barring objections, we will try the MZ setup with the spooled fiber and see if there is any improvement in the fringing rate of the MZ. Then we can evaluate what additional stabilization of the fiber length is required. Anjali will upload a photo of the spooled fiber.

Attachment 1: Frequecy_modulation_32_Hz.pdf
Frequecy_modulation_32_Hz.pdf
Attachment 2: Frequecy_modulation_140_Hz.pdf
Frequecy_modulation_140_Hz.pdf
Attachment 3: Frequecy_modulation_300_Hz.pdf
Frequecy_modulation_300_Hz.pdf
Attachment 4: Without_modulation.pdf
Without_modulation.pdf
Attachment 5: New_fiber_spool.JPG
New_fiber_spool.JPG
  14540   Fri Apr 12 01:22:27 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

The alignement was disturbed after the replcement of the beam splitter. We tried to get the alignment back . But we are not succeeded yet in getting good interfernce pattern. This is mainly because of poor mode matching of two beams. We will also try with the spooled fiber.

Quote:

 

  • The experimental setup is then modified as shown in attachment #3. The thick beam spliiter is replaced with a thinner one. The mount is also changed such that the transmitted beam can be now coupled to an other photodiode (earlier  the transmitted light was blocked by the mount). One more photodiode (PDA55) is introduced .So now the two photodiodes in the setup are PDA520 and PDA 55. 
 
 
  14571   Thu Apr 25 03:32:25 2019 AnjaliUpdateFrequency noise measurementMZ interferometer ---> DAQ
  • Attachment #1 shows the time domain output from this measurement. The contrast between the maximum and minimum is better in this case compared to the previous trials.
  • We also tried to extract the frequency noise of the laser from this measurement. Attachment #2 shows the frequency noise spectrum. The experimental result is compared with the theoretical value of frequency noise. Above 10 Hz, the trend is comparable to the expected 1/f characteristics, but there are other peak also appearing. Similarly, below 10 Hz, the experimentally observed value is higher compared to the theory.
  • One of the uncertainties in this result is because of the length fluctuation of the fiber. The phase fluctuation in the system could be either because of the frequency noise of the laser or because of the length fluctuation of the fiber.  So,one of the reasons for the discrepancy between the experimental result and theory could be because of  fiber length fluctuation. Also, there were no locking method been applied to operate the MZI in the linear range.
  • The next step would be to do a heterodyne measurement. Attachment #3 shows the schematic for the heterodyne measurement. A free space AOM can be inserted in one of the arms to do the frequency shift. At the output of photodiode, a RF heterodyne method as shown in attachment #3 can be applied to separate the inphase and quadrature component. These components need to be saved with a deep memory system. Then the phase and thus the frequency noise can be extracted.
  • Attachment #4 shows the noise budget prepared for the heterodyne setup. The length of the fiber considered is 60 m and the photodiode is PDA255. I also have to add the frequency noise of the RF driver and the intensity noise of the laser in the noise budget.
Quote:
  1. Delay fiber was replaced with 5m (~30 nsec delay)
    • The fringing of the MZ was way too large even with the free running NPRO (~3 fringes / sec)
    • Since the V/Hz is proportional to the delay, I borrowed a 5m patch cable from Andrew/ATF lab, wrapped it around a spool, and hooked it up to the setup
    • Much more satisfactory fringing rate (~1 wrap every 20 sec) was observed with no control to the NPRO
  2. MZ readout PDs hooked up to ALS channels
    • To facilitate further quantitative study, I hooked up the two PDs monitoring the two ports of the MZ to the channels normally used for ALS X.
    • ZHL3-A amps inputs were disconnected and were turned off. Then cables to their outputs were highjacked to pipe the DC PD signals to the 1Y3 rack
    • Unfortunately there isn't a DQ-ed fast version of this data (would require a model restart of c1lsc which can be tricky), but we can already infer the low freq fringing rate from overnight EPICS data and also use short segments of 16k data downloaded "live" for the frequency noise measurement.
    • Channels are C1:ALS-BEATX_FINE_I_IN1 and C1:ALS-BEATX_FINE_Q_IN1 for 16k data, and C1:ALS-BEATX_FINE_I_INMON and C1:ALS-BEATX_FINE_I_INMON for 16 Hz.

At some point I'd like to reclaim this setup for ALS, but meantime, Anjali can work on characterization/noise budgeting. Since we have some CDS signals, we can even think of temperature control of the NPRO using pythonPID to keep the fringe in the linear regime for an extended period of time.

Attachment 1: Time_domain_output.pdf
Time_domain_output.pdf
Attachment 2: Frequency_noise.pdf
Frequency_noise.pdf
Attachment 3: schematic_heterodyne_setup.png
schematic_heterodyne_setup.png
Attachment 4: Noise_budget_1_micron_in_Hz_per_rtHz.pdf
Noise_budget_1_micron_in_Hz_per_rtHz.pdf
  14576   Thu Apr 25 15:47:54 2019 AnjaliUpdateFrequency noise measurementHomodyne v Heterodyne

My understanding is that the main advantage in going to the heterodyne scheme is that we can extract the frequecy noise information without worrying about locking to the linear region of MZI. Arctan of the ratio of the inphase and quadrature component will give us phase as a function of time, with a frequency offset. We need to to correct for this frequency offset. Then the frequency noise can be deduced. But still the frequency noise value extracted would have the contribution from both the frequency noise of the laser as well as from fiber length fluctuation. I have not understood the method of giving temperature feedback to the NPRO.I would like to discuss the same.

The functional form used for the curve labeled as theory is 5x104/f. The power spectral density (V2/Hz) of the the data in attachment #1 is found using the pwelch function in Matlab and square root of the same gives y axis in V/rtHz. From the experimental data, we get the value of Vmax and Vmin. To ride from Vmax to Vmin , the corrsponding phase change is pi. From this information, V/rad can be calculated. This value is then multiplied with 2*pi*time dealy to get the quantity in V/Hz. Dividing V/rtHz value with V/Hz value gives  y axis in Hz/rtHz. The calculated value of shot noise and dark current noise are way below (of the order of 10-4 Hz/rtHz) in this frequency range. 

I forgor to take the picture of the setup at that time. Now Andrew has taken the fiber beam splitter back for his experiment. Attachment #1 shows the current view of the setup. The data from the previous trial is saved in /users/anjali/MZ/MZdata_20190417.hdf5

 

Quote:

If I understand correctly, the Mach-Zehnder readout port power is only a function of the differential phase accumulated between the two interfering light beams. In the homodyne setup, this phase difference can come about because of either fiber length change OR laser frequency change. We cannot directly separate the two effects. Can you help me understand what advantage, if any, the heterodyne setup offers in this regard? Or is the point of going to heterodyne mainly for the feedback control, as there is presumably some easy way to combine the I and Q outputs of the heterodyne measurement to always produce an error signal that is a linear function of the differential phase, as opposed to the sin^2 in the free-running homodyne setup? What is the scheme for doing this operation in a high bandwidth way (i.e. what is supposed to happen to the demodulated outputs in Attachment #3 of your elog)? What is the advantage of the heterodyne scheme over applying temperature feedback to the NPRO with 0.5 Hz tracking bandwidth so that we always stay in the linear regime of the homodyne readout?

Also, what is the functional form of the curve labelled "Theory" in Attachment #2? How did you convert from voltage units in Attachment #1 to frequency units in Attachment #2? Does it make sense that you're apparently measuring laser frequency noise above 10 Hz? i.e. where do the "Dark Current Noise" and "Shot Noise" traces for the experiment lie relative to the blue curve in Attachment #2? Can you point to where the data is stored, and also add a photo of the setup?

 

Attachment 1: Experimental_setup.JPG
Experimental_setup.JPG
  14578   Thu Apr 25 18:14:42 2019 AnjaliUpdatePSLDoor broken

It is noticed that one of the doors (door # 2 ) of the PSL table is broken. Attachement #1 shows the image

Attachment 1: IMG_6069.JPG
IMG_6069.JPG
  14579   Fri Apr 26 12:10:08 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

From the earlier results with homodyne measurement,the Vmax and Vmin values observed were comparable with the expected results . So in the time interval between these two points, the MZI is assumed to be in the linear region and I tried to find the frequency noise based  on data available in this region.This results is not significantly different from that we got before when we took the complete time series to calculate the frequency noise. Attachment #1 shows the time domain data considered and attachment #2 shows the frequecy noise extracted from that. 

As discussed, we will be trying the heterodyne method next. Initialy, we will be trying to save the data with two channel ADC with 16 kHz sampling rate. With this setup, we can get the information only upto 8 kHz. 

Attachment 1: Time_domain_data.pdf
Time_domain_data.pdf
Attachment 2: Frequency_noise_from_data_in_linear_region.pdf
Frequency_noise_from_data_in_linear_region.pdf
  14586   Tue Apr 30 17:27:35 2019 AnjaliUpdateFrequency noise measurementFrequency noise measurement of 1 micron source

We repeated the homodyne measurement to check whether we are measuring the actual frequency noise of the laser. The idea was to repeat the experiment when the laser is not locked and when the laser is locked to IMC.The frequency noise of the laser is expected to be reduced at higher frequency  (the expected value is about 0.1 Hz/rtHz at 100 Hz ) when it is locked to IMC . In this measurement, the fiber beam splitter used is Non PM. Following are the observations

1. Time domain output_laser unlocked.pdf : Time domain output when the laser is not locked. The frequency noise is estimated from data corresponds to the linear regime. Following time intervals are considered to calculate the frequency noise (a) 104-116 s (b) 164-167 s (c) 285-289 s

2. Frequency_noise_laser_unlocked.pdf: Frequency noise when the laser is not locked. The model used has the functional form of 5x104/f as we did before. Compared to our previous results, the closeness of the experimental results to the model is less from this measurement. In both the cases, we have the uncertainty because of the fiber length fluctuation. Moreover, this measurement could have effect of polarisation fluctuation as well.

3.Time domain output_laser locked.pdf :Time domain output when the laser is locked. Following time intervals are considered to calculate the frequency noise (a) 70-73 s (b) 142-145 s (c) 266-269 s. 

4. Frequency_noise_laser_locked.pdf : Frequency noise when the laser is locked

5. Frequency noise_comparison.pdf : Comparison of frequency noise in two cases. The two values are not significantly different above 10 Hz. We would expect reduction in frequency noise at higher frequency once the laser is locked to IMC. But this result may indicate that we are not really measuring the actual frequency noise of the laser.

Attachment 1: Homodyne_repeated_measurement.zip
  14616   Fri May 17 10:12:07 2019 AnjaliSummaryEquipment loanBorrowed component

I borrowed one Marconi (2023 B) from 40 m lab to QIL lab.

  8183   Wed Feb 27 14:39:59 2013 AnnalisaUpdateLSCFibre laid for RFPD audio

 [Annalisa, Jenne, Rana, Steve]

We installed the fibres on cable trays the 1Y2 and the Control Room.

Still to do: find a power supply for the Fiboxes and plug everything in.

  8190   Wed Feb 27 19:27:29 2013 AnnalisaHowToCOMSOL TipsMirror support Eigenfrequency

 I studied the eigenfrequencies of a mirror support using COMSOL.

 

Attachment 1: IronSupport.png
IronSupport.png
Attachment 2: IronSupportEigenfreq.png
IronSupportEigenfreq.png
  8226   Mon Mar 4 20:03:42 2013 AnnalisaHowToCOMSOL TipsStudy of mirror mount eigenfrequencies

 I studied the eigenfrequencies of a mirror mount designed with COMSOL.

I imposed fixed constraints for the base screws and for the screw connecting the base with the pedestal. Note that the central screw is connected to the base only for a small thickness, and the pedestal touches the base only with a thin annulus. This is in way to make a better model of the actual stress.

Shown in fig. 2 is the lowest eigenfrequency of the mount.

I' going to change the base and study the way the eigenfrequency vary, in way to find the configuration which minimizes the lowest eigenfrequency.

 

Attachment 1: MirrorSupport1.png
MirrorSupport1.png
Attachment 2: MirrorSupportEig1.png
MirrorSupportEig1.png
Attachment 3: pedestal.png
pedestal.png
Attachment 4: Base2.png
Base2.png
  8244   Wed Mar 6 18:51:07 2013 AnnalisaUpdateAlignmentAuxiliary laser installed for FSR and TMS measurement of the PRC

We want to measure the g-factor of the PRC using the beat note of the main laser with an auxiliary NPRO laser.

We are going to phase lock the NPRO to the main laser (taking it from POY) and then we will inject the NPRO  through the AS edge of the ITMY.

Today Sendhil and I installed the auxiliary laser on the ITMY table moving it from the AS table.

We also installed the beam steering optics, except the BS which will launch the beam through the AR edge of the ITMY.

To do: install the BS, take the POY beam and mix it with the auxiliary laser on a photodiode to phase lock the two lasers, do better calculations for the mode matching optics to be used for the auxiliary laser beam.

Attachment 1: IMG_3-6-13.JPG
IMG_3-6-13.JPG
  8257   Fri Mar 8 12:57:57 2013 AnnalisaUpdateABSLBS installed on ITMY table

 Sendhil and I installed the S polarized BS on the ITMY table to steer the NPRO beam through the AR wedge and align it to the POY beam. 

We took a shutter from the BSPRM table (which was not used) and a beam dump from the AS table (which was used by the auxiliary laser already removed and installed on the ITMY).

To do: do better alignment of the NPRO beam, maybe installing some iris after the BS and before the AS wedge, phase lock the two beams. 

  8303   Mon Mar 18 12:02:12 2013 AnnalisaConfigurationABSLABSL setup for g-factor measurement of PRC
Motivations
The ABSL technique has been already used in the past to measure the absolute length of the interferometer's optical cavities by means of an auxiliary laser source, as described in LIGO-P1200048-v3 and in Alberto Stochino thesis work.
Using the same technique it is possible to measure the g-factor of the power recycling cavity by measuring the cavity Transverse Mode Spacing.
 
Plan for experimental setup
The auxiliary laser is set on the POY table and is injected through the ITMY window in way to follow the same path of the POY beam. It hits the AR wedge of ITMY and is reflected back to the BS and the PRM.
 
Since the main beam is P-polarized, all the optics in the central IFO are P-polarization dependent, so it is useful to P-polarize the auxiliary beam before it enters the IFO.  
I made a mode matching calculation with a la mode script, in order to mode match the auxiliary beam waist to the waist of the main laser.
However, before ordering and installing steering optics and mode maching lenses, I'm waiting to know whether someone has an NPRO laser to install on the END table in place of the broken one, otherwise the one I'm using could be taken.
In this case a possibility could be to take the auxiliary beam from the end table with an optical fiber, but it means to use the auxiliary laser alternately to lock the arm or make a measurement of TMS. If so, a new calculation for the mode matching needs to be done.
Anyway, I hope that another laser will be found!
 
In order to phase lock the auxiliary beam with the main beam, the latter will be taken from the PSL table after the PMC through a single mode fiber, which will be brought up to the POY table. This solution results to be more reliable then taking the POY beam to phase lock the two laser, because POY is related to the locking. 
 
The signal with the beat note between the two lasers can be detected by the transmission from PR2 (POP). 
 
 
 
  8305   Mon Mar 18 12:35:29 2013 AnnalisaBureaucracyAuxiliary lockingYend table upgrade - go fetch NPRO from ATF

Quote:

Zach has just replied, and said that we should feel free to take the laser from his iodine setup in the West Bridge subbasement, in the ATF lab. 

Annalisa, please ask Koji or Tara to show you where it is, and help you bring it to the 40m.  You should install it (temporarily) on the PSL table, measure the waist, and find the beat in IR.  Elog 3755 and elog 3759 have some of the details on how it has been done in the past.

 Ok, I'm going to contact Koji.

  8308   Mon Mar 18 20:13:18 2013 AnnalisaBureaucracyAuxiliary lockingYend table upgrade - go fetch NPRO from ATF

Quote:

1) Annalisa is going to start  working on mode profiling and beat note search for the old MOPA NPRO.

2) In the meantime, Manasa is working on the end table items. This will be reviewed by KA in the afternoon.

The laser at ATF is moved to the 40m when the status of 1) and 2) is determined by KA to be reasonable.

We also make the beat note measurement for the ATF laser too.
 

Today I installed mirrors to steer the pick-off from the main laser beam in a more free part of the PSL table and make the beat note measurement between it and the NPRO.

At the beginning I took the beam from the harmonic separator after the doubling crystal, and I was going to bring it in a less full part of the table . At the end I realized that there was already a beam steered up to a more free part of the table, and the beam is taken from the transmission of the PMC.

Tomorrow I'm going to use that beam to find the beat note with the NPRO.

I also removed almost all the steering  optics that I used on the ITMY table to send the auxiliary beam for ABSL through the window parallel to the POY beam. The most important thing is that I removed the BS, which was on the same path of the POY beam (see elog 8257).

 

  8313   Tue Mar 19 20:24:56 2013 AnnalisaUpdateAuxiliary lockingAuxiliary laser on PSL table

 I moved the auxiliary laser from the ITMY table to the PSL table and installed all the optics (mirrors and lenses) to steer the beam up to a PDA55 photodiode, where also the pick-off of the PSL is sent.

Tomorrow I'm going to measure the beat note between the two.

  8322   Thu Mar 21 09:53:46 2013 AnnalisaUpdateLockingFinding the beat note

 Yesterday I tried to find the beat note between the main PSL and the auxiliary NPRO, but I didn't :( 

Today I will do a better alignment of the two beams in the PD and try again.

  8327   Thu Mar 21 13:11:42 2013 AnnalisaUpdateLockingFinding the beat note

Quote:

Give us more info on the elog:
What PD are you using? How much power the beams on the recombining BS are? What kind of BS is it?
How are you looking for the beat note? (on the scope? or spectrum analyzer?)
What was the scanned temp range?

Three points to be checked:

- Polarization

- Alignment

- Temperature

Experimental Setup

I'm using a 1611 New Focus PD (1 GHZ, with maximum input power 1mW), and the total power hitting on the PD is of about 0.650 mW.

The current of the NPRO laser is set to 1.38 A, so that the input power is 19 mW. The beam is initially damped by a 10% reflection BS and then it hits a 33% reflection BS (where it recombines with the PSL pick-off beam) with 2 mW power.

After this second BS the power is reduced to 0.592 mW.

The PSL pick-off hits on the 33% reflection BS with 65.5 uW power, and it exit with a 47 uW power.

I connected a power supply to apply a Voltage to the slow frequency BNC, in way to tune the laser frequency.

I'm using the AGILENT 4395A Spectrum analyzer to make the measurement. I tried to use the HEWELETT PACKARD 8591E spectrum analyzer, but the monitor didn't turn on.

The temperature spanned until now in only of about 10 deg C, because I realized that I needed a better alignment, so I added a lens in front of the PD and I did a better alignment. 

Moreover, the current of the laser is too low, so I need to increase it and add more beam splitters in the beam path to dump the beam, in way to don't reach the PD threshold.

I knew that both the beams are s-polarized, but maybe I can check it again.

Attachment 1: Beat_note_setup.jpg
Beat_note_setup.jpg
  8329   Thu Mar 21 14:02:45 2013 AnnalisaUpdateLockingincident angles

Quote:

Is there a reason to use non-45 degree incident angles on the steering mirrors between the laser and the PD?  I would always use 45 degree incident angles unless there is a really good reason not to.

 Actually not, it is a mistake! It is one of the things I'm going to modify, in addition to add more BS to reduce the power. 

  8333   Fri Mar 22 23:23:38 2013 AnnalisaUpdateLockingBeat note still missing

[Annalisa, Manasa, Koji]

I updated the setup for the beat note. The main reason is that I needed to keep the ADJ to 0 in way to operate at the nominal laser power.

Now the input power of the laser is increased (about 315 mW) and needs to be dumped so as not to exceed the PD threshold of 1mW. 

Moreover, a lens has been added to match the two beams size.

A BS has been removed from the PSL pick-off beam path, so the PSL power hitting the BS is now about 100 uW, and the total power on the PD is 0.7mW.

I also verified that both the beams are S polarized.

To find the beat note, the laser temperature has been varied  through the laser controller and not adding a Voltage with the power supply.

A range of temperature of 30 degC has been spanned, but we suppose there should be some calibration problem with the controller, since set temperature is not the same as Laser temperature on the display. 

Anyway, no beat note has been found up to now.

 

An external monitor has to be added to check the real temperature of the crystal.

The next possible plan is to vary the PSL temperature and try to find the beat note. 

 

P.S.: The HEWELETT PACKARD 8591E spectrum analyzer works! The monitor only took some time to turn on!

 

Attachment 1: Beat_note_-_new_setup.jpg
Beat_note_-_new_setup.jpg
  8345   Mon Mar 25 23:20:57 2013 AnnalisaSummaryAuxiliary lockingBeat note found!

[Annalisa, Manasa]

The beat note between the main PSL and the auxiliarly NPRO has been found!

The setup didn't change with respect to the one described on the previous note on the elog. A multimeter has been connected to the laser controller diagnostic pin to read out the voltage that indicated the laser crystal temperature.

The connector has been taken from the Yend table laser controller.

The voltage on the multimeter gave the same temperature shown by "Laser temperature" on the display of the controller, while "set temperature" was wrong.

The temperature has been varied using the laser controller with reference to the voltage read on the multimeter display.

Starting from 35.2 °C, the temperature has been first lowered until 20 °C and no beat note has been found, then temperature has been increased up to 35.2 °C and the first beat note has been found at 38.0 °C.

It has been detected at a frequency of about 80 MHz with an RF power of -27 dBm and a frequency fluctuation of about  +/- 4 MHz.

To do:

I made more measurements slowly varying the laser temperature, to see how the beat note frequency changes with it. I'll make the plot and post it as soon.

  8361   Wed Mar 27 21:53:21 2013 AnnalisaUpdateABSLBeat note of ATF auxiliary laser

After measuring the beat note, the "Alberto" NPRO auxiliary laser has been moved from the PSL table to the POY table. Its beam profile is going to be measured. It's going to be used as green laser on the END table, in place of the broken one.

The auxiliary laser borrowed form ATF lab (which will be used for the ABSL measurement) has been set on the PSL table to make a measurement of the beat note between it and the main laser.

The setup is mostly the same of the previous beat note measurement . In this case, laser input power is 326 mW, so I needed to replace one of the mirrors of the steering optics with a BS 50% reflecting in order to have less than 1 mW on the PD.

Now, the total power on the PD is less than 0.5 mW.

I didn't measure the beat note yet to leave the PSL table as quite as possible for the locking procedures.

To do:

Measure the beat note, fiber coupling the NPRO laser to bring it to the POY table.

 

  8368   Thu Mar 28 19:32:22 2013 AnnalisaSummaryAuxiliary lockingBeat note found!

 

 I plot the variation of the beat note frequency as a function of "Alberto" NPRO laser's temperature.

After some discussion, now I'm going to vary the PSL temperature and find the auxiliary NPRO temperature matching to have the beat note between the two.

Attachment 1: BeatFreq.jpg
BeatFreq.jpg
  8369   Thu Mar 28 23:00:30 2013 AnnalisaUpdateABSLBeat note of ATF auxiliary laser found

 

The beat note for the ATF lab laser has been found. 

The measurement has been carried out in the same way as described in elog 8368.

The only difference is that in this case I started from a temperature of 35.2 degC, and I reduced it until the minimum which was 30.71 degC. No beat note in this range.

Then I rised on the temperature and I found the first beat note at 41.46 degC. It has been detected at a frequency of about 120 MHz with an RF power of -53 dBm and a frequency fluctuation of about  +/- 5 MHz. 

I tried to improve the alignment to have a stronger beat, but it was the maximum I could reach. Maybe I could increase the power hitting the photodiode, which was 0.453 mW. 

 

 

  8370   Thu Mar 28 23:06:48 2013 AnnalisaUpdateAuxiliary locking"Alberto" NPRO laser again on PSL table

 "Alberto"NPRO laser has been moved again on PSL table in order to make a measurement of the beat note varying also the PSL temperature.

It is useful because if the PSL temperature would drift  we have to know which is the NPRO temperature that returns the beat.

I'm going to measure it tomorrow.

 

 

  8386   Mon Apr 1 23:22:17 2013 AnnalisaUpdateAuxiliary lockingBeat note between "Alberto" NPRO laser and PSL laser

I measured the beat note between the "Alberto" NPRO laser and the PSL varying the PSL temperature and find the matching NPRO temperature that gave the beat.

I first switched off the FSS loop for the PSL, then I varied its temperature and switched on the loop back.

PSL temperature has been varied starting from 31.88 °C (its starting temperature) down to 23.88 by 1°C step, and then from 31.88 °C up to 36.92 °C, always with a 1°C step.

For each PSL temperature, the NPRO temperature was varied as well, in way to find the temperature to have a beat note between the two.

The trend of the NPRO laser temperature reminds the frequency change of the laser as a function of the crystal temperature continuous tuning.

I made measurements only for the first temperature of the NPRO laser which gave me the beat note. Tomorrow I'm going to find the beat note also for higher frequencies of the NPRO laser.

 

Attachment 1: Beat_Note.jpg
Beat_Note.jpg
ELOG V3.1.3-