40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 289 of 348  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  3701   Tue Oct 12 23:35:12 2010 mafaldaUpdateComputerscelan-installed CentOS 5.5 on mafalda

Quote:

I clean-installed CentOS 5.5(32bit) on mafalda.
No firewalls, no SELinix.

 Yuta has removed my ethernet connection. Help me!!!

rossa:mDV>ping mafalda
PING mafalda.martian (192.168.113.23) 56(84) bytes of data.
From rossa.martian (192.168.113.215) icmp_seq=2 Destination Host Unreachable
From rossa.martian (192.168.113.215) icmp_seq=3 Destination Host Unreachable
From rossa.martian (192.168.113.215) icmp_seq=4 Destination Host Unreachable

--- mafalda.martian ping statistics ---
5 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3999ms
, pipe 3

  10461   Fri Sep 5 16:25:36 2014 SteveUpdateSUScenter ITMY oplev

Quote:

The SRM qpd was moved to accommodate the HeNe laser qualification test for LIGO Oplev use.

The qpd was saturating at 65,000 counts of 3 mW

ND1 filter lowering the power by 10 got rid of saturation. I epoxied an adapter ring to the qpd.

Atm3 was taken before saturation was realized with Koji's help.

Atm4 ND1 on SRM qpd. Now it is working and everything is moving.

 

 ITMY oplev should be centered. I worked too much around it.

  6700   Tue May 29 10:08:21 2012 steveUpdateIOOcentered IOO monitoring qpds

IOO Angle & IOO Position QPDs centered.

Attachment 1: 40dtrendIOO.png
40dtrendIOO.png
Attachment 2: IOOcentered.png
IOOcentered.png
  9347   Tue Nov 5 17:12:34 2013 SteveUpdateLSCcentered qpds

 Full list tomorrow: IP-Ang & Pos, ETMY-T, ETMY-Oplev, ETMX-T, IOO-Ang & Pos

 RA: No one in the control room this evening can understand what this ELOG means. Please use more words.

Attachment 1: recentered.png
recentered.png
  5233   Sun Aug 14 20:04:40 2011 Keiko, Anamaria, Jenne, and KiwamuSummaryLockingcentral part ifo locking plan
GOAL : To lock the central part of ifo

Here is the plan:

Mon - assemble all the cables from PDs and mixers, and check the CDS channels. Prepare the beamsplitters.

Tue - The current paths to REFL11 and REFL55 will be modified to the four paths to REFL11, 33, 55, 165. And the PDs will be placed.
Wed, Thu - during waiting for the ifo available with vacuum, help aligning the POP, POX, POY. In parallel, a simulation to find the PRC length SRC 
length tolerance will be proceeded.

Fri - When the ifo becomes available with vacuum, the sensing signals by 3-f scheme will be obtained with proper demodulation phases.

Sat - Try to lock the central part of the ifo with the new 3-f signals.
  5243   Mon Aug 15 21:43:29 2011 Anamaria and KeikoSummaryLockingcentral part ifo locking project

 REFL33 and REFL165 cables were connected from the AP table to the rack.  Cables on the rack for REFL33I, 33Q, 165I, 165Q ports were connected, too. Connections were confirmed by the data viewer. Two SMA cables which will be used for the two PDs on the AP tabl were built. We will be able to place the two PDs tomorrow. The beamsplitters to split the laser to REFL33 and REFL165 ports were mounted and ready to be placed.

  7327   Fri Aug 31 10:24:36 2012 SteveUpdateVACchamber dog clamps checked

Quote:

I tightened as many of the dog clamps on the bottom of the BS, ITMX and ITMY chambers as I could find.  I used a torque wrench at 45 ft-lbs.  Some of the bolts of the dogs were too long, and I couldn't find an extender thing to accommodate the bolt so I could reach the nut.  None of the bolts moved that I was able to reach.

Steve, we're not doing final final alignment today (we will do it tomorrow), so please go around and double-check my work by checking all of the dogs first thing in the morning.  Thanks.

 Almost all chamber dog clamps on the floor checked. There are a few exception where it is impossible to to get to the nut. 

Only the OOC nuts turned little bit. So our elastomer discs are holding up well. This means that the chamber anchoring to the floor is good.

  7373   Wed Sep 12 08:16:49 2012 SteveConfigurationPEMchamber must be sealed overnight!

Quote:

We conducted a beam scan on the AP table of the AS beam. We used a lens to focus the beam onto a power meter, and slowly moved a razor blade across the beam using a micrometer, vertically and horizontally both in front of and behind the beam. We also had to block the beam next to the AS beam in order to do this, but is unblocked now. Mike will begin curve fitting the data to try and see if there is a different spot size given by the x-axis vs. the y-axis, and if the lens has any effect.

 The vacuum envelope must be sealed with light doors on o-rings to insure a bug free IFO.  This was a violation!

  5975   Tue Nov 22 04:02:47 2011 kiwamuUpdateIOOchanged MC alignment

I have changed the MC2_YAW DC bias because the PZT1_YAW was railing.

I also realigned the steering mirrors in zig-zag path since the mode cleaner tended to resonate with higher order modes after I have changed the MC2 bias.

  C1:SUS-MC2_YAW_COMM =  -1.1548    => -1.1208

  7459   Mon Oct 1 19:21:03 2012 ranaConfigurationPEMchanged PEM DQ channels

Changed the list of channels to be written to frames from having the IN1 suffix to OUT. Now we can load the calibration of the channel into the filter module and the DQ channel will be calibrated.

We should do this wherever possible so that our channels will have real calibrations associated with them.
SEIS_GUR1_X_OUT 256
SEIS_GUR1_Y_OUT 256
SEIS_GUR1_Z_OUT 256
SEIS_GUR2_X_OUT 256
SEIS_GUR2_Y_OUT 256
SEIS_GUR2_Z_OUT 256
SEIS_STS_1_X_OUT 256
SEIS_STS_1_Y_OUT 256
SEIS_STS_1_Z_OUT 256
SEIS_STS_2_X_OUT 256
SEIS_STS_2_Y_OUT 256
SEIS_STS_2_Z_OUT 256
SEIS_STS_3_X_OUT 256
SEIS_STS_3_Y_OUT 256
SEIS_STS_3_Z_OUT 256
MIC_1_OUT 2048
MIC_2_OUT 2048
MIC_3_OUT 2048
MIC_4_OUT 2048
MIC_5_OUT 2048
MIC_6_OUT 2048
ACC_MC1_X_OUT 2048
ACC_MC1_Y_OUT 2048
ACC_MC1_Z_OUT 2048
ACC_MC2_X_OUT 2048
ACC_MC2_Y_OUT 2048
ACC_MC2_Z_OUT 2048
XARM_DIFFERENTIAL_MOTION_IN1 256
XARM_DIFFERENTIAL_MOTION_OUT 256
YARM_DIFFERENTIAL_MOTION_IN1 256
YARM_DIFFERENTIAL_MOTION_OUT 256

Next we should up the rate at which the model runs up to 16 kHz so that we can record the microphones at 16 kHz. FM radio has information up to 20 kHz. AM radio goes up to ~8 kHz. We should be at least as modern as AM radio. How do we make the change? How do we make sure the FOTON file stays OK?

I have made some changes to the daily summary file to compensate. New files is /users/public_html/40m-summary/share/c1_summary_page.ini.

  7488   Fri Oct 5 01:36:49 2012 DenConfigurationPEMchanged PEM DQ channels

Quote:

We should do this wherever possible so that our channels will have real calibrations associated with them.

Next we should up the rate at which the model runs up to 16 kHz so that we can record the microphones at 16 kHz. FM radio has information up to 20 kHz. AM radio goes up to ~8 kHz. We should be at least as modern as AM radio. How do we make the change? How do we make sure the FOTON file stays OK?

 I've added calibration gains to Guralp (to um/sec) and EM172 (to Pa) channels.

We can run PEM at 16 kHz. I think Foton file stores both sos-representation and filter commands which are independent of the sampling frequency, so it should be possible to change model sampling frequency quickly.

In fact, we can save data at 64 kHz from iop models. I've done this once with MC_F channel. However, I did not test EM172 noise at frequencies > 1 kHz.

  5397   Tue Sep 13 19:12:53 2011 SureshUpdateComputer Scripts / Programschanges to the c1ioo, c1mcs and c1rfm

[Suresh, Jamie]

The new versions of these three models have been committed to the svn.  I copy below the svn log I wrote over there.

I edited three models,namely c1ioo, c1mcs and c1rfm to bring four channels from C1MCS model into the
 C1IOO model through the RFM.

We plan to use the MC2-Trans-QPD as a third sensor in addition to the WFS1 and WFS2 in the ASC system so that we can sense all the six degrees of freedom of the MC.  However the MC2-Trans_QPD is a new incarnation of the old MC2 Oplev QPD and its four segments are are picked up in the c1mcs model running on the C1SUS machine.  Since we need these    in the C1IOO machine we    had to port these signals via the RFM.  The    changes    I made to these    models are described below:
1) c1rfm.mdl -->  I added several cds parts to carry these four    channels from c1mcs to c1ioo via c1rfm

2) c1mcs.adl -->  In the MC2 block of c1mcs I cut out the structure which converts the four segments of the  QPD in the pitch, yaw and sum signals and copied it to the c1ioo model.     In the    c1mcs I  grounded the input of the oplev signals just as they are in    the MC1    and MC2    suspension blocks. I then routed the ADC channels associated with the oplev QPD signals to the rfm model.

3) c1ioo.mdl --> I have made extensive changes to the c1ioo model to include the third sensor in the WFS feedback loop.  The six lockins in the model are used to excite the MC mirrors and the signals from WFS and QPD can be demodulated to determine the input or output matrices in the WFS feedback.  A sensor_demod_array permits us to select the signals we wish to demodulate. The MCL signal, used in the MC_ASS and A2L measurements, is retained as one of the signals.  The MC_TRANS_SUM was used several in  scripts and to preserve the continuity with this channel name we inserted three EPICS parts to generate a slow channel by the same name from this model.

Since the MC_TRANS_SUM is used in the MC-autolocker script we checked to make sure that the script is running after we recompiled all the three models and restarted them.  It is all fine.

  1982   Thu Sep 10 17:47:25 2009 JenneUpdateComputerschanges to the startass scripts

[Rana, Jenne]

While I was mostly able to restart the c1ass computer earlier today, the filter banks were acting totally weird.  They were showing input excitations when we weren't putting any, and they were showing that the outputs were all zero, even though the inputs were non-zero and the input and the output were both enabled. The solution to this ended up being to use the 2nd to last assfe.rtl backup file.  Rana made a symbolic link from assfe.rtl to the 2nd to last backup, so that the startup.cmd script does not need to be changed whenever we alter the front end code.

The startup_ass script, in /caltech/target/gds/ which, among other things, starts the awgtpman was changed to match the instructions on the wiki Computer Restart page.  We now start up the /opt/gds/awgtpman .  This may or may not be a good idea though, since we are currently not able to get channels on DTT and Dataviewer for the C1:ASS-TOP_PEM channels.  When we try to run the awgtpman that the script used to try to start ( /caltech/target/gds/bin/ ) we get a "Floating Exception". We should figure this out though, because the /opt/gds/awgtpman does not let us choose 2kHz as an option, which is the rate that the ASS_TOP stuff seems to run at.

The last fix made was to the screen snapshot buttons on the C1:ASS_TOP screen.  When the screen was made, the buttons were copied from one of the other ASS screens, so the snapshots saved on the ASS_TOP screen were of the ASS_PIT screen.  Not so helpful.  Now the update snapshot button will actually update the ASS_TOP snapshot, and we can view past ASS_TOP shots.

  4637   Thu May 5 13:14:15 2011 kiwamuUpdateLSCchans file for LSC

Foton doesn't correctly display the LSC filter bank file : C1LSC.txt.

Foton tells a lie that they all are empty.

 

The file itself looks fine to me i.e. I can find correct filters in text format.

Looks like someone (maybe Joe and Jenne ?) updated the file. I am not sure if this is the reason or not.

allegra:chans>ls -al | grep LSC
-rw-r--r--  1 controls controls   20659 May  5 11:46 C1LSC.txt

 

NEEDS TO BE FIXED SOON

  4640   Thu May 5 14:50:30 2011 JenneUpdateLSCchans file for LSC

Quote:

Foton doesn't correctly display the LSC filter bank file : C1LSC.txt.

Foton tells a lie that they all are empty.

 

The file itself looks fine to me i.e. I can find correct filters in text format.

Looks like someone (maybe Joe and Jenne ?) updated the file. I am not sure if this is the reason or not.

allegra:chans>ls -al | grep LSC
-rw-r--r--  1 controls controls   20659 May  5 11:46 C1LSC.txt

 

NEEDS TO BE FIXED SOON

 See my updated elog 4636 for what Joe and I did this morning, and what a possible problem is (making the LSC model into a sub-model).

  4645   Thu May 5 16:11:22 2011 JamieUpdateLSCchans file for LSC

Quote:

Foton doesn't correctly display the LSC filter bank file : C1LSC.txt.

 This was because of a bug in the RCG for foton filter module naming when top names is being used.  Rebuilding the LSC front-end model with top_names (which was needed to get around another bug in the RCG) broke the filter file.  I manually fixed the file, so it should work now.

  6940   Sun Jul 8 19:31:53 2012 yutaUpdateLockingcharacterizing LSC arm lock by ALS error signal

RMS of X/Y arm length using POX/POY lock is <160 pm and <120 pm respectively. RMS of free swinging X/Y arm length is both 0.17 um.

I used ALS error signal for out-of-loop evaluation of IR lock. We can even use ALS error signal when arm is free swinging because phase tracking ALS error signal is linear to arm length.
ALS error signal might not be as good as POX/POY. So, this out-of-loop estimation might be not so good.

X arm lock using POX11:
- Openloop transfer function
   I adjusted filter (C1:LSC-XARM) gain and now, UGF ~150 Hz, phase margin ~20 deg.
  570 usec delay (number in the figure is wrong) - Edited by Yuta on July 9
LSCPOXarmIRlockOLTF.png

- Arm length spectra
   Red is the free run spectrum. Measured using C1:ALS-BEATX_FINE_PHASE_OUT, calibration factor in frequency is 9.81 kHz/deg (see elog #6938), so calibration factor is 1.32 nm/deg.
   Green is the out-of-loop spectrum. Measured using C1:ALS-BEATX_FINE_PHASE_OUT.
   Blue is the in-loop spectrum. Measured using C1:LSC-POX11_I_ERR, calibration factor is 3.8e12 counts/m (see elog #6841).
   Black is the expected spectrum from openloop transfer function, such as (free run)/|1+G|.
XarmLengthspectra20120708.png


  Out-of-loop estimation of RMS during POX lock is 160 pm. But since this looks too large, ALS error signal might not see actual arm length change when arm length is locked.
  Also, it is interesting that ALS error signal sees 24 Hz peak, but POX doesn't. Roll mode coupling to green?

Y arm lock using POY11:
- Openloop transfer function
   I adjusted filter (C1:LSC-YARM) gain and now, UGF ~150 Hz, phase margin ~20 deg.
  570 usec delay (number in the figure is wrong) - Edited by Yuta on July 9
LSCPOYarmIRlockOLTF.png

- Arm length spectra
   Red is the free run spectrum. Measured using C1:ALS-BEATY_FINE_PHASE_OUT, calibration factor in frequency is 9.65 kHz/deg (see elog #6938), so calibration factor is 1.30 nm/deg.
   Green is the out-of-loop spectrum. Measured using C1:ALS-BEATY_FINE_PHASE_OUT.
   Blue is the in-loop spectrum. Measured using C1:LSC-POY11_I_ERR, calibration factor is 1.4e12 counts/m (see elog #6834).
   Black is the expected spectrum from openloop transferfunction, such as (free run)/|1+G|.
YarmLengthspectra20120708.png


  Out-of-loop estimation of RMS during POY lock is 120 pm. But since this looks too large, ALS error signal might not see actual arm length change when arm length is locked.
  Also, it is interesting that ALS error signal sees 16.5 Hz peak, but POY doesn't. Bounce mode coupling to green?

Next:
  - Noise budgeting of phase tracking ALS
  - Is it possible to lock MI when RMS of arm length during POX/POY lock increased to ~100pm?

  16121   Wed May 5 13:05:07 2021 ChubUpdateGeneralchassis delivery from De Leone

Assembled chassis from De Leone placed in the 40 Meter Lab, along the west wall and under the display pedestal table.  The leftover parts are in smaller Really Useful boxes, also on the parts pile along the west wall.

Attachment 1: de_leone_del_5-5-21.jpg
de_leone_del_5-5-21.jpg
  16160   Tue May 25 17:08:17 2021 ChubUpdateElectronicschassis rework complete!

All remaining chasses have been reworked and placed on the floor along the west wall in Room 104. 

Attachment 1: 40M_chassis_reworked_5-25-21.jpg
40M_chassis_reworked_5-25-21.jpg
  428   Fri Apr 18 19:46:08 2008 ranaUpdateASScheck adaptive
I restarted the adaptive code today using 'startass' and 'upass'.
I moved them into the scripts/ASS/ subdirectory.

Things seem OK. With a MU=0.03 and a TAU=0.00001, there is a still
a good factor of 10 reduction of the 3 Hz stack peak from the MC2
drive by doing FF into MC1.

I edited the ASS-TOP screen so that we could see such small numbers. I
also re-aligned the MC SUS to match the input beam (mainly MC3). The
cavity was locking on a TEM10 mode mostly -- we should look in the SUS
OSEM trends to see if MC3 has moved a lot in the last month or so.

Caryn Palatchi (a Caltech undergrad who just started working with us)
illustrated to me today that using even 1000 FIR taps is not very effective
for low frequency noise cancellation if you have a 2048 Hz sample rate. More
precisely, the asymptotic Wiener filter which our 'LMS' algorithm converges
to, can often amplify the noise at frequencies below f_sample/N_taps.

A less obvious thing that she also noticed is that there is almost no cancellation
of the 16.25 Hz bounce mode when using such a short filter. That's because that
mode is fairly high Q: the transfer function from the Z-ACC to the cavity signal
goes through the high-Q vertical suspension resonance; the FF signal we send back
goes through the low-Q horizontal pendulum response only. Therefore the filter
needs to be able to simulate ~100 cycles at 16.25 Hz in order to cancel that peak.

Duh.

The message here is: we need to find a computationally efficient way to do FIR filtering
or its not going to ever be cool enough to help us find the Crab.
Attachment 1: 0052_xray_thm45.jpg
0052_xray_thm45.jpg
  432   Mon Apr 21 12:58:42 2008 robUpdateASScheck adaptive

Quote:


Caryn Palatchi (a Caltech undergrad who just started working with us)
illustrated to me today that using even 1000 FIR taps is not very effective
for low frequency noise cancellation if you have a 2048 Hz sample rate. More
precisely, the asymptotic Wiener filter which our 'LMS' algorithm converges
to, can often amplify the noise at frequencies below f_sample/N_taps.

A less obvious thing that she also noticed is that there is almost no cancellation
of the 16.25 Hz bounce mode when using such a short filter. That's because that
mode is fairly high Q: the transfer function from the Z-ACC to the cavity signal
goes through the high-Q vertical suspension resonance; the FF signal we send back
goes through the low-Q horizontal pendulum response only. Therefore the filter
needs to be able to simulate ~100 cycles at 16.25 Hz in order to cancel that peak.

Duh.

The message here is: we need to find a computationally efficient way to do FIR filtering
or its not going to ever be cool enough to help us find the Crab.


This is the reason for "RDNSAMP" parameter in the ASS code. The FIR filtration is applied at the downsampled rate, not the machine rate. So, if RDNSAMP=32, the effective sampling rate of the FIR filter is 64Hz, and thus noise cancellation should be good down to 64Hz/1000, or 64mHz, and the filter has an impulse response time that extends to 15 secs. I'm not convinced the filter length is what's limiting the performance at the bounce mode, but I agree that a faster FIR implementation would be good.
  4327   Fri Feb 18 20:06:59 2011 kiwamuSummarySUScheck f2p function on ETMX

 The plot below shows how the f2p filters work.

At -2 min I turned on the f2p filters.

 f2p_ETMX.png

  5161   Wed Aug 10 00:11:39 2011 jamieUpdateSUScheck of input diagnolization of ETMX after OSEM tweaking

Suresh and I tweaked the OSEM angles in ETMX yesterday.  Last night the ETMs were left free swinging, and today I ran Rana's peakFit scripts on ETMX to check the input diagnolization:

ETMX.png

It's well inverted, but the matrix elements are not great:

       pit       yaw       pos       side      butt
UL    0.3466    0.4685    1.6092    0.3107    1.0428
UR    0.2630   -1.5315    1.7894   -0.0706   -1.1859
LR   -1.7370   -1.5681    0.3908   -0.0964    0.9392
LL   -1.6534    0.4319    0.2106    0.2849   -0.8320
SD    1.0834   -2.6676   -0.9920    1.0000   -0.1101

The magnets are all pretty well centered in the OSEMS, and we worked at rotating the OSEMS such that the bounce mode was minimized.

Rana and Koji are working on ETMY now.  Maybe they'll come up with a better procedure.

  3807   Thu Oct 28 04:28:50 2010 yutaUpdateGreen Lockingchecked frequency counter SR620

(Kiwamu, Yuta)

Background:
  For green locking, we are planning to feedback frequency differential signal to ETM suspension for the final configuration.
  We don't have ETM suspension control system right now, so we are going to feedback the signal to X-end laser frequency for a test.
  We have two loops for the servo;
    1. coarse locking using frequency counter, feeding back to the laser temperature
    2. using VCO, feeding back to the laser PZT
  Today, we checked frequency counter SR620 and see how to get the small beat note signal(-48dBm; see elog #3771).

What we did:
  1. Using Marconi(RF signal generator), put RF signals to SR620 and see how small signal SR620 can see.
    It depends on the frequency. For 80MHz signal, you need more than about -9dBm.
       60MHz  >-12dBm
       70MHz  >-10dBm
       80MHz  >-9dBm
       90MHz  >-8dBm
      100MHz  >-7dBm

Since we are going to lock the frequency difference between X-end and PSL to 80MHz, we need at least +40dBm amp before putting the signal into SR620.

RF amplifier ZHL-32A has around +28dBm +28dB gain at 80MHz, so we need 2 of them.

  2. Marconi -> ZHL-32A -> ZHL-32A -> SR620 and see how small 80MHz signal SR620 can see.
    Around -68dBm. This should be enough.

  3. SR620 has "STRIP CHART" output on the rear panel. The output voltage is proportional to the mean frequency of the input.
    The output range is 0-8V. So in order to get 4V for 80MHz, set SCALE to 20MHz.

Plan:
 - find green beat again and see if SR620 can see it with double ZHL-32A configuration

  3809   Thu Oct 28 11:54:31 2010 KojiUpdateGreen Lockingchecked frequency counter SR620

ZHL-32A is a high power (well..., actually middle power) amplifier with the max output power of +29dBm (~1W!).
It seems to be overkill.
Your signal is so small so you don't need ZHL-32A, but can use small amp which we may have somewhere in the lab.

And the description:
"RF amplifier ZHL-32A has around +28dBm gain at 80MHz"
The unit is wrong.

Quote:

(Kiwamu, Yuta)

Background:
  For green locking, we are planning to feedback frequency differential signal to ETM suspension for the final configuration.
  We don't have ETM suspension control system right now, so we are going to feedback the signal to X-end laser frequency for a test.
  We have two loops for the servo;
    1. coarse locking using frequency counter, feeding back to the laser temperature
    2. using VCO, feeding back to the laser PZT
  Today, we checked frequency counter SR620 and see how to get the small beat note signal(-48dBm; see elog #3771).

What we did:
  1. Using Marconi(RF signal generator), put RF signals to SR620 and see how small signal SR620 can see.
    It depends on the frequency. For 80MHz signal, you need more than about -9dBm.
       60MHz  >-12dBm
       70MHz  >-10dBm
       80MHz  >-9dBm
       90MHz  >-8dBm
      100MHz  >-7dBm

Since we are going to lock the frequency difference between X-end and PSL to 80MHz, we need at least +40dBm amp before putting the signal into SR620.

RF amplifier ZHL-32A has around +28dBm gain at 80MHz, so we need 2 of them.

  2. Marconi -> ZHL-32A -> ZHL-32A -> SR620 and see how small 80MHz signal SR620 can see.
    Around -68dBm. This should be enough.

  3. SR620 has "STRIP CHART" output on the rear panel. The output voltage is proportional to the mean frequency of the input.
    The output range is 0-8V. So in order to get 4V for 80MHz, set SCALE to 20MHz.

Plan:
 - find green beat again and see if SR620 can see it with double ZHL-32A configuration

 

  3842   Mon Nov 1 23:31:05 2010 yutaUpdateCDSchecked input hardware filter in single frequency

Background:
  For input filter, we have analog whitening filter and also digital whitening filter. They have the same TF and when analog one is off, digital one should be on and vice versa.
  I made a python script that checks the switching automatically.

Method:
  Excite the suspension in a single frequency and see sensor inputs(XXSEN_IN1).
  Calculate the magnitude in the excitation frequency and compare it when digital whitening is off and on.
  When digital whitening is off, analog should be on, so sensor inputs should gone though the analog filter. That means the signal is multiplied by the TF of that filter, which makes the difference.

  We currently don't have excitation and I thought I have to wait, but instead of putting some extra excitation, I found that 60Hz line noise is useful.

Script:
  The script is /cvs/cds/caltech/users/yuta/scripts/WDWchecker.py
  For every sensor input, it;
    0. Stores current filter switching(XXSEN_SW1R)
    1. turns OFF the digital filter(FM1, using ezcaswitch)
    2. tdsdmd XXSEN_IN1 in 60Hz
    3. turns ON the digital filter
    4. tdsdmd XXSEN_IN1 in 60Hz
    5. divides mag(2.) by mag(4.) and calculate the analog filter gain in 60Hz
    6. Restores the filter switching in the state before the checking

Result:
  The results are;

C1:SUS-BS_ULSEN_IN1: 22.2 dB
C1:SUS-BS_URSEN_IN1: 18.7 dB
C1:SUS-BS_LRSEN_IN1: 22.7 dB
C1:SUS-BS_LLSEN_IN1: 16.0 dB
C1:SUS-BS_SDSEN_IN1: 21.5 dB
C1:SUS-ITMX_ULSEN_IN1: 16.9 dB
C1:SUS-ITMX_URSEN_IN1: 16.3 dB
C1:SUS-ITMX_LRSEN_IN1: 17.5 dB
C1:SUS-ITMX_LLSEN_IN1: 17.1 dB
C1:SUS-ITMX_SDSEN_IN1: 6.2 dB
C1:SUS-ITMY_ULSEN_IN1: 15.5 dB
C1:SUS-ITMY_URSEN_IN1: 16.5 dB
C1:SUS-ITMY_LRSEN_IN1: 17.4 dB
C1:SUS-ITMY_LLSEN_IN1: 16.3 dB
C1:SUS-ITMY_SDSEN_IN1: 18.0 dB
C1:SUS-PRM_ULSEN_IN1: 0.1 dB
C1:SUS-PRM_URSEN_IN1: 10.3 dB
C1:SUS-PRM_LRSEN_IN1: 13.1 dB
C1:SUS-PRM_LLSEN_IN1: -32.3 dB
C1:SUS-PRM_SDSEN_IN1: 14.6 dB
C1:SUS-SRM_ULSEN_IN1: 17.3 dB
C1:SUS-SRM_URSEN_IN1: 13.5 dB
C1:SUS-SRM_LRSEN_IN1: 1.6 dB
C1:SUS-SRM_LLSEN_IN1: 16.7 dB
C1:SUS-SRM_SDSEN_IN1: 18.3 dB

C1:SUS-MC1_ULSEN_IN1: 17.0 dB
C1:SUS-MC1_URSEN_IN1: 18.6 dB
C1:SUS-MC1_LRSEN_IN1: 14.9 dB
C1:SUS-MC1_LLSEN_IN1: 27.0 dB
C1:SUS-MC1_SDSEN_IN1: 16.6 dB
C1:SUS-MC2_ULSEN_IN1: 19.8 dB
C1:SUS-MC2_URSEN_IN1: 14.0 dB
C1:SUS-MC2_LRSEN_IN1: 20.8 dB
C1:SUS-MC2_LLSEN_IN1: 16.1 dB
C1:SUS-MC2_SDSEN_IN1: 17.3 dB
C1:SUS-MC3_ULSEN_IN1: 15.5 dB
C1:SUS-MC3_URSEN_IN1: 17.3 dB
C1:SUS-MC3_LRSEN_IN1: 18.2 dB
C1:SUS-MC3_LLSEN_IN1: 18.7 dB
C1:SUS-MC3_SDSEN_IN1: 16.8 dB


  Whitening filter has 18dB gain at 60Hz. (It's 3Hz pole, 30Hz zero, 100Hz zero and 0dB at DC)
  So, from the result, at least MC suspensions look like they have correct switching.
  But some channels doesn't look ok.
  We have to check those.

Plan:
   - check ITMX_SDSEN, PRM_ULSEN, PRM_LLSEN, SRM_LRSEN input filters
   - check the script and see if the script can really check. maybe the script needs some adjustments (# of averaging, multiple frequency, ......)
   - make AWG(, tdssine) work
   - check output hardware filter

By the way:
  fb is back. I don't know why. With help from Joe, I just compiled c1mcs again and again changing number of RFM channels.

  3675   Thu Oct 7 23:24:44 2010 yutaUpdateCDSchecking MC1 suspension damping

Background:
 The new CDS is currently being set up.
 We want to see if the damping servo of the suspensions are working correctly.
 But before that, we have to see if the sensors and the coils are working correctly.
 Among the 8 optics, MCs take top priority because of the green beam. for the alignment of the in-vac optics.

What I did:
 By seeing the 5 sensor outputs (C1:SUS-MC1_XXSEN_IN1, XX=UL,UR,LR,LL,SD) with the Data Viewer, I checked if all the coils are kicking in the supposed direction and all the sensors are sensing that kick correctly.

 All the matrices elements were set to the ideal values(-1 or 0 or 1) this time.

Result:
 They were perfect.
1. POSITION seemed to be POSITION
 When the offset(C1:SUS-MC1_SUSPOS_OFFSET) was added, all the sensor output moved to the same direction.
2. PITCH seemed to be PITCH
 When the offset(C1:SUS-MC1_PIT_COMM) was changed, UL&UR and LL&LR went to the different direction.
3. YAW seemed to be YAW
 When the offset(C1:SUS-MC1_YAW_COMM) was changed, UL&LL and UR&LR went to the different direction.
4. SIDE seemed to be SIDE
 When the offset(C1:SUS-MC1_SDSEN_OFFSET) was added, DC level of the SD sensor output changed.

Notes:

 c1mcs crashed many times during the investigation, and I had to kill and restart it again and again.
 It seemed to be easily crashed when filters are on, and so I couldn't check whether the damping servo is working correctly or not today.

Next work:

  - fix c1mcs (and maybe others)
  - check the damping servo by comparing the displacements of each 4 degrees of freedom when servo in off and on.

  3678   Fri Oct 8 12:21:11 2010 josephbUpdateCDSchecking MC1 suspension damping

Upon investigation, it appears that the c1mcs model was (and still is) timing out after a random amount of time. Or in other words, it at some point it was taking too long to do all the calculations for a single cycle and falling behind. The evidence for this is from the dmesg command when run on c1sus.

There's a bunch of lines like:

[ 8877.438002] c1mcs: cycle 568 time 62; adcWait 0; write1 0; write2 0; longest write2 0

[ 8877.438002] c1mcs: cycle 569 time 62; adcWait 0; write1 0; write2 0; longest write2 0

With a final line like: [ 8877.439003] c1mcs: ADC TIMEOUT 1 2405 37 2277

This last line indicates in fell so far behind it gave up.

However, this doesn't actually seem to be related to the amount of computation going on with the front end. I restarted the c1mcs model this morning by logging into the c1sus machine, and changing to the /opt/rtcds/caltech/c1/target/c1mcs/bin directory and running:

lsmod

sudo rmmod c1mcsfe

sudo insmod c1mcsfe.ko

The first line just lists the running modules. The second removes the c1mcs module, and the third starts it up again.

I proceeded to turn all the filters and and set all the matrix values while keeping an eye on the C1MCS-GDS_TP.adl screen and its timing indicator. It was running fine with all these turned on. Then I ran a dtt session from rosalba (going to /opt/apps/, typing bash, then source gds-env.bash, and finally diaggui) as well as a dataviewer and looked at 6 test point channels. It received data fine.

However, about 2 minutes after I had stopped doing this (although the dataviewer realtime session was still going) the USR timing jumped from about 20 microseconds to 35 microseconds, and the CPU Max timing jumped to the 50-60 microsecond range. At this point dmesg started reporting things like:

[54143.465613] c1mcs: cycle 1076 time 62; adcWait 0; write1 0; write2 0; longest write2 0

[54143.526004] c1mcs: cycle 2064 time 62; adcWait 0; write1 0; write2 0; longest write2 0

About a minute later the code gave up and reported a ADC timeout via dmesg. None of the other front ends seem to be affected.

I had to clear the test points manually after stopping dataviewer and dtt by going to rosalaba,using the sourced gds-env.bash, and running diag -l. I then typed "tp clear 36 *" to clear all the test points on the model with FEC number 36 (corresponding to c1mcs).

I removed and restarted c1mcs again, trying to turn on a few things at a time and letting it run for a few minutes to see if I could narrow down if its one particular filter perhaps reaching an underflow and starting to bog down the computations. However, after about 45 minutes of this, the model is still running and I've turned all the filters on and have been running about 8 test points with no problem, so the problem is clearly intermittent.

Quote:

Notes:
 c1mcs crashed many times during the investigation, and I had to kill and restart it again and again.
 It seemed to be easily crashed when filters are on, and so I couldn't check whether the damping servo is working correctly or not today.

Next work:

  - fix c1mcs (and maybe others)
  - check the damping servo by comparing the displacements of each 4 degrees of freedom when servo in off and on.

 

  4077   Mon Dec 20 16:57:58 2010 steveUpdateIOOchecking out & closing the vacuum chambers
  • Check EQ-stops
  • clamp down counter weights
  • check other components are clamped
  • remove all tools
  • check cabling is not is not shorting out seismic stack or blocking beam
  • confirm well centered spots on mirrors
  3849   Wed Nov 3 02:23:11 2010 yutaSummaryCDSchecking whitening filter board

Summary:
  Last night, I found that some of the input channels have wrong hardware filter switching(see elog #3842).
  So, to check the whitening board(D000210), I swapped the one with ok switching and bad switching.
  During the checking, I somehow broke the board.
  I fixed it, and now the status is the same as last night (or, at least look like the same).

What I did:
  1. Switching for SRM_LRSEN looked bad and every input channel for MC3 looked OK.
     So, I unplugged the whitening board for SRM (1X5-1-5B) and plugged it into MC3's place(1X5-1-8B).

  2. Ran WDWchecker.py for MC3. The switching seemed OK for every input channel, which means the whitening board was not the wrong one.

  3. Swapped back the whitening board as it was.

  4. Found MC3_ULSEN_OUT and MC3_LLSEN_OUT was keep showing negative value(they should be positive).

  5. Check the board and found that one of LT1125 for UL/LL was wrong (broken virtual ground).

  6. Replaced LT1125 and put the board back to 1X5-1-8B.

  7. Checked the board with WDWchecker.py and dataviewer 5-hour minute trend.
      The input signal came back to normal value(Attachment #1), MC3 damping working, input filter switching seems working

before LT1125 replacement after LT1125 replacement
C1:SUS-MC3_ULSEN_IN1: -2.4 dB [!]
C1:SUS-MC3_URSEN_IN1: 16.9 dB
C1:SUS-MC3_LRSEN_IN1: 15.4 dB
C1:SUS-MC3_LLSEN_IN1: -1.1 dB [!]
C1:SUS-MC3_SDSEN_IN1: 18.4 dB
C1:SUS-MC3_ULSEN_IN1: 18.2 dB
C1:SUS-MC3_URSEN_IN1: 17.6 dB
C1:SUS-MC3_LRSEN_IN1: 16.6 dB
C1:SUS-MC3_LLSEN_IN1: 17.1 dB
C1:SUS-MC3_SDSEN_IN1: 16.2 dB


Result:
  The whitening board seems OK.
  The wrong one is either wiring or RT model. Or, the checking script.

Attachment 1: MC3SEN.png
MC3SEN.png
  3748   Wed Oct 20 21:43:25 2010 yutaUpdateCDSchecking whitening filters for MCs and messed up

(Joe, Yuta)

Background:
 We found that the damping servo for MC suspensions somehow worked when we turned off the 13Hz Chebyshev filters.
 But that does not meet our satisfaction, so we started checking every components.
 First of all is the whitening filters.
 If we turn on a digital whitening filter(WF), corresponding analog WF should turn off, and vice versa.

Reference:
 See DCC #D000210 for the analog circuit of WF. WF has 3Hz zero, 30Hz pole, 100Hz pole. MAX333A bypasses analog WF when supplied +15V(HIGH).

What we did:
 1. Compared the transfer function between MC2_SUSPOS_EXC and MC2_ULSEN_IN1 when digital WF on and off. When digital is on/off, analog should be off/on, so there should be difference but couldn't see.

 2. We went through the simulink model and found 2 mistakes in the logic. One is the conflict with other optics. Even if we turn on/off digital WF of MC2, it didn't switched analog WF of MC2. Two is the additional bit invert (but it turned out to be our misunderstanding).

 3. We (thought we) fixed it, rebuild it, and measured the TF again.(Attachment #1)

[Attached #1]
 The red/blue line is when digital WF is on/off. Blue should be bigger(+10dB @ 10Hz according to (analog) WTF) than red, but it was the opposite.

 4. To confirm that they are doing the opposite, I checked MAX333A input(pin#1,10,11,20) in "SUS PD Whitening Board" at 1X5-1-8B (which is for MC3) and found that switching is opposite. When I turned off/on the digital WF, MAX333A input was +15V/0V. It should be 0V/+15V.

 5. Also, I found that LLSEN digital WF switch switches LRSEN analog WF and vice versa.

[Attached #2]
 Transfer functions between MC2_SUSPOS_EXC and MC2_LRSEN_IN1 with;
   Red: LR digital off, LL digital on
   Blue: LR digital off, LL digital off
   Green: LR digital on, LL digital off
 As you can see, LL switch is the one which switches LR analog WF now.

Conclusion:
 Currently, digital WF on/off corresponds to analog WF on/off.
 Also, LL/LR digital WF switch is LR/LL analog WF switch now.


Next work:
 - fix the simulink models (or wiring)
 - check dewhitening filters

Schematic:
 - whitening
   MC1 5 PD outputs -> SUS PD Whitening Board(D000210) -> ... (digital WF=3,100:3)
   MC2 5 PD outputs -> SUS PD Whitening Board(D000210) -> ... (digital WF=3,100:3)
   MC3 5 PD outputs -> SUS PD Whitening Board(D000210) -> ... (digital WF=3,100:3)
      D000210 has switches for bypassing analog WT(3,100:3). HIGH to bypass.
 - dewhitening
  (-) ... -> SOS Dewhitening Board(D000316) -> MC1,3 UL/UR/LR/LL coils
  (-) ... -> SOS Dewhitening Board(D000316) -> MC1,2,3 SIDE coils
  (SimDW)(InvDW) ... -> LSC Anti-imaging Board(D000186) -> Universal Dewhitening Board(D000183) -> MC2 UL/UR/LR/LL coils
     D000316 has switches for bypassing 28Hz elliptic LPF. HIGH to bypass.
     D000186 is 7570Hz elliptic LPFs.
     D000183 has switches for bypassing dewhitening filter. HIGH to bypass.
 See this wiki page for more comprehensive setup.

Attachment 1: MC2ULSEN.png
MC2ULSEN.png
Attachment 2: MC2LRSEN.png
MC2LRSEN.png
  12942   Thu Apr 13 19:54:07 2017 ranaUpdateDAQcheckup on minute trends

Our minute trends are still not available through NDS2 from the outside world due to the bad config of the DAQ, but I can confirm that we still have the minute-raw capability. This is 111 days of Seismic BLRMS.

However, it seems we're only able to get ~1 week of lookback on our second trendssadno and that is low-down dirty shame. We used to have over a month of second trend lookback before the last decade of 'upgrades'.

Attachment 1: BRLMS-trend.png
BRLMS-trend.png
  14359   Fri Dec 14 14:25:36 2018 KojiUpdateCDSchiara backup

fsck of chiara backup disk (UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000") was done. But this required many files to be fixed. So the backed-up files are not reliable now.
On the top of that, the disk became not recognized from the machine.

I went to the disk and disconnected the USB and then the power supply, which was/is connected to the UPS.
Then they are reconnected again. This made the disk came back as /media/90a5c98a-22fb-4685-9c17-77ed07a5e000. (*)
After unmounting this disk, I ran "sudo mount -a" to follow the way of mounting as fstab does.
Now I am running the backup script manually so that we can pretend to maintain a snapshot of the day at least.

(*) This is the same situation we found at the recovery from the power shutdown. So my hypothesis is that on Oct 16 at 7 AM during the backup there was a USB failure or disk failure or something which unmounted the disk. This caused some files got damaged. Also this caused the disk mounted as /media/90a5c98a-22fb-4685-9c17-77ed07a5e000. So since then, we did not have the backup.
Update (20:00): The disk connection failed again. I think this disk is no longer reliable.

 

Attachment 1: fsck_log.log
sudo fsck -yV UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"           [238/276]
[sudo] password for controls:
fsck from util-linux 2.20.1
[/sbin/fsck.ext4 (1) -- /media/40mBackup] fsck.ext4 -y /dev/sde1
e2fsck 1.42 (29-Nov-2011)
/dev/sde1 contains a file system with errors, check forced.
Pass 1: Checking inodes, blocks, and sizes
Error reading block 527433852 (Attempt to read block from filesystem resulted in
 short read) while getting next inode from scan.  Ignore error? yes

... 283 more lines ...
  16307   Thu Sep 2 17:53:15 2021 PacoSummaryComputerschiara down, vac interlock tripped

[paco, koji, tega, ian]

Today in the morning the name server / network file system running in chiara failed. This resulted in donatella/pianosa/rossa shell prompts to hang forever. It also made sitemap crash and even dropping into a bash shell and just listing files from some directory in the file system froze the computer. Remote ssh sessions on nodus also had the same symptoms.

A little after 1 pm, we started debugging this issue with help from Koji. He suggested we hook a monitor, keyboard, and mouse onto chiara as it should still work locally even if something with the NFS (network file system) failed. We did this and then we tried for a while to unmount the /dev/sdc1/ from /home/cds/ (main file system) and mount /dev/sdb1/ from /media/40mBackup (backup copy) such that they swap places. We had no trouble unmounting the backup drive, but only succeeded in unmounting the main drive with the "lazy" unmount, or running "umount -l". Running "df" we could see that the disk space was 100% used, with only ~ 1 GB of free space which may have been the cause for the issue. After swapping these disks by editing the /etc/fstab file to implement the aforementioned swapping, we rebooted chiara and we recovered the shell prompts in all workstations, sitemap, etc... due to the backup drive mounting. We then started investigating what caused the main drive to fill up that quickly, and noted that weirdly now the capacity was at 85% or about 500GB less than before (after reboot and remount), so some large file was probably dumped into chiara that froze the NFS causing the issue.

At this point we tried opening the PSL shutter to recover the IMC. The shutter would not open and we suspected the vacuum interlock was still tripped... and indeed there was an uncleared error in the VAC screen. So with Koji's guidance we walked to the c1vac near the HV station and did the following at ~ 5:13 PM -->

  1. Open V4; apart from a brief pressure spike in PTP2, everything looked ok so we proceeded to
  2. Open V1; P2 spiked briefly and then started to drop. Then, Koji suggested that we could
  3. Close V4; but we saw P2 increasing by a factor of~ 10 in a few seconds, so we
  4. Reopened V4;

We made sure that P1a (main vacuum pressure) was dropping and before continuing we decided to look back to see what the nominal vacuum state was that we should try to restore.

We are currently searching the two systems for diffrences to see if we can narrow down the culprit of the failure.

 

  16313   Thu Sep 2 21:49:03 2021 PacoSummaryComputerschiara down, vac interlock tripped

[tega, paco]

We found the files that took excess space in the chiara filesystem (see Attachment 1). They were error files from the summary pages that were ~ 50 GB in size or so located under /home/cds/caltech/users/public_html/detcharsummary/logs/. We manually removed them and then copied the rest of the summary page contents into the main file system drive (this is to preserve the information backup before it gets deleted by the cron job at the end of today) and checked carefully to identify the actual issue for why these files were as large in the first place.

We then copied the /detcharsummary directory from /media/40mBackup into /home/cds to match the two disks.

Attachment 1: 2021-09-02_21-51-15.png
2021-09-02_21-51-15.png
  16532   Wed Dec 22 14:57:05 2021 KojiUpdateGeneralchiara local backup

chiara local backup of /cvs/cds has not been running since the move of chiara in Nov 19. The remote backup has not been taken since 2017.
The lack of the local backup was because of the misconfiguration of /etc/fstab.

It was fixed and now the backup disk was mounted. We'll see the backup script running tomorrow morning.
The backup disk is smaller than the main disk. So sooner or later, we will face the backup problem again.


localbackup script was crying because there was no backup disk.

backup>pwd
/opt/rtcds/caltech/c1/scripts/backup
backup>tail localbackup.log
2021-12-18 07:00:02,002 INFO       Updating backup image of /cvs/cds
2021-12-18 07:00:02,002 ERROR      External drive not mounted!!!
2021-12-19 07:00:01,146 INFO       Updating backup image of /cvs/cds
2021-12-19 07:00:01,146 ERROR      External drive not mounted!!!
2021-12-20 07:00:01,255 INFO       Updating backup image of /cvs/cds
2021-12-20 07:00:01,255 ERROR      External drive not mounted!!!
2021-12-21 07:00:01,361 INFO       Updating backup image of /cvs/cds
2021-12-21 07:00:01,361 ERROR      External drive not mounted!!!
2021-12-22 07:00:01,469 INFO       Updating backup image of /cvs/cds
2021-12-22 07:00:01,470 ERROR      External drive not mounted!!!

fstab had no entry for the backup disk.

backup>cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid -o value -s UUID' to print the universally unique identifier
# for a device; this may be used with UUID= as a more robust way to name
# devices that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point>   <type>  <options>       <dump>  <pass>
proc            /proc           proc    nodev,noexec,nosuid 0       0
# / was on /dev/sda1 during installation
UUID=972db769-4020-4b74-b943-9b868c26043a /               ext4    errors=remount-ro 0       1
# swap was on /dev/sda5 during installation
UUID=a3f5d977-72d7-47c9-a059-38633d16413e none            swap    sw              0       0

# OLD BACKUP DISK
#UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# CURRENT BACKUP DISK as of 2021/09/02
#UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

#fb:/frames      /frames nfs     ro,bg

# CURRENT MAIN DISK as of 2021/09/02
# UUID=92dc7073-bf4d-4c58-8052-63129ff5755b   /home/cds    ext4    defaults,relatime,commit=60    0   0
UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"   /home/cds    ext4   defaults,relatime,commit=60    0   0

Checked the dev name of the disks and the UUIDs

backup>sudo lsblk
[sudo] password for controls:
NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sda      8:0    0 465.8G  0 disk
├─sda1   8:1    0 446.9G  0 part /
├─sda2   8:2    0     1K  0 part
└─sda5   8:5    0  18.9G  0 part [SWAP]
sdb      8:16   0   5.5T  0 disk
└─sdb1   8:17   0   5.5T  0 part /home/cds
sdc      8:32   0   3.7T  0 disk
└─sdc1   8:33   0   3.7T  0 part
sr0     11:0    1  1024M  0 rom
backup> sudo blkid
/dev/sda1: UUID="972db769-4020-4b74-b943-9b868c26043a" TYPE="ext4"
/dev/sda5: UUID="a3f5d977-72d7-47c9-a059-38633d16413e" TYPE="swap"
/dev/sdb1: UUID="1843f813-872b-44ff-9a4e-38b77976e8dc" TYPE="ext4"
/dev/sdc1: UUID="92dc7073-bf4d-4c58-8052-63129ff5755b" TYPE="ext4"

Added the fstab entry for the backup disk

media>cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid -o value -s UUID' to print the universally unique identifier
# for a device; this may be used with UUID= as a more robust way to name
# devices that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point>   <type>  <options>       <dump>  <pass>
proc            /proc           proc    nodev,noexec,nosuid 0       0
# / was on /dev/sda1 during installation
UUID=972db769-4020-4b74-b943-9b868c26043a /               ext4    errors=remount-ro 0       1
# swap was on /dev/sda5 during installation
UUID=a3f5d977-72d7-47c9-a059-38633d16413e none            swap    sw              0       0

# OLD BACKUP DISK
#UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# OLD BACKUP DISK as of 2021/09/02
#UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# Current backup disk as of 2021/12/22
UUID="92dc7073-bf4d-4c58-8052-63129ff5755b"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

#fb:/frames      /frames nfs     ro,bg

# CURRENT MAIN DISK as of 2021/09/02
# UUID=92dc7073-bf4d-4c58-8052-63129ff5755b   /home/cds    ext4    defaults,relatime,commit=60    0   0
UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"   /home/cds    ext4   defaults,relatime,commit=60    0   0

  16662   Thu Feb 10 21:16:27 2022 KojiSummaryCDSchiara resolv.conf wierdo

During the videomux debug, I noticed that the host name resolving on chiara didn't behave well. Basically I could not login to anything from chiara using host names.

I found that there was no /etc/resolv.conf. Instead, there is /etc/resolvconf directory.

According to my research, live resolv.conf is placed in /run/resolveconf/resolv.conf .

# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)
#     DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 192.168.113.20
nameserver 131.215.125.1
nameserver 8.8.8.8

This 113.20 is directing an old "linux1" machine. Too much obsolete. If I modify this file as

# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)
#     DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN
nameserver 192.168.113.104
nameserver 131.215.125.1
nameserver 8.8.8.8
search martian

Then the name resolving became reasonable. However, during rebooting / service resetting / etc, resolvconf -u command is executed and /run/resolveconf/resolv.conf is overridden, as indicated in the file.

I have modified /etc/resolvconf/resolv.conf.d/base to include 192.168.113.104 and search martian . The latter was included but the former did not show up.

FInally I figured out that, after the resolv.conf is constructed from base and head files in /etc/resolvconf/resolv.conf.d/ , NetworkManager overrides the nameserver addresses.
The configuration was found in /etc/NetworkManager/system-connections/Wired\ connection\ 1 .

Here is the modified setting (dns entry was modified)

>sudo cat /etc/NetworkManager/system-connections/Wired\ connection\ 1
[sudo] password for controls:
[802-3-ethernet]
duplex=full
mac-address=68:05:CA:36:4E:B4

[connection]
id=Wired connection 1
uuid=ed177e70-d10e-42be-8165-3bf59f8f199d
type=802-3-ethernet
timestamp=1438810765

[ipv6]
method=auto

[ipv4]
method=manual
dns=192.168.113.104;131.215.125.1;8.8.8.8;
addresses1=192.168.113.104;24;192.168.113.2;

And

>cat /etc/resolvconf/resolv.conf.d/base
search martian
# See Also /etc/NetworkManager/system-connections/Wired\ connection\ 1

So complicated...

  1629   Thu May 28 14:34:25 2009 robUpdatePSLchiller diagnosis

Quote:

steve, alberto, rob

After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working.  Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far).

 The repair man thinks it's a bad start capacitor, which is 240uF at 120V.  Steve has ordered a new one which should be here tomorrow, and with luck we'll have lasing by tomorrow afternoon.

  4992   Tue Jul 19 21:05:55 2011 haixingUpdateDAQchoose the right relay

Rana and I are working on the AA/AI circuit for Cymac. We need relays to bypass certain paths in the circuit, and we just found a nice website
explaining how to choose the right relay:

http:/zone.ni.com/devzone/cda/tut/p/id/2774

This piece of information could be useful for others.

  1709   Tue Jun 30 23:09:40 2009 AlbertoUpdateLockingchronicles of some locking attempts

Tonight I tried to lock the interferometer. At the first attempts the arm power didn't go above about 4. The mode cleaner seemed to be not well aligned and it lost lock or got stuck on a wrong mode. I had to run the MC_UP and MC_DOWN scripts to lock it again.

After that the locking proceed more smoothly; at least till a power level in the arms of about 60. Then again the mode cleaner lost lock and I had to run the scripts again. Without the MCWFS servo off the MC reflected power is still rather high (about 1.7); also even when the WFS servo is engaged the reflected power is about 0.5, versus 0.3 that it should be.

Those are both signs of a not very good alignment. Tomorrow I'll have to work on the injection periscope on the PSL table to try to fix that.

  12802   Mon Feb 6 10:05:28 2017 SteveUpdateSUSclamped cables

The bottom 5 cable connections from Sat-Amp to Whittering Filter at 1X5 were clamped today.

Attachment 1: clamped.jpg
clamped.jpg
  7146   Fri Aug 10 17:17:41 2012 Alex Masha DenUpdatePEMclassify seismic c code

Den and I installed a module in the c1pem model which has a feedforward neural network to classify seismic disturbance (10 means quiet, 20 truck, 30 earthquake). There is a channel SEIS_CLASS which should specify the class of the seismic signal. The code works for signals sampled at 256 Hz, so an anti-aliasing filter must be installed in order to decimate from the 2048 model.

The models were compiling slowly, so Alex removed the archiving feature (gzip and tar were taking a lot of time).

Den and I also had trouble with a simple for loop in our model, so we talked to Alex who noted that the -O3 compiler unravels for loops in a buggy way. Thus, we have compiled c1pem using the -O compiler.

PS: the Trilium seismometer now has legs.

  7147   Fri Aug 10 17:38:29 2012 DenUpdatePEMclassify seismic c code

Quote:

Den and I also had trouble with a simple for loop in our model, so we talked to Alex who noted that the -O3 compiler unravels for loops in a buggy way. Thus, we have compiled c1pem using the -O compiler. 

Alex also modified RCG script to generate -O in the Makefile for c1pem model:

controls@pianosa:/opt/rtcds/rtscore/release/src/epics/util 127$ svn diff
feCodeGen.pl 
Index: 
feCodeGen.pl
===================================================================
--- 
feCodeGen.pl (revision 2999)
+++ 
feCodeGen.pl (working copy)
@@ -3183,7 +3183,12 @@

print OUTM "\n";
}
print OUTM "ALL \+= user_mmap \$(TARGET_RTL)\n";
+# do not optimize c1pem
+if ($skeleton eq "c1pem") {
+print OUTM "EXTRA_CFLAGS += -O -w -I../../include\n";
+} else {
print OUTM "EXTRA_CFLAGS += -O3 -w -I../../include\n";
+}
print OUTM "EXTRA_CFLAGS += -I/opt/gm/include\n";
print OUTM "EXTRA_CFLAGS += -I/opt/mx/include\n";

  11707   Thu Oct 22 08:52:04 2015 SteveUpdateVACclean RGA scan after sweaty Maglev

Clean comparable scan at vacuum normal. There was no backstreaming.

Attachment 1: clean_scan.png
clean_scan.png
  8004   Tue Feb 5 15:31:03 2013 SteveUpdateGeneralclean assembly room benches cleaned up

Manasa, Jamie and Steve,

Tip-Tilts and parts moved into the most north " 40m "  cabinet  in the assembly room.

Green-black glass and related components were moved to the 40m E0 cabinet in plastic boxes.

The north flow bench has a few items that belong to us: HE/Ne laser, qpd on translation stages, an iris and one red mirror.  These were moved to the north edge of this bench.

However this leveled table is still full with other people's stuff

Attachment 1: IMG_0057.JPG
IMG_0057.JPG
Attachment 2: IMG_0061.JPG
IMG_0061.JPG
  5158   Tue Aug 9 16:40:12 2011 steveUpdateGeneralclean room coat counts

I measured the particles coming off of new- unused clean room coat. Tyvek, Convertors, Allegiance #9393 measured  10 counts of 0.3 micron at 1 minute and 0 count at 7 minute.

The 0.5 micron size  measured 0 at both times. Jenne's used coat measured 20 counts of 0.3 micron  and 0 counts for 0.5 micron at 1 minute. ( counts / cf- min)

The HEPA tent background is consistently 0 when it's CP STAT 100 curtains are closed.

Attachment 1: P1080155.JPG
P1080155.JPG
  5303   Thu Aug 25 17:14:49 2011 steveUpdateVACclean room fashion changes

Jamie is modeling our next generation  in-vac & clean room bonny suit that Jenne and myself already tested.

It is quite bearable with our traditional cleanroom beret-bouffant cap. Please use these in the future.

This will help to avoid the farther degradation of somewhat dusty 40m vac envelope.

It is the required dress code to enter the clean assembly room in the 40m.

 We have small, med, large and x-large in stock. I'm getting larger sizes.

It will not allow certain people to climb inside the vacuum chamber in dirty pants.

Attachment 1: P1080185.JPG
P1080185.JPG
Attachment 2: P1080183.JPG
P1080183.JPG
  4386   Tue Mar 8 15:23:16 2011 steveUpdatePEMclean room gloves

Ansell AccuTech 91-300 clean room gloves  ONLY in the 40m lab.

Cleaning and preparation must be carried out in these gloves also.

  3705   Wed Oct 13 11:09:28 2010 yutaUpdateComputersclean-installed CentOS 5.5 on mafalda

Dear mafalda,

Sorry for leaving you alone.
We put ethernet cable in you. You can talk to everyone now!
We created a user "controls" correctly. (UID: 1001)
We mounted linux1:/home/cds/ to your directory /cvs/cds.

Truly yours,
Joseph Betzwieser
Yuta Michimura

Quote:

Quote:

I clean-installed CentOS 5.5(32bit) on mafalda.
No firewalls, no SELinix.

 Yuta has removed my ethernet connection. Help me!!!

rossa:mDV>ping mafalda
PING mafalda.martian (192.168.113.23) 56(84) bytes of data.
From rossa.martian (192.168.113.215) icmp_seq=2 Destination Host Unreachable
From rossa.martian (192.168.113.215) icmp_seq=3 Destination Host Unreachable
From rossa.martian (192.168.113.215) icmp_seq=4 Destination Host Unreachable

--- mafalda.martian ping statistics ---
5 packets transmitted, 0 received, +3 errors, 100% packet loss, time 3999ms
, pipe 3

 

  3585   Fri Sep 17 17:35:35 2010 steveUpdatePEMcleaned up at 1Y1 PSL rack

Cleaned up cables on the top and bottom. Vacuumed both areas. We still have some remaining shading from the MOPA umbilical and more unknown BNC cables hanging around.

ELOG V3.1.3-