40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 273 of 346  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  15817   Thu Feb 18 15:33:21 2021 gautamUpdateSUSaLIGO Sat Amp installed, powered and commissioned

The WFS servo was recommissioned. The matrix can be tuned a bit more, but for now, I've recovered the old performance and the alignment doesn't seem to be running away, so I defer further tuning for later. The old Satellite box was handed over to Yehonathan for his characterization of the "spare" OSEMs.

This finishes the recovery of the MC1 suspension, I am now satisfied that the local damping loops are performing satisfactorily, that the WFS servo is also stable, and that POX/POY locking is recovered. On MC1, we even have 4 actuatable face OSEMs and the PIT(YAW) bias adjust slider even moves the optic in PIT(YAW), what a luxury. 

I've SDFed all the changes, and have backup of the old realtime model and C1SUSAUX_MC1 database files if we want to go back for whatever reason. The changes required to make this suspension work are different from what will eventually be required for the BHD suspensions (because of the hybrid iLIGO/aLIGO electronics situation), so I will not burden the readers with the tedious details.

  11438   Thu Jul 23 03:09:05 2015 ericqUpdateLSCaLIGO demod board lives!

I'm a little mystified. Peeking inside the aLIGO demod board, I saw that the reason that two of the channels weren't working was that their power connectors weren't plugged in, so no real mystery there. 

I hooked up the board at the electronics bench, and found the noise to be completely well behaved, in contrast to the measurements I made when it was in the LSC rack. I've taken it back out to the LSC rack, and given it the X beatnote, and it seems to be performing pretty well. 


I switched between the aLIGO demod board and beatbox during the same lock / beat. The LSC board performs margnially better from 3-100 Hz. The high frequency noise comes from the green PDH loop (coherence is near one above a few hundred Hz), so we don't expect any difference there. 

To me, the beatbox noise looks like there is a broad feature that is roughly the same level as the real cavity motion in the 10-100 Hz range. So, I think we should use the aLIGO board afterall, presuming the noise doesn't shoot back up when I remount it in the rack...


The ALS noise is getting low enough where our normal approach of measuring ALS sensing noise by simply taking the PSD of the signal when the arm is PDH locked is not quite valid anymore, as it is sensing the real cavity fluctuations. Doing a frequency domain coherent subtration of the PSDs suggests a sensing noise RMS of ~150Hz for ALSX. 

When the X arm is locked on ALS, POX sees about 250Hz RMS out of loop noise, which isn't the greatest; however, I used to be happy with 500Hz. By eye, sweeping through IR resonance is smoother. The real test is to get the Y arm ALS running, and swing it through PRFPMI resonance...


Fair warning, the LSC rack area is not so tidy right now, the demod board is resting on a stool (but not in the way of walking down the arm). I'll clean this up tomorrow. 

Attachment 1: beatbox_vs_aLIGO.png
beatbox_vs_aLIGO.png
  11468   Thu Jul 30 14:42:03 2015 ericqUpdateLSCaLIGO demod board lives!

ALS is not currently limited by the demod board or whitening electronics.

The noise budget in the green locking paper shows the main noise sources to be these two, plus the residual fluctuations of the green PDH loop. 

So, one next step is AUX PDH noise budget. 

However, I wonder how much of the low frequency noise can be explained by instability of the beat alignement on the PSL table, and how this might be quantified. 


Yesterday, I put together a few measurements to asses whether the new demod board has moved us in the right direction. Specifically I measured the output of the phase tracker in the following states, adjusting the phase tracker gain to maintain a ~2kHz UGH (but no boost on):

  • Whitening chassis inputs terminated. BEAT_I input channels were given a 3000 count offset to give the phase tracker something to work with. This is a typical beatnote amplitude with the new RF amplifiers. 
  • aLIGO LSC demod board driven with an SRS SD345 at 30MHz. (First with +3dBm into the splitter, which is about what it sees with the green beatnotes, then with +13dBm into the splitter, to give the board the +10dBm LO it expects)
  • Arms locked with POX, POY. AUX laser temperature servos on. Green beatnotes in the 20-40MHz range. 

Results: The beat frequency spectrum is above the measured demod board and whitening chassis/ADC noise at all frequencies. It's a little close at 10Hz. 

One nice feature is that the beat spectra are far more similar to each other than they used to be. RMS noise is in the 300-400Hz range, which isn't mindblowing, but not terrible. On the order of 50 pm for each arm. Most of this comes from below 10Hz. 

Another thing to note is that, when we switch in the 50m cables, we should win a fair bit of Hz/V gain and push down these noises futher. (We're currently using 30m cables.)


By looking at some coherences, we can attribute some of the noise when IR locked to both colors of PDH loops. 

Specifically, the coherence with the Green PDH error implicates the residual frequency noise of the AUX laser above a few hundred Hz, whereas the feature from 20-50Hz is probably real cavity motion, not ALS sensing noise. Some of the 1-3Hz noise is from real suspension/stack resonances too. 


If it turns out that we do want to push the demod board noise down further, we could think about increasing the RF amplification. Driving the board harder translates directly to better noise performance. The 60Hz harmonics aren't so exciting, but not the end of the world.


Data files are attached, if you're in to that sort of thing. 

Attachment 1: partialALSbudget.png
partialALSbudget.png
Attachment 2: demodDriveLevels.png
demodDriveLevels.png
Attachment 3: ALScoherences.png
ALScoherences.png
Attachment 4: partialALSbudget.zip
  15613   Mon Oct 5 14:01:41 2020 gautamUpdateElectronicsaLIGO demod boards stuffed and delivered

We received 20pcs of stuffed demodulator boards from Screaming Circuits today. Some caveats:

  1. The AP1053 amplifiers weren't stuffed. Note that this part is no longer in standard production, and lead time for a custom run is ~half a year. I recommend stuffing R2 and using a minicircuits amplifier upstream of this board. We have 6 pcs of AP1053 in hand so we can use those for the first AS WFS, but a second WFS will require some workaround.
  2. AD8306ARZ weren't sent to Screaming Circuits. This part is used for the LO and RF signal level detection/monitoring stage, and so aren't crucial to the demodulation operation. @Chub, did we order the correct part now? They are rather pricey so maybe we can just adapt the footprint using some adaptor board?
  3. DQS-10-100 hybrid 90 degree splitters were delivered to us after the lot was sent to Screaming Circuits. We have the pieces in hand, so we can just stuff them as necessary.

I removed 1 from the group to stuff some components that weren't sent to Screaming Circuits and test the functionality on the benchtop, the remaining have been stored in a plastic box for now as shown in Attachment #1. The box has been delivered to Chub who will stuff the remaining 19 boards once I've tested the one piece.

Attachment 1: IMG_8888.JPG
IMG_8888.JPG
  7189   Wed Aug 15 10:40:16 2012 DenUpdateCDSaa filters

The lack of AA filter for MCL signal is RFM model strongly disturbed entering to OAF signal

aa.png

  9786   Mon Apr 7 15:26:32 2014 jamie, ericqUpdateCDSaborted attempt to update c1sus machine with second CPU

This morning we attempted to replace the c1sus front end machine with a spare that had been given a second CPU, and therefore 6 additional cores (for a total of 12).  The idea was to give c1sus more cores so that we could split up c1rfm into two separate models that would not be running on the hairy edge of their cycle time allocation.  Well, after struggling to get it working we eventually aborted and put the old machine back in.

The problem was that the c1sus model was running erratically, frequently jumping up to 100 usec of a 60 usec clock allocation.  We eventually tracked the problem down to the fact that the CPUs in the new machine are of an inferior and slower model, than what's in the old c1sus machine.  The CPU were running about 30% slower, which was enough to bump c1sus, which nominally runs at ~51 usec, over it's limit.

This is of course stupid, and I take the blame.  I skimped on the CPUs when I bought the spare machines in an attempt to keep the cost down, and didn't forgot that I had done that when we started discussing using one of the spares as a c1sus replacement.

I think we can salvage things, though, by just purchasing a better CPU, one that matches what's currently in c1sus.  I'll get Steve on it:

c1sus CPU: Intel(R) Xeon(R) CPU X5680 3.33GHz

In any event, the old c1sus is back in place, and everything is back as it was.

Attachment 1: Screenshot-Untitled_Window.png
Screenshot-Untitled_Window.png
  5670   Sat Oct 15 16:01:26 2011 kiwamuUpdateIOOabout LOCKIN module

Quote from #5669

To make things faster, I think we can just make a LOCKIN which has 3 inputs: it would have one oscillator, but 6 mixers. Should be simple to make.

 I think the idea of having multiple inputs in a LOCKIN module is also good for the LSC sensing matrix measurement.

Because right now I am measuring the responses of multiple sensors one by one while exciting a particular DOF by one oscillator.

Moreover in the LSC case the number of sensors, which we have to measure, is enormous (e.g. REFL11I/Q, REFL33I/Q, REFL55I/Q, ... POY11I/Q,...) and indeed it has been a long-time measurement.

  943   Thu Sep 11 23:28:35 2008 albertoUpdateGeneralabs cavity length experiment
The MC lost lock for some reason not related to either the FSS or the PMC I'm done with my measurement for tonight. I've shut the NPRO beam before leaving.
  944   Fri Sep 12 11:09:20 2008 AlbertoUpdateGeneralabs cavity length experiment
I'm leaving the lab for a couple of hours. I shut the NPRO. The interferometer is available to anyone.
  945   Sat Sep 13 23:13:01 2008 AlbertoUpdateGeneralabs cavity length experiment
The Y arm was locked all time today but, suddenly, this afternoon it lost lock and since then I've been unable to restore it. I tried unsuccessfully the Restore and the Align scripts several times, although the position of PZT steering mirrors were good (as in the snapshot). I tried things like unlocking/locking the MC, the FSS reference cavity, the PMC but it didn't work. Then I decided to switch to the X arm. Locking it was a piece of cake compare to Y. I'm going to start measuring the FSR of the X arm.
  656   Thu Jul 10 19:12:07 2008 AlbertoUpdateGeneralabs cavity length measurement experiment
Yesterday morning, when I started, I found the IFO beam on a different position and the beam spot at the AS port looked very deformed. The overlapping with the secondary beam was not good enough to observe the beats anymore. Restoring the alignments of the interferometers did not work because, as John found out later, some of the photodiodes had offsets and gain which made the restore script ineffective. After resetting the parameters, we had to align every mirror of the interferometers and save the configuration twice. The second times was because on the first time the alignment had been done with the illuminators on. To avoid that in the future, John wrote an alarm to warn about the status of the lights.

After that we fixed the IFO beam, I had to realign the optics in the table to match the secondary beam to the IFO beam. I got the two beam overlapping and, even though the NPRO spot looked distorted, I could observe again some signal of the beat. To do that it was also necessary to have all the interferometer mirrors aligned so that we had more power from the ifo beam although it also made the spot flash. Ideally, to avoid the flashing (which we would also impede the PLL to work) we should work with the interferometer locked. Since that doesn't seem actually possible, we should just keep one of the ITM aligned and improve the beam matching so that we can observe the beats even with less power.

Today I spent the day trying to improve the alignement of the optics to observe the beats with only the ITM aligned, resetting the alignment of both beams with the ireses, with the Farady and all the rest. It was a rather long and tiring process but I think I'm close to the target and maybe tomorrow.
  668   Mon Jul 14 19:15:43 2008 AlbertoUpdateGeneralabs cavity length measurement experiment
Lately I've been dealing with the alignment of the interferometer to have a good beam spot at the AS port. Today the alignment script kept failing because of computer problems (failure of the frame builder) and also because the IFO was probably too far from the range where the automatic alignment works.

An other problem I keep having with the alignment of the optics on the AP table is with multiple reflection beams of the NPRO beam at the Farady.
Although I believe that now the two beams are quite well aligned, I don't see any reflection of the secondary beam from the IFO anymore.

It's like the more I try to improve the alignment, the worse I get from the beam matching. I'll keep working on this.
  669   Mon Jul 14 21:34:10 2008 AlbertoUpdateGeneralabs cavity length measurement experiment

Quote:
Lately I've been dealing with the alignment of the interferometer to have a good beam spot at the AS port. Today the alignment script kept failing because of computer problems (failure of the frame builder) and also because the IFO was probably too far from the range where the automatic alignment works.

An other problem I keep having with the alignment of the optics on the AP table is with multiple reflection beams of the NPRO beam at the Farady.
Although I believe that now the two beams are quite well aligned, I don't see any reflection of the secondary beam from the IFO anymore.

It's like the more I try to improve the alignment, the worse I get from the beam matching. I'll keep working on this.


Realigning the OSA I also had to move a little bit the mirror that reflects the IFO beam of at the AS port in order to raise the beam height. This had the effect of changing the position of the AS spot on the camera and on the monitors.

Tonight with John, we made sure that the AS beam was still aligned to the PD.
  940   Wed Sep 10 19:53:53 2008 AlbertoUpdateGeneralabs length experiment
Update of the last days work on the experiment to measure the absolute length of the cavities.

I'm trying to repeat the same measurement that Koji did on the Y arm, before switching to the X arm.

I switched to the PHD universal box for the PLL control between the main laser and the secondary laser. I found a good gain value for the servo and now I can set the frequency of the beat to any value as long as I do it slowly turning the LO frequency from the knob on the Marconi.

I laid down a 50m BNC cable from the Y end to near the BS chamber, where all the abs length equipment is. I matched the two laser beams changing the alignment of the injection steering mirror at the the dark port on the AP table. I then locked the Y arm cavity. When I first tried to do that, the locking script didn't work because the beam was off of the 'sweet spot' where Rob had set it on Monday. It turned out that aborting the script during one of its previous run, had changed the alignment of the PZT steering mirrors. So with Rob I brought them back near the positions as in the snapshot and then saved a new one with the latest values.

Eventually I could set the beat frequency to the FSR of the arm cavity and saw it in transmission at the ETMY.

Now I'm working on the LabView interface for the GPIB data acquisition board.
  3551   Thu Sep 9 11:31:54 2010 steveUpdatePEMaccelerometer cable connection

I turned off/on the power to the accelerometers in order to re rout their connections. I found cable connector body-nut  #3 loose to Accelerometer 2X This connector should be checked for solid performance.

  1696   Wed Jun 24 12:04:00 2009 ClaraUpdatePEMaccelerometer clarification

When I said "MC1/MC2 accelerometers," I meant the entire three-axis accelerometer set at each point.

  7562   Tue Oct 16 21:57:47 2012 DenUpdatePEMaccelerometers

All accelerometers are now at the table behind 1X4, cables are near readout box.

  2119   Mon Oct 19 17:12:54 2009 jenneUpdatePEMaccelerometers and seismomters are all good.

Quote:

Some of these channels are not like the others.

 All of the PEM channels seem to be okay right now.  The accelerometers didn't turn out to have any differences in the traces when we put both XYZ triplets right next to each other, so we put them back where they belong.  Gur2 seismometer was showing a few problems, especially with Gur2_X, as Rana posted in elog 2079.  This was solved by tightening the cable screws which hold the Dsub end of the Guralp cable to the front panel of the Guralp box.  All is now well.

Attachment 1: SeismometersGoodSpectra_19Oct2009.png
SeismometersGoodSpectra_19Oct2009.png
  11950   Tue Jan 26 15:07:47 2016 SteveUpdatePEMaccelerometers moved to ETMX

Objective:  measure the noise floor on the optical table and the floor so we can decide if the table needs better anchoring before swapping in

                   the larger optical table

The accelerometrs labeled as MC1 ( just north east  of IOO chamber floor ) and MC2 ( north east leg of MC2 table floor ) were moved:

MC1 to the floor at the north west leg of optical table.

MC2 is in the north east corner of the optical table

Atm2 was taken after table leg bolts were tighed at 40 ft/lb

The spectrum looks similar to ETMY     (Guralp for below 3 Hz )  except  the Z direction 

ETMY  .

Attachment 1: ETMX_floor_vs_optab.png
ETMX_floor_vs_optab.png
Attachment 2: ETMX_floor_vs_optabtop.png
ETMX_floor_vs_optabtop.png
  1613   Wed May 20 10:43:17 2009 steveOmnistructureEnvironmentaccelerometers sensitivity

Quote:

2009 May 18 03:39:36 UTC

Earthquake Details

Magnitude 5.0
Date-Time
  • Monday, May 18, 2009 at 03:39:36 UTC
  • Sunday, May 17, 2009 at 08:39:36 PM at epicenter
Location 33.940°N, 118.338°W
Depth 13.5 km (8.4 miles)
Region GREATER LOS ANGELES AREA, CALIFORNIA
Distances
  • 2 km (1 miles) E (91°) from Lennox, CA
  • 2 km (1 miles) SSE (159°) from Inglewood, CA
  • 3 km (2 miles) NNE (22°) from Hawthorne, CA
  • 7 km (4 miles) ENE (72°) from El Segundo, CA
  • 15 km (10 miles) SSW (213°) from Los Angeles Civic Center, CA
Location Uncertainty horizontal +/- 0.4 km (0.2 miles); depth +/- 0.9 km (0.6 miles)
Parameters Nph=139, Dmin=7 km, Rmss=0.42 sec, Gp= 40°,
M-type=local magnitude (ML), Version=C
Source
Event ID ci10410337

 Wilcoxon 731A seismic accelerometers and Guralp CMG-40T-old seismometer at magnitude 5 and 4 erthquakes

Attachment 1: eq5m4.jpg
eq5m4.jpg
  747   Mon Jul 28 12:02:32 2008 SharonUpdate accelerometers settings
Jenne, Sharon


We looked again at the channels of the accelerometers and there are some updates. Last time when we reported, we crossed the ADAP channels and the accelerometer. Now that there is a new MEDM screen, with which you can control which channels goes to which adaptive channels, this has no meaning...
Therefore, the channels that go with the noise source channels are:

PEM 15 MC1_X
PEM 16 MC1_Y
PEM 17 MC1_Z
PEM 18 MC2_X
PEM 19 MC2_Y
PEM 20 MC2_Z
PEM 21 SEIS

disregard the last post regarding these channels by Jenne, since I am changing the ADAP channels all the time...
  7407   Wed Sep 19 09:24:01 2012 SteveOmnistructureIOOaccess connector at athmoshere

Quote:

Quote:

We really need something better to replace the access connector when we're at air.  This tin foil tunnel crap is dumb.  We can't do any locking in the evening after we've put on the light doors.  We need something that we can put in place of the access connector that allows us access to the OMC and IOO tables, while still allowing IMC locking, and can be left in place at night.

 It is in the shop. It will be ready for the next vent. Koji's dream comes through.

 24" diameter clear acetate access connector is in place. The 0.01" thick plastic is wrapped around twice to insure air and bug tight barrier for the MC to lock overnight. The acetate transmission for 1064 nm is 90 % This was measured at 150 mW   2.5 mm beam size.

 

Attachment 1: IMG_1641.JPG
IMG_1641.JPG
Attachment 2: IMG_1642.JPG
IMG_1642.JPG
Attachment 3: acetateAC.png
acetateAC.png
  7518   Wed Oct 10 10:55:56 2012 SteveOmnistructureIOOaccess connector at athmoshere

Quote:

Quote:

Quote:

We really need something better to replace the access connector when we're at air.  This tin foil tunnel crap is dumb.  We can't do any locking in the evening after we've put on the light doors.  We need something that we can put in place of the access connector that allows us access to the OMC and IOO tables, while still allowing IMC locking, and can be left in place at night.

 It is in the shop. It will be ready for the next vent. Koji's dream comes through.

 24" diameter clear acetate access connector is in place. The 0.01" thick plastic is wrapped around twice to insure air and bug tight barrier for the MC to lock overnight. The acetate transmission for 1064 nm is 90 % This was measured at 150 mW   2.5 mm beam size.

 

 Aluminum sheet as shown will replace the acetate. Side entries for your arms and "window" on the top will be covered with acetate using double- sided removable-no residue tape 3M 9425

Attachment 1: 10101202.PDF
10101202.PDF
  10473   Mon Sep 8 16:23:25 2014 LarryHowToComputer Scripts / Programsaccessing 40m data remotely with python

 

Attached is an example script showing how to access 40m data remotely. The only two nonstandard python modules you need are the nds2 client module and astropy (used for time conversion). For mac users, both of these are available via macports (nds2-client and, e.g. py27-astropy). Otherwise, check out their websites:

https://www.lsc-group.phys.uwm.edu/daswg/projects/nds-client.html

https://github.com/astropy/astropy

 

Have fun!

 

 

Attachment 1: get40mData.ipynb.gz
  13186   Thu Aug 10 15:45:34 2017 SteveUpdateVACaccidental vent to 17 Torr

Finally we got the cold cathode gauge working. IFO pressure 7e-6 Torr-it, vacuum normal valve configuration with all 4 ion pump gate valves closed at ~ 9e-6 Torr.  The cryo pump was also pumped yesterday to remove the accumulated outgassing build up.

The accidental vent was my mistake; made when I was replacing the battery pack of the UPS. The installed pack measured 51 V without any load. The "replace battery" warning light did not go out after the batteries were replaced. 

I then mistakenly and repeatedly pushed the "test" button to reset this, but I did not wait long enough for the batterries to get fully charged. The test put the full load on the new batteries and their charging condition got worse. I made the mistake when trying to put the load from the battery to online and pushed "O" so the power was cut and the computer rebooted to the all off condition. On top of this, I disconnected the wrong V1 cable to close V1.  As the computer rebooted it's interlock closed V1 at 17 Torr.

Never hit O on the Vacuum UPS !

Note: the " all off " configuration should be all valves closed ! This should be fixed now.

In case of  emergency  you can close V1 with disconnecting it's actuating power as shown on Atm3 if you have peumatic pressure 60 PSI 

Attachment 1: Mag_UPS.jpg
Mag_UPS.jpg
Attachment 2: UPSbatteryPack.jpg
UPSbatteryPack.jpg
Attachment 3: closing_V1.jpg
closing_V1.jpg
  7650   Wed Oct 31 22:56:41 2012 DenUpdatePEMacoustic noise

Microphone preamp box had a low-pass filter at 2kHz, Ayaka changed it to 20 kHz by replacing 100pF capacitor with a 10pF.

We've measured frequency response of the box. Signal from the microphone was split into two. One path went to the box, while another was amplified by the gain 20 (and bandpass filter 1Hz - 300kHz) and sent to spectrum analyzer. Coherence and frequency response were measured using box output and amplified input. Low-pass filter in the box does not limit our sensitivity.

Acoustic noise significantly decreases at frequencies higher then 2kHz. So we need to modify the circuit by adding whitening filter.

pre_after_mic.png  freq_resp.png

I've plugged in PMC length channel into PEM board CH15 through and amplifier (gain=200) that is AC coupled to avoid ~2.5 DC V coming from PMC servo.  I measured coherence with microphone that was located ~30 cm higher. Measurements show contribution of acoustic noise to PMC length in the frequency range 20-50 Hz. In this range PMC length / MC length coherence is ~0.5.

Acoustic noise couples to PMC length in a non-stationary way. 5 minutes after the first measurement I already see much higher contribution. This was already discussed here. I've made C1:X02-MADC3_TP_CH15 a DQ channel at 64kHz. This a fast PMC length channel.

Next step will be to use several microphones located around PMC for acoustic noise cancellation.

DSC_4792.JPG    DSC_4793.JPG

Attachment 3: pmc.pdf
pmc.pdf pmc.pdf
Attachment 4: pmc_high.pdf
pmc_high.pdf
  6565   Wed Apr 25 00:20:01 2012 DenUpdatePEMacoustic noise at 40m

 Blue Bird Mic is suspended close to PMC now and outputs ~10 counts when pre-amp gain is 8 dB. This means that the mic outputs ~2.42 mV. Its sensitivity is 27 mV/Pa => acoustic noise is ~0.1 Pa or ~75 dB SPL.

If we buy Panasonic WM61A with their sensitivity -35 dB => they will output ~1.7 mV. We can amplify this signal without adding significant noise. For WM61A S/N ratio is given to be 62 dB. This is for some standard signal that is not specified. For Blue Bird mic it is specified according to IEC 651. So I assume SPL of the standard signal = 94 dB => noise level of WM61A is 32 dB (pretty bad compared to 7 dB-A of Blue Bird). But in our case for PSL S/N ratio is ~43 dB that is not too bad. PSL is noisy due to HEPA, acoustic noise level close to MC2 stack will be less. So we may want to consider Primo EM172/173 where the noise level is claimed to be 18 dB less. I think we should buy several WM61A and EM172.

  6671   Thu May 24 02:55:36 2012 DenUpdatePEMacoustic noise in MCL

Mic in the PSL showed that fluctuations in the MCL in the frequency range 10 - 100 Hz are due to acoustic noise. I've measured MCL, MCL / PSL mic coherence 2 times with interval 300 seconds.

Surprisingly, acoustic noise level did not change but MC sometimes is more sensitive to acoustic noise, sometimes less.

audio_noise.png

  445   Thu Apr 24 23:27:48 2008 ranaUpdatePEMacoustic noise in MC_F
I looked at the coherence between the Microphone in the PSL (PEM-AS_MIC) and the MC_F channel.

We want to use a microphone to do Wiener/Adaptive noise cancellation on the MC and so we need to
have a coherence of more than ~0.1 in order for that to have any useful effect.

The attached plot shows the spectrum and coherence with and without the HEPA turned up. As you can
see, the HEPA noise is just barely noticeable in this microphone. Mad

We will need to get something with at least 20 dB more sensitivity.:P
  7659   Thu Nov 1 20:20:33 2012 Den, AyakaUpdateWienerFilteringacoustic noise in PMC

We've subtracted acoustic noise from PMC using 1 EM 172 microphone. We applied a 10 Hz high-pass filter to PMC length signal and 100,200,300:30,30 to whiten the signal.We used ~10 minutes of data at 2048 Hz as we did not see much coherence at higher frequencies.

We were able to subtract acoustic noise from PMC length in the frequency range 10-700 Hz. In the range 30-50 Hz error signal is less by a factor of 10 then target signal.

psd.pngcoh.png

  13530   Thu Jan 11 09:57:17 2018 SteveUpdateDAQacromag at ETMX

Good going Johannes!

Quote:

This evening I transitioned the slow controls to c1auxex2.

  1. Disconnected satellite box
  2. Turned off c1auxex
  3. Disconnected DIN cables from backplace connectors
  4. Attached purple adapter boards
  5. Labeled DSub cables for use
  6. Connected DSub cables to adapter boards and chassis
  7. Initiated modbus IOC on c1auxex2

Gautam and I then proceeded to test basic functionality

  1. Pitch bias sliders move pitch, yaw moves yawyes.
  2. Coil enable and monitoring channels work yes
  3. Watchdog seems to work. yes We set the treshold for tripping low, excited the optic, watchdog didn't disappoint and triggered.
  4. All channels Initialize with "0" upon machine/server script restart. This means the watchdog happens to be OFF, which is good yes. It would be great if we could also initialize PIT and YAW to retain their value from before to avoid kicking the optic. This is not straightforward with EPICS records but there must be a way.
  5. We got the local damping going yes.
  6. There is some problem with the routing of the fast BIO channels through the new chassis - so the ANALOG de-whitening filter seems to be always engaged, despite our toggling the software BIO bits no. Something must be wrongly wired, as we confirmed by returning only the FAST BIO wiring to the pre-acromag state (but everything else is now controlled by acromag) and didn't have the problem anymore. Or some electrical connection is not made (I had to use gender changers on these connectors due to lack of proper cabling)
  7. The switches for the QPD gain stages did not work. no I suspect a wiring problem, since the switching of the coil enables did work.

Arms are locked, have been for ~1hour with no hickups. We will leave it like this overnight to observe, and debug further tomorrow.

 

Attachment 1: Acromg_in_action.png
Acromg_in_action.png
  12604   Mon Nov 7 19:49:44 2016 JohannesUpdateCDSacromag chassis hooked up to PSL

[Lydia, Johannes]

We're waiting on the last couple electrical components to arrive that are needed to complete the acromag chassis, but it is essentially operational. Right now it is connected to the PSL Mephisto's diagnostics port, for which only a single XT1221 A/D unit is needed. We assigned the IP address 192.168.113.121 to it. For the time being I'm running a tmux session on megatron (named "acromag") that grabs and broadcasts the epics channels, with Lydia's original channel definitions. Since the chassis is 4U tall, there's not really any place in the rack for it, so we might want to move it to the X-end before we start shuffling rack components around. Once we finalize its location we can proceed with adding the channels to the frames.

For the eventual gradual replacement of the slow machines, we need to put some thought into the connectors we want in the chassis. If we want to replicate the VME crate connectors we probably need to make our own PCB boards for them, as there don't seem to be panel-mount screw terminal blocks readily available for DIN 41612 connectors. Furthermore, if we want to add whitening/AA filters, the chassis may actually be large enough to accomodate them, and arranging things on the inside is quite flexible. There are a few things to be considered when moving forward, for example how many XT units we can practically fit in the chassis (space availability, heat generation, and power requirements) and thus how many channels/connectors we can support with each.

Steve: 1X3 has plenty of room

Attachment 1: acromag_chassis_location.jpg
acromag_chassis_location.jpg
Attachment 2: acromag_chassis_top_view.jpg
acromag_chassis_top_view.jpg
  12607   Tue Nov 8 17:51:09 2016 LydiaUpdateCDSacromag chassis hooked up to PSL

We set up the chassis in 1X7 today. Steve is ordering a longer 25 pin cable to reach. Until then the PSL diagnostic channels will not be usable.

  12632   Mon Nov 21 19:54:13 2016 JohannesUpdateCDSacromag chassis hooked up to PSL

[Lydia, Johannes]

We connected and powered up the Acromag chassis today. It lives in 1X4 and is powered by the Sorensen +20V power supply in 1X5 via the fuse rail on the side of 1X4. For this we had to branch off the 20V path to the dewhitening and anti-image filter crate of the c1:susaux driven SOS optics. After confirming that none of the daughter modules in the crate draw from the 20V line, we added a wire leading to a new fuse we added for this unit and ran a power cable from there.

The diagnostic connector of the PSL laser is now connected to the unit and a tmux session was created on megatron that interfaces with the chassis and broadcasts the EPICS channels. We need to watch out in the coming days for epics freezes/outages, as in the past these seemed to occur around the same times we were toying with the Acromags.

Quote:

We set up the chassis in 1X7 today. Steve is ordering a longer 25 pin cable to reach. Until then the PSL diagnostic channels will not be usable.

 

Attachment 1: acromag_chassis.jpg
acromag_chassis.jpg
  8103   Tue Feb 19 02:23:40 2013 yutaBureaucracyGeneralaction items for PRFPMI

These are things need to be done for demonstrating PRFPMI using ALS.
All of these should be done before March 8!

CDS:
    - Fix c1iscex -JAMIE (done Feb 19: elog #8109)
    - Is ASS and A2L working? -JENNE
    - Are all whitening filters for PDs toggling correctly? -JENNE, JAMIE

PRMI locking:
    - Adjust I/Q rotation angles for error signals -JENNE, YUTA
    - Adjust filters -JENNE, YUTA
    - Coil balancing for BS (and ITMs/ETMs) -YUTA

PRC characterization in PRMI:

    - Measure PR2 loss from flipping -MANASA
    - Measure mode matching ratio -JENNE, YUTA
    - Measure finesse, PR gain -JENNE, YUTA
    - Calibrate PRM and/or ITM oplevs -MANASA, YUTA
    - Measure g-factor by tilting PRM or ITMs -JAMIE, YUTA
    - Calculate expected mode matching ratio and g-factor -JAMIE
    - Calculate expected finesse, PR gain -JENNE
    - Align aux laser into AS port? -ANNALISA?

ALS:
    - What's the end green situation? Optical layout changed? Laser temperature in CDS? -MANASA
    - What's the PSL green situation? Green trans cameras/PD? -JENNE, MANASA
    - Make ALS handing off to DARM/CARM LSC script -JENNE, YUTA
    - Demonstrate FPMI using ALS -JENNE, YUTA
    - Phase tracker characterization -YUTA, KOJI

PRFPMI:
    - Measure mode matching between PRC and arms -JENNE, YUTA
    - Measure PR gain -JENNE, YUTA
    - Calculate expected finesse, PR gain -JENNE

Others:
    - Update optical layout CAD after PR2 flipping -JAMIE, MANASA
    - AS55 situation? -YUTA
    - Look into PMC drift -JENNE, MANASA
    - Measure RFAM contribution to error signals -YUTA

 


Please fix, add or update if you notice anything.

  8163   Mon Feb 25 22:30:40 2013 JenneBureaucracyGeneralaction items for PRFPMI

 

 CDS:
    - Check out ASS and A2L working -JENNE
    - Are all whitening filters for PDs toggling correctly? -JENNE, JAMIE

PRMI locking:
    - Adjust I/Q rotation angles for error signals -JENNE, YUTA
    - Adjust filters -JENNE, YUTA
    - Coil balancing for BS (and ITMs/ETMs) -YUTA

PRC characterization in PRMI:

    - Measure PR2 loss from flipping -MANASA
    - Measure mode matching ratio -JENNE, YUTA
    - Measure finesse, PR gain -JENNE, YUTA
    - Calibrate PRM and/or ITM oplevs -MANASA, YUTA
    - Measure g-factor by tilting PRM or ITMs -JAMIE, YUTA
    - Calculate expected mode matching ratio and g-factor -JAMIE
    - Calculate expected finesse, PR gain -JENNE
    - Mode match and align aux laser into AS port -EVAN

ALS:
    - What's the end green situation? Optical layout changed? Laser temperature in CDS? -MANASA
    - What's the PSL green situation? Green trans cameras/PD? Design better layout -ANNALISA
    - Make ALS handing off to DARM/CARM LSC script -JENNE, YUTA
    - Demonstrate FPMI using ALS -JENNE, YUTA
    - Phase tracker characterization -YUTA, KOJI

PRFPMI:
    - Measure mode matching between PRC and arms -JENNE, YUTA
    - Measure PR gain -JENNE, YUTA
    - Calculate expected finesse, PR gain -JENNE

Others:
    - Update optical layout CAD after PR2 flipping -MANASA
    - IMC REFL demod phase rotation -EVAN, ANNALISA
    - Look into PMC drift -JENNE, MANASA
    - Measure RFAM contribution to error signals -YUTA

  8261   Fri Mar 8 16:05:56 2013 yutaBureaucracyGeneralaction items for PRMI / ALS-FPMI

We should focus our work both on PRMI and ALS-FPMI (elog #8250).

CDS:

    - Check out ASS and A2L working -JENNE (ALS done, ASS on going elog #8229)
    - Are all whitening filters for PDs toggling correctly? -JENNE, JAMIE (POX11 was OK, elog #8246)

PRMI locking:
    - Adjust I/Q rotation angles for error signals -JENNE, YUTA (coarsely done elog #8212)
    - Adjust filters -JENNE, YUTA (coarsely done elog #8212)
    - Coil balancing for BS (and ITMs/ETMs) -YUTA (done elog #8182)
    - Calculate sensing matrix for PRMI and convert them into physical units -JENNE, JAMIE
    - Measure sensing matrix for PRMI -JENNE, MANASA
    - Measure 55 MHz modulation depth -KOJI

PRC characterization in PRMI:

    - Measure PR2 loss from flipping -MANASA (on going elog #8063)
    - Measure mode matching ratio -JENNE, YUTA
    - Measure finesse, PR gain -JENNE, YUTA (done elog #8212)
    - Calibrate PRM and/or ITM oplevs -MANASA, YUTA (done elog #8221)
    - Measure g-factor by tilting PRM or ITMs -JAMIE, YUTA (coarsely done elog #8235, use other methods to check)
    - Simulate intra-cavity power dependance on PRM tilt -JAMIE (see elog #8235)
    - Calculate expected finesse, PR gain -JENNE
    - Mode match and align aux laser from POY -ANNALISA (on going elog #8257)

ALS:
    - Prepare for installation of new end tables on next vent -MANASA
    - Install green DC PDs and cameras on PSL table -JENNE, MANASA
    - Make ALS handing off to DARM/CARM LSC script -JENNE, YUTA
    - Demonstrate FPMI using ALS -JENNE, YUTA
    - Phase tracker characterization -YUTA, KOJI (bad whitening elog #8214)
    - better beatbox with whitening filters -JAMIE, KOJI

Others:
    - Update optical layout CAD after PR2 flipping -MANASA
    - IMC REFL demod phase rotation -EVAN, ANNALISA (done elog #8185)
    - Look into PMC drift -JENNE, MANASA
    - Measure RFAM contribution to error signals -YUTA
    - Look into TT2 drift -JENNE, MANASA

  4241   Wed Feb 2 15:07:20 2011 josephbUpdateCDSactivateDAQ.py now includes PEM channels

[Joe, Jenne]

We modified the activateDAQ.py script to handle the C1PEM.ini file (defining the PEM channels being recorded by the frame builder) in addition to all the optics channels.  Jenne will be modifying it further so as to rename more channels.

  5143   Mon Aug 8 19:45:27 2011 jamieUpdateCDSactivateDQ script run; SUS channels being acquired again

> Also the BS is missing its DAQ channels again (JAMIE !) so we can't diagnose it with the free swinging method.

I'm not sure why the BS channels were not being acquired.  I reran the activateDQ script, which seemed to fix everything.  The BS DQ channels are now there.

I also noticed that for some reason there were SUS-BS-ASC{PIT,YAW}_IN1_DQ channels, even though they had their acquire flags set to 0.  This means that they were showing up like test point channels, but not being written to frames by the frame builder.  This is pretty unusual, so I'm not sure why they were there.  I removed them.

  15882   Mon Mar 8 20:11:51 2021 ranaFrogsComputer Scripts / Programsactivate_matlab out of control on Megatron

there were a zillion processes trying to activate (this is the initial activation after the initial installation) matlab 2015b on megatron, so I killed them all. Was someone logged in to megatron and trying to run matlab sometime in 2020? If so, speak now, or I will send the out-of-control process brute squad after you!

  16999   Wed Jul 13 13:30:48 2022 YehonathanUpdateBHDadd Laser RIN to MICH budget

the main laser noise coupling for a Michelson is because of the RIN, not the frequency noise. You can measure the RIN, in MC trans or at the AS port by getting a single bounce beam from a single ITM.

  17013   Mon Jul 18 16:49:57 2022 YehonathanUpdateBHDadd Laser RIN to MICH budget

I measured the RIN by taking the spectrum of C1:MC_TRANS_SUMFILT_OUT and dividing it by the mean count on that channel (~13800 cts). Attachment 1 shows the result.

I updated the MICH AS55 noise budget but got a very low contribution (gold trace in attachment 2).

It seems too low I think. What could've gone wrong? Finesse calculates that the transfer function from laser amplitude modulation to AS55 is ~ 1.5e-9 at DC. If I turn off HOMs I get 1e-11 at DC, so this coupling is a result of some contrast defect. Should I include some RMS imbalances in the optics to account for this? Should I include it as a second-order effect due to MICH RMS deviation from zero crossing?

Quote:

the main laser noise coupling for a Michelson is because of the RIN, not the frequency noise. You can measure the RIN, in MC trans or at the AS port by getting a single bounce beam from a single ITM.

 

Attachment 1: Laser_RIN.pdf
Laser_RIN.pdf
Attachment 2: MICH_AS55_Noise_Budget.pdf
MICH_AS55_Noise_Budget.pdf
  17015   Mon Jul 18 18:33:38 2022 KojiUpdateBHDadd Laser RIN to MICH budget

You should measure the coupling by noise injection. Noise budgeting does not need any modeling:

1) Measure the power spectrum density of the target signal (i.e. DARM) and the source noise (i.e. RIN this case)

2) Calibrate both using a calibration peak to convert 1) into the physical units (m/rtHz, 1/rtHz, etc)

3) Measure the transfer function from source to target using the noise injection. (i.e. RIN injection this case and look at the injection to RIN and injection to DARM)

4) Measure open-loop transfer functions if necessary. (i.e. DARM control open-loop transfer function to convert the error signal into the free running noise level)

Primarily, these are measured noise levels and noise couplings there is no room to involve a model there.
Once the noise budget was done, you can compare it with the model and say "the coupling is big/small/comparable".
 

Also, why don't you use C1:MC_TRANS_SUMFILT_IN1_DQ instead? Your _OUT signal seems affected by the bunch of comb notch filters to artificially remove the 60Hz harmonics. It's not a fair RIN measurement.

  2462   Mon Dec 28 23:56:44 2009 kiwamu, ranaUpdateComputersadd the HILO drift channels to the burt

The HIGH and LOW channels are added into the burt request file "/target/c1losepics/autoBurt.req".

These values are used to colorize the alarm texts in the "C1DRIFT_MONITOR.adl" like a threshold. (the screenshot attached)

Hereafter these values will be automatically restored by the burt.  Happy !

Attachment 1: Screenshot_DRIFTMON.png
Screenshot_DRIFTMON.png
  780   Fri Aug 1 11:51:15 2008 justingOmnistructureComputersadded /cvs/cds/site directory
I added a /cvs/cds/site directory. This is the same as is dicsussed here. Right now it just has the text file 'cit' in it, but eventually the other scripts should be added. I'll probably use it in the next version of mDV.
  16870   Tue May 24 10:37:09 2022 TegaUpdateVACadded FRG channels to slow channel ini file

[Vacuum gauge sensors]

Paco informed me that the FRG sensor EPICS channels are not available on dataviewer, so I added them to slow channels ini file (/opt/rtcds/caltech/c1/chans/daq/C0EDCU.ini). I also commented out the old CC1, CC2, CC3 and CC4 gauges. A service restart is required for them to become available but this cannot be done right now because it would adversely affect the progress of the upgrade work. So this would be done at a later date.

Quote:

git repo - https://git.ligo.org/40m/vac

Finally incorporated the FRGs into the main modbusIOC service and everything seems to be working fine. I have also removed the old sensors (CC1,CC2,CC3,CC4,PTP1,IG1) from the serial client list and their corresponding EPICS channels. Furthermore, the interlock service python script has been updated so that all occurrence of old sensors (turns out to be only CC1) were replaced by their corresponding new FRG sensor (FRG1) and a redundnacy was also enacted for P1a where the interlock condition is replicated with P1a being replaced with FRG1 because they both sense the main volume pressure.

 

  6372   Wed Mar 7 13:30:17 2012 JimUpdatePEMadded TPs and JIMS channels to PEM front-end model

[Jim Ryan]

The PEM model has been modified now to include a block called 'JIMS' for the JIMS(Joint Information Management System) channel processing. Additionally I added test points inside the BLRMS blocks that are there. These test points are connected to the output of the sqrt function for each band. I needed this for debugging purposes and it was something Jenny had requested.

The outputs are taken out of the RMS block and muxed, then demuxed just outside the JIMS block. I was unable to get the model to work properly with the muxed channel traveling up or down levels for this. Inside the JIMS block the information goes into blocks for the corresponding seismometer channel.

For each seismometer channel the five bands are processed by comparing to a threshold value to give a boolean with 1 being good (BLRMS below threshold) and 0 being bad (BLRMS above threshold). The boolean streams are then split into a persistent stream and a non-persistent stream. The persistent stream is processed by a new library block that I created (called persist) which holds the value at 0 for a number of time steps equal to an EPICS variable setting from the time the boolean first drops to zero. The persist allows excursions shorter than the timestep of a downsampled timeseries to be seen reliably.

The EPICS variables for the thresholds are of the form (in order of increasing frequency):

C1:PEM-JIMS_GUR1X_THRES1

C1:PEM-JIMS_GUR1X_THRES2

etc.

The EPICS variables for the persist step size are of the form:

C1:PEM-JIMS_GUR1X_PERSIST

C1:PEM-JIMS_GUR1Y_PERSIST

etc.

I have set all of the persist values to 2048 (1 sec.) for now. The threshold values are currently 200,140,300,485,340 for the GUR1X bands and 170,105,185,440,430 for the GUR1Y bands.

The values were set using ezcawrite. There is no MEDM screen for this yet.

PEM model was restarted at approx. 11:30 Mar. 7 2012 PST.

 

  4420   Mon Mar 21 18:34:10 2011 kiwamuUpdateGreen Lockingadded a new ADC channel on 1X9

I added a new ADC channel for a DC signal from the X end green PD.

It is called C1:GCX-REFL_DC and connected to adc_0_1, which is the second channel of ADC_0.

 

By the way, when I tried connecting it to an ADC I found that most of the channels on the AA board on 1X9 were not working.

Since the outputs form the board are too small the circuits may have benn broken. See the picture below.

In addition to that  I realized that the signal from the PDH box for the temperature actuation is limited by +/- 2V due to the range of this AA board.

In fact the signal is frequently saturated due to this small voltage range.

We have to enlarge the range of this AA board like Valera did before for the suspensions (see this entry).

aa_board_1X9.jpg

  624   Wed Jul 2 15:14:42 2008 steveUpdateGeneraladded beam traps
I placed baked razor beam trap after INJ_SM1 and flipper in the injection path on the AP table


Quote:
I have constructed the beam injection optics for the abs length measurement.

The injection beam was coarsely aligned to the interferometer. The reflected beam from SRM was already seen at AS CCD.
I have attached the optical configration for this measurement and the optics layout at the AP table.

I am going to go to LHO for three weeks. During the absence Alberto tunes the mode matching and the alignment of the interferometer.

In the process of making this report, I noticed that one of the iris apertures is about disturbing the beam for OMCR CCD. I will check this before I go to Hanford. Also an RF spectrum analyzer is at the AP table. I try to return this near the PSL on Monday morning.

Attachment 1: Optical configuration for the abs length measurement.
1) One of the arms is locked to the PSL beam by the main control system (red).
2) A laser beam is injected from the AS port (blue). This laser essentially has different frequency from that of PSL.
3) The injected beam and the outgoing PSL beam appear at the output of the faraday in the injection system.
4) They beat each other at the frequency difference of those two lasers.
5) A PLL is used to lock the frequency difference to a local oscillator (LO).
6) The LO frequency is swept at around 3.87MHz, that is the approximate FSR frequency of the arm cavity.
7) If the LO frequency hits the FSR within the resonant width, the beating also appears at the transmitted light as the injected beam also becomes resonant to the arm cavity.
8) Amplitude of the beating at the transmitted light is measured by a RF spectrum analyzer as a function of the LO frequency. We get the FSR frequency (= the arm cavity length) from the top of the resonance.

Attachment 2: Optics at the AP table for the laser injection
700mW NPRO, laser source. vertically polarized.
Periscope, to raise the beam 1 inch to make the beam at the 4 inch elevation.
INJ_SM1/INJ_SM2, steering mirrors to align the injection beam to the IFO beam.
HWP1, half wave plate to make the beam to the farady horiz-polarized. nominal 42deg on the readout.
FI, Faraday isolator for protection of the NPRO from the returning light, for obtaining the returning light.
HWP2, to make the beam from the Faraday horiz-polarized. nominal 357deg on the readout.
MM_Lens, f=125mm to match the laser mode to the IFO beam.
SM1/SM2, steering mirrors to align the IFO beam to the Farady Isolator.
IRIS1/IRIS2, for the coarse alignment of the injection beam.
FLIP, flipper mount to turn on/off the injection optics.

Alignment procedure of the injection system
0) Ignite NPRO several hours before the experiment so that the laser frequency can be stable.
1) Turn up FLIP. Close the shutter of NPRO.
2) Adjust SM1/SM2 so that the ifo beam can appear at the output of FI.
3) Adjust height and position of IRIS1/IRIS2 with regard to the ifo beam so that the ifo beam goes through IRIS1/IRIS2 even when they are closed.
4) Turn down FLIP. Open the shutter of NPRO.
5) Adjust INJ_SM1/INJ_SM2 so that the injection beam can go through IRIS1/IRIS2 even when they are closed.
6) At this time, it is expected that the reflection of the injection beam from SRM appears at AS CCD, if SRM is aligned.
7) Adjust INJ_SM1/INJ_SM2 so that the injection beam at AS CCD can overlap to the IFO beam.
8) Confirm the beam at the output of the FI also overlaps.
---- We are here ----
9) Change the ifo configuration to the X or Y arm only.
10) Scan the crystal temperature of the 700mW NPRO in order to try to have the beating of the two beams at the PD. AS OSA may be useful to obtain the beating.
11) Once the beating is obtained, adjust INJ_SM1/INJ_SM2 such that the beating amplitude is maximized.
  7067   Wed Aug 1 11:50:49 2012 JamieUpdateCDSadded input monitors to LSC_TRIGGER library part

I added an EPICS monitor to the input of the LSC_TRIGGER part, to allow monitoring the signal used for the trigger.  I then added the monitors to the C1LSC_TRIG_MTRX screen (see below).  This should hopefully aid in setting the trigger levels.

Attachment 1: trigmtrx.png
trigmtrx.png
ELOG V3.1.3-