40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 113 of 341  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  4197   Tue Jan 25 00:09:54 2011 KojiUpdateGeneralJenne laser is at PSL Lab

I found Tara's elog entry that Jenne laser is at PSL Lab.
Since we recently use it frequently, we should be aware where it is now.

  17022   Wed Jul 20 14:12:07 2022 PacoSummaryGeneralJenne laser kaput!

[Koji, Yehonathan, Paco]

Koji pointed out that this laser was always driven with a current driver (which was not nearby), and after finding it on one of the rolling carts, we hooked up the system but found that the laser driver displayed open circuit near the usual 20mA operating point. We therefore have to conclude that this laser is no more. We will look for a reasonable replacement.

Quote:

[Paco, Yehonathan, JC]

We were trying to setup the Jenne laser to characterize the response of three 1811s that Yehonathan is using for his WOPA experiment (in QIL). We hooked up a ~ 5 VDC power supply to the bias tee and looked to see if there was any DC response in the REF PD. We used a DB9 breakout board and a DB9 cable, and saw some current being drawn. The DC current was a bit too high (500 mA), so we turned the DC voltage off, and realized the VDC power was reversed, probably along the DB9 cable which we didn't check before. As we flipped the power supply leads and turned power back on, we could no longer see any current even though the voltage was now right (or was it???). We would like to debug this laser, and continue using it if it still works (!), but there is negligible documentation either here or in the wiki, so if there are any known places to look at it would be helpful to know them.

 

  17023   Wed Jul 20 15:58:52 2022 KojiSummaryGeneralJenne laser kaput!

For troubleshooting, the proper laser driver (found beneath the AG network analyzer) was connected.
The current ~1mA was provided and the driver detected the "open circuit", which means the laser diode was busted.

https://dcc.ligo.org/LIGO-T060240

The laser diode in the parts list is: "GTRAN GaAs Strained QW Laser Diode, Part # LD-1060".

  17021   Wed Jul 20 11:58:45 2022 PacoSummaryGeneralJenne laser kaput?

[Paco, Yehonathan, JC]

We were trying to setup the Jenne laser to characterize the response of three 1811s that Yehonathan is using for his WOPA experiment (in QIL). We hooked up a ~ 5 VDC power supply to the bias tee and looked to see if there was any DC response in the REF PD. We used a DB9 breakout board and a DB9 cable, and saw some current being drawn. The DC current was a bit too high (500 mA), so we turned the DC voltage off, and realized the VDC power was reversed, probably along the DB9 cable which we didn't check before. As we flipped the power supply leads and turned power back on, we could no longer see any current even though the voltage was now right (or was it???). We would like to debug this laser, and continue using it if it still works (!), but there is negligible documentation either here or in the wiki, so if there are any known places to look at it would be helpful to know them.

  5475   Tue Sep 20 03:12:14 2011 AnamariaUpdateSUSJenne's Scripts started

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

  5476   Tue Sep 20 04:12:26 2011 JenneUpdateSUSJenne's Scripts started

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

  5477   Tue Sep 20 09:44:44 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

  5479   Tue Sep 20 14:53:13 2011 JenneUpdateSUSJenne's Scripts started

Quote:

Quote:

Quote:

I followed Jenne's instructions, ran the matrix filler script and then set the optics to freeswing. Someone has to burt resture and damp them in the morning.

 Thanks!  I'll give them a little more time, then restore things.

 I began restoring the optics at ~9:30am, so I have a full 6 hours of data, in case I need that much to separate the Pos/Side modes on some of the optics.  They are all damping again with their original matricies.

 So, clearly this was a kind of dumb idea.  There is nothing mechanical going on between our sensor inputs and our Pit/Pos/Yaw/Side DoF filter banks.  It's just math.  On the other hand, we now have a 3rd set of in-vac free swinging data, so I can (after all the suspensions are working) have a look at the drift in matrix elements over time.

In other news, after some meditation, and fitzing with DoF gain values, all of the IFO optics except for SRM now have their new input matricies, and are damping pretty nicely.  I need to go through and do an "eyeball" check to make sure that everything has a Q of ~5ish.  So far, I've kicked the optics, and watched that they damped fairly quickly, but I don't have a guesstimate of the Q's for each optic, for each DoF.

So, still to do:

Use another set of data and invert the SRM matrix DONE

Plug in the MC matricies, make sure they're okay. DONE

Check the Q's for all optics, all DoFs. 

  4612   Tue May 3 14:35:44 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

 I was charge with making a Non-Inverting Op Amp Low Pass Feedback circuit for Jenne, which may somehow be integrated into a seismometer project she's working on.

 

Circuit diagram is attached. Calculations show that R1, R2 and C have the following relationship: if R1=10^n, R2=10^(n+1), C=10^(-n-4). For the particular circuit being modeled by the transfer function, R1=100 Ohm, R2=1k Ohm, and C=1uF.

Attached also is the circuit's Bode plot, showing frequency versus gain and phase, respectively. The frequency versus gain graph is true to what the circuit was calculated to generate: a gain of +20 and a cutoff frequency at 200Hz. Not sure what's going on with the frequency verus phase plot.

Attachment 1: SeisLPFdiagram.jpg
SeisLPFdiagram.jpg
Attachment 2: seisLPF.Bose.jpg
seisLPF.Bose.jpg
  4630   Wed May 4 17:32:06 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

Building on what was posted previously

 

 

The configuration has now evolved into an Inverting Op Amp Feedback Low Pass Filter circuit.

Had to change out some components to satisfy conditions: R1=1k Ohm, R2=10k Ohm, C=0.1uF. These were changed in order to decrease the magnitude of the current passing through the op amp by a factor of 10 (10V supplied through the R1 resistor yields about 10mA). The configuration itself was changed from non-inverting to inverting in order to get the frequency vs. gain part of the Bode plot to continue to decrease across higher frequencies instead of leveling off around 4kHz.

Attachment 1: SeisLPF3.jpg
SeisLPF3.jpg
  4634   Thu May 5 12:01:53 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

 Having finished the bulk of the work for the LPF itself ( see here ), I have begun trying to design the seismometer box to Jenne's specifications.

 

Currently looking into what the voltage buffer amplifier might look like for this.

 

 

Suggestions/corrections would be much appreciated!

 

 

Attachment 1: STS2diagram.png
STS2diagram.png
  4690   Wed May 11 16:04:36 2011 Larisa ThorneConfigurationElectronicsJenne-Seismometer LPF project

The schematic for the seismometer box from this last time  has been updated...

 

Koji was helpful for coming up with a general diagram for the voltage buffer amplifier, which has now been added to the configuration pictured below.

The only thing that remains now before I try to plot it with Eagle/LISO is to pick an op amp to use for the voltage buffer itself. Someone suggested THS4131 for that (upon Googling, it hit as a "high speed, low noise, fully-differential I/O amplifier"). It looks good, but is it the best option?

Attachment 1: STS2diagram2.png
STS2diagram2.png
  3454   Mon Aug 23 00:08:24 2010 JenneUpdateelogJoe, I think this's your cue...
  3664   Thu Oct 7 08:39:39 2010 steveBureaucracySAFETYJoonho receives safety training

Our new undergrad Joonho Lee received 40m specific basic safety training yesterday.

Yuta and Joonho are scheduled to participate in the LIGO-laser safety tutelage with Peter K on Oct 12

  4859   Wed Jun 22 18:50:45 2011 JamieSummaryGeneralJuly 2011 vent plan

Kiwamu and I have started to put together a vent plan on the 40m wiki:

http://blue.ligo-wa.caltech.edu:8000/40m/vent/201107

We will keep working on this (there's still a *lot* to fill in), but please help fill in the plan by adding questions, answers, procedures, preparations, etc.

 

  4861   Wed Jun 22 21:36:41 2011 ranaSummaryGeneralJuly 2011 vent plan

I put a paper Peet's bag with half of the Mini-Moos into George.

  16982   Fri Jul 8 23:10:04 2022 KojiSummaryGeneralJuly 9th, 2022 Power Outage Prep

The 40m team worked on the power outage preparation. The detailed is summarized on this wiki page. We will still be able to access the wiki page during the power outage as it is hosted some where in Downs.

https://wiki-40m.ligo.caltech.edu/Complete_power_shutdown_2022_07

  15082   Fri Dec 6 17:49:46 2019 ranaSummaryPEMJump test of seismometers: EX needs recentering

Yehonathan, please center the EX seismometer.

The attached PDF shows the seismometer signals (I'm assuming that they're already calibrated into microns/s) during the lab tour for the art students on 11/1. The big spike which I've zoomed in on shows the time when we were in the control room and we all jumped up at the same time. There were approximately 15 students each with a mass of ~50-70 kg. I estimate that out landing times were all sync'd to within ~0.1 s.

Attachment 1: Seismometers.pdf
Seismometers.pdf
Attachment 2: src.tgz
  15083   Sun Dec 8 20:15:41 2019 ranaSummaryPEMJump test of seismometers: EX needs recentering

I have re-centered the EX (and EY) seismometers. They are Guralp CMG40-T, and have no special centering procedure except cycling the power a few times. I turned off the power on their interface box, then waited 10s before turning it back on.

The fist atm shows the comparison using data from 8-9 PM Saturday night:

  1. there seems to be a factor of 2 calibration diff between the T240 near the BS, and the Guralp seismometers at the end. Which one is right? surpriseWhen was the last time they were cross calibrated?
  2. The low coherence between BS_X and EX_X shows the problem. They should be very coherent (> 0.9) for 0.1-1 Hz.sad

 

Attachment 1: seis_all_191208.pdf
seis_all_191208.pdf
  15086   Mon Dec 9 13:08:24 2019 YehonathanSummaryPEMJump test of seismometers: EX needs recentering

I check the seismometers in the last 14 hours (Attached). Seems like the coherenece is restored in the x direction.

 

 

Attachment 1: seis_191208.pdf
seis_191208.pdf
  9791   Wed Apr 9 02:34:20 2014 JenneUpdateLSCJumping over the CARM resonance point

Koji was right, and I was using much too large of a CARM offset.  Tonight, I set either my CARM or DARM offset to 3 counts, and was able to easily acquire PRMI lock using REFL33. 

For either CARM or DARM offset reduction (the other one was kept at zero offset), I was able to get to about 0.5 counts, but I lose lock when I try to go to 0.4 or 0.3 counts.  One time, I tried "jumping over" the resonance, by going from minus 1 to plus 1 in CARM offset.  Plots of this below.


Locking notes

ALS locked with "Xarm" servo as proxy for DARM, and "Yarm" servo as proxy for DARM.  Pushing only on ETMs today, not the MC. 

MICH / PRCL:

Input matrix:  1's in REFL 33 I&Q, if not using power normalization.  200's in REFL 33 I&Q if power normalization used (either POPDC or POP22).  200 used because that's about the average value of POPDC or POP22 when PRMI sideband-only resonant.

Trigger:  POP22, up 100, down 10.

Power normalization:  1's for both MICH and PRCL in POP22I for one trial.  1's for both MICH and PRCL in POPDC for another trial.  Both seemed to work equally well, although that may change when I'm actually getting IR resonance in the cavity.

FM triggers:  MICH = FM2.  PRCL = FMs 2, 3, 6, 9.  Trigger up = 35, down 10.  PRCL delayed by 0.5 sec, MICH delayed by 5 seconds.

Servo gains:  MICH = 0.4, PRCL = -0.01


Observations:

When I approach the situation of both arms resonating, it pretty consistently looks like the PRM is getting pushed in pitch (and not in yaw).  I don't know why this could be, but it seems like this is the big symptom before lockloss - if the POP spot starts moving (and the PRM suspit signal starts moving), PRMI lock is going to be lost.

I don't know if it's imperfect alignment, imperfect mode matching, or something else, but I see lots of high-order higher order modes on both the POP and AS cameras when the CARM or DARM offset is less than 1 count.  I tried to take a video, but the brightness and contrast aren't set as high as on monitors 3 and 5, so it's hard to see the dim stuff.  Youtube.  At the midpoint of the video, you see a lockloss.

Even though I have overridden the transmission triggers so that I only use the QPDs for the transmission signals, I'm only seeing arm transmission values up to about 50 from each arm.  If we had ideal PRC gain, we expect something like 650 or 700. 


A few plots

All of the raw data for these plots, and several other channels, is in /users/jenne/PRFPMI/PRMI_2arms_8Apr2014/m1_to_p1_carmOffset_1081065069.  As mentioned above, "XARM" is CARM, and "YARM" is DARM.  So, the XARM_IN1 tells us about the CARM offset that I was applying.  The start time is 1081065069, and the plots are all 8 seconds long.

First, the transmitted power and the CARM offset.

TRX_TRY_QPDonly.png

The REFL_I error signals and the CARM offset.

LSC_error_signals.png

The RF signals that we will eventually chose from for CARM and DARM control. Note that I'm not sure about the AS55 phase, so I plot both I and Q.

REFL1f_AS55.png

The PRM suspit and sus yaw angular signals and the CARM offset.  I don't see a huge change in the suspit signal, but it does seem to change character once we approach arm resonances.

PRM_SUSangles.png

  1388   Wed Mar 11 16:53:48 2009 YoichiUpdateLockingJunks in around kHz
Rana, Yoichi

Last night, we tried to find out the source of the kHz region peaks in the DARM and CARM error signals.
These peaks are also present in the error signal of the single arm locking by RF (both X and Y).
The attachment 1 shows spectra of MC_F and XARM error signal when XARM is locked by the POX PDH signal.
There is a sharp peak at 3.8kHz in MC_F. This peak was there in a reference spectrum taken on June 24 2008.

In the XARM error signal, there is also a broad peak around 3.8kHz. This peak moves between 3.75kHz and 3.8kHz from time to time.
(the brown curve was taken when the peak moved to 3.75kHz).
Also there is a notch like structure at 3.8kHz in the XARM error spectrum. Looks like the peak in the MC_F is creating a notch here, but
no idea why.

We tapped on the PSL table, the end chambers and the SPOB table and looked at the spectra to see if there is any change.
Rana also developed a cool Walkie-Talkie excitation technique, where he put one of the walkie-talkies on the PSL table by the MZ and yelled at the other one while looking at a DTT screen in the control room.
None of these had any effect on the XARM error, while MC_F responded to the disturbances.

We also turned on and off the steering mirror PZT closed loop buttons, moved the PMC, MZ and the ISS gain sliders and changed the MC gain, offset.
Nothing affected the XARM error.

Osamu found old spectra of the XARM signal (attm2). The legends say DARM but these are XARM signals.
Almost the same structures can be seen including the notch at 3.8kHz. Seems like it's been like this for long time.

We should check, RF-AM, MC coil dirivers, Piezo-Jena noise etc.
Attachment 1: MC_F-XARM.pdf
MC_F-XARM.pdf
Attachment 2: old-xarm.pdf
old-xarm.pdf
  3683   Sun Oct 10 16:44:59 2010 KojiOmnistructurePhotosKepco Tube HV supply
Attachment 1: IMG_3637.jpg
IMG_3637.jpg
Attachment 2: IMG_3640.jpg
IMG_3640.jpg
  2815   Tue Apr 20 10:55:10 2010 steveBureaucracySAFETYKevin Kuns received safety training

The 40m's new undergrad Kevin Kuns was introduced to 40m safety hazards. He is new and needs guidance as specially with 2W laser work.

Peter King will train him on Friday to LIGO-laser standard.

 

  1802   Wed Jul 29 11:15:06 2009 steveBureaucracySAFETYKevin receives safety training

Kevin Vigue, our high school summer student went through the 40m specific safety traning yesterday.

  14710   Sun Jun 30 22:02:26 2019 MilindUpdateCamerasKeyed c1aux crate

I wanted to try out the unstick.py script on c1aux but kept running into timeout errors. I was also confronted by a blank GigE screen. Further, couldn't telnet into c1aux using telnet c1aux as described here. Therefore, I went in and keyed the c1aux crate (1Y1).

  16403   Thu Oct 14 16:38:26 2021 Ian MacMillanUpdateGeneralKicking optics in freeSwing measurment

[Ian, Anchal]

We are going to kick the optics tonight at 2am.

The optics we will kick are the PRM BS ITMX ITMY ETMX ETMY

We will kick each one once and record for 2000 seconds and the log files will be placed in users/ian/20211015_FreeSwingTest/logs.

  16406   Fri Oct 15 12:14:27 2021 Ian MacMillanUpdateGeneralKicking optics in freeSwing measurment

[Ian, Anchal]

we ran the free swinging test last night and the results match up with in 1/10th of a Hz. We calculated the peak using the getPeakFreqs2 script to find the peaks and they are close to previous values from 2016.

In attachment 1 you will see the results of the test for each optic.

The peak values are as follows:

Optic POS (Hz) PIT (Hz) YAW (Hz) SIDE (Hz)
PRM 0.94 0.96 0.99 0.99
MC2 0.97 0.75 0.82 0.99
ETMY 0.98 0.98 0.95 0.95
MC1 0.97 0.68 0.80 1.00
ITMX 0.95 0.68 0.68 0.98
ETMX 0.96 0.73 0.85 1.00
BS 0.99 0.74 0.80 0.96
ITMY 0.98 0.72 0.72 0.98
MC3 0.98 0.77 0.84 0.97

The results from 2016 can be found at: /cvs/cds/rtcdt/caltech/c1/scripts/SUS/PeakFit/parameters2.m

Attachment 1: 20211015_Kicktest_plot.pdf
20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf 20211015_Kicktest_plot.pdf
  4813   Tue Jun 14 03:15:29 2011 KojiHowToComputer Scripts / ProgramsKissel Button Generator

I have made a python script to generate the button designed by Jeff Kissel for his ISI screen.

It is currently located at the following location:
/cvs/cds/rtcds/caltech/c1/medm/c1lsc_tst/master/KisselButtonGenerator/generate_KisselButton.py
but should be relocated to somewhere appropriate.
It also uses fragmented medm files named "MATRIX*.adl_parts".

# Jamie, could you suggest the right place?

The parameters are assigned at the beggining of the script.
This script print the result to stdout. So you need to redirect the output into a file.
e.g.

> ./generate_KisselButton.py >tmp.adl

The script should be modified such that it accepts the command line options.
It needs more python learning for me.


# Number of the column
mat_h = 20;

# Number of the row
mat_v = 10;

# horizontal pixel size of the rectangular display for each matrix element
button_width = 8;

# vertical pixel size of the rectangular display for each matrix element
button_height = 8;

replace_dict = {
# Title
    '${DISPLAY_LABEL}':'ITMX_INMATRIX', 
# Path of the MEDM file to be open by clicking the button
    '${DISPLAY_NAME}':'/cvs/cds/rtcds/caltech/c1/medm/c1sus/master/C1SUS_ITMX_INMATRI
X_MASTER.adl',
# The channel name of the matrix element
# ($V and $H are replaced to the numbers i.e. "_3_4")
    '${MATRIX_CHAN}':'C1:SUS-ITMX_INMATRIX_$V_$H'
    };


 

Attachment 1: kissel_button.png
kissel_button.png
  4820   Wed Jun 15 00:50:11 2011 KojiHowToComputer Scripts / ProgramsKissel Button Generator

Now the Kissel-button generator takes the command line arguments and options.
The script is fully documented by the usage message of the script itself.
It still needs the external supporting files "MATRIX*.adl_parts".

Now the LSC screen has these buttons for the input and output matrices.
The command lines to generate those buttons are listed at the end of this entry as the examples.


>pwd
/opt/rtcds/caltech/c1/medm/c1lsc_tst/master/KisselButtonGenerator

>./generate_KisselButton.py -h
usage:
generate_KisselButton.py [options]  end_row end_column matrix_ch_name

This generates an MEDM screen of a button with the style designed by
Jeff Kissel for his ISI screens. This button has a display of a matrix
elements. If the matrix element is non-zero it glows in green. Otherwise
its color is dark. Usually the button created by this script
is to be copy-pasted to other screens.

Three arguments have to be given:
  end_row         the number of the row at the end
  end_column      the number of the column at the end
  matrix_ch_name  the channel name of the matrix to be monitored
                  e.g. give C1:LSC-OUTPUT_MTRX for C1:LSC-OUTPUT_MTRX_1_1, ...

There are options prepared in order to control the parameters of the button.

example:
generate_KisselButton.py 6 6 C1:LSC-OUTPUT_MTRX
      6x6 matrix for C1:LSC-OUTPUT_MTRX


options:
  -h, --help          show this help message and exit
  --sr=START_ROW      specify the starting row number for the button array.
                      [default: 1]
  --sc=START_COLUMN   specify the starting column number for the button array.
                      [default: 1]
  --bw=BUTTON_WIDTH   specify the pixel width of the small button. [default:
                      8]
  --bh=BUTTON_HEIGHT  specify the pixel height of the small button. [default:
                      8]
  --dl=DISPLAY_LABEL  specify the button label. [default: channel name]
  --sn=SCREEN_NAME    specify the file name of the screen opened when one
                      click the button. The relative or absolute path can be
                      included. [default: a name guessed from the channel
                      name. e.g. C1LSC_OUTPUT_MTRX.adl for C1:LSC-OUTPUT_MTRX]

>./generate_KisselButton.py --bw=3 --bh=4 --dl="RFPD InMTRX" 16 8 C1:LSC-PD_DOF_MTRX > rfpd_mtrx.adl

>./generate_KisselButton.py --sc=21 --bw=6 --bh=4 --dl="DCPD InMTRX" 27 8 C1:LSC-PD_DOF_MTRX > dcpd_mtrx.adl

>./generate_KisselButton.py --bw=4 --bh=4 --dl="Trig MTRX" 11 8 C1:LSC-TRIG_MTRX > trig_mtrx.adl

>./generate_KisselButton.py --bw=4 --bh=4 --dl="Out MTRX" 9 10 C1:LSC-OUTPUT_MTRX > output_mtrx.adl

  5603   Mon Oct 3 17:06:27 2011 JenneHowToComputer Scripts / ProgramsKissel Button Generator

Quote:

>pwd
/opt/rtcds/caltech/c1/medm/c1lsc_tst/master/KisselButtonGenerator

 I copied the Kissel button generator scripts folder into scripts:

/opt/rtcds/caltech/c1/scripts/KisselButtonGenerator/

Maybe this isn't the most intuitive place ever, since it's a script that only has to do with medm screens, but at least it's better than hidden in the depths of Koji's LSC medm path.....

  1332   Mon Feb 23 11:07:01 2009 steveBureaucracySAFETYKiwamu receives safety training

Osamu and Kiwamu received 40m safety training on Thursday, Feb 19, 2009

Kiwamu needs Osamu's close supervision at PSL enclosure and AP table
I hope they already read, understood and signed the laser SOP
  8589   Thu May 16 04:46:37 2013 JenneUpdateLSCKiwamu's sensing matrix measurement script revived

Kiwamu had an old set of scripts for measuring the sensing matrices, but they were hidden away in ..../scripts/general/kiwamuscripts/pyplant . I have moved them to a more useful place, and updated them.

The useful scripts (the main one is SensResp.py, and the PRMI-specific one, runPRMI_SENS.py, which calls SensResp.py) have been moved to .../scripts/LSC .  I have also created a folder within the LSC scripts folder called SensMatData for the data.

The 2 big changes to Kiwamu's scripts:  The ezca library that he was calling wasn't working.  I switched it over to using the one that Yuta wrote, in ..../scripts/pylibs.  Also, Kiwamu's script was written back during a time where we must have only had one total lockin for the whole LSC model.  Now we have one per PD in the input matrix.  This meant that several of his channel names were wrong.  I have fixed this, and also made it measure all the sensors at once using tdsread of the _OUT16 channels (the OUT16's have some AA action, other EPICS channels don't).

So, now (after you're locked), it shakes one "mirror" (the ITMs are shaken differentially at the same time, as one "mirror"), and reads out all of the RF PD lockin values.  Then it moves to the next mirror.  (For the PRMI case, there are only 2 "mirrors":  The ITM set and the PRM.)  All of the information is stored in a dictionary, which is written to a text file. 

The format of the dictionary is:

{ OPTIC_1: [Photodiode_1, Lockin_I, Lockin_Q], [Photodiode_2, Lockin_I, Lockin_Q], OPTIC_2: [Photodiode_1, Lockin_I, Lockin_Q], [Photodiode_2, Lockin_I, Lockin_Q] }

At this point, I am too tired to actually do a measurement, although next time the PRMI is locked, we should just have to run the runPRMI_SENS.py, and look at the data.  I'm also not quite sure how to extract the information from a dictionary after it has been written to a text file.  This may not be a good way to store data, and I'll ask Jamie about it tomorrow.

OTHER NOTES:

* I need to set up another iteration of the sensing matrix measurement with no drive, measuring several times, to get an estimate of the error in a single measurement.

 

* I had the PRMI locked on AS55Q/REFL33I for more than half an hour.  Then the MC started unlocking semi-regularly.  Seismic was good except for one EQ ~2 hours ago.  After the earthquake (unlocked MC, but no tripped optics), the MC has remained locked.

* The LSC Lockin Overview screen does not click-through to the _SIG individual screens.  We need to fix the path to these screens.

* All of the _SIG filters are band passes around 285 Hz, but the names of the filters all say 238Hz.  I need to fix all 27 of these.

* We can perhaps change the LSCoffsets script someday to use tdsread a few times, and average the results (since the PDs don't have lowpass filters, and we're measuring the offset of the IN1 location, not the OUT).  This way we can hopefully measure all the PDs at once and speed up the script, without having failed tdsavg runs.

  8593   Thu May 16 23:48:39 2013 JenneUpdateLSCKiwamu's sensing matrix measurement script revived

Koji locked the PRMI for me, and I took some data.  I haven't finished figuring out what to do with it / writing a processing script.

Here is the data, in a python dictionary (not for you to read, but so that it's here and you can use it later if you want).

{'AS55_Q': [['ErrorBarData0', '-1.60826e-05', '0.000154774'], ['ErrorBarData1', '-1.61949e-05', '-9.69142e-05'], ['ITMs', '-0.134432', '0.00240338'], ['PRM', '0.0525864', '0.145516']], 'REFL55_Q': [['ErrorBarData0', '-0.00088166', '-0.00294315'], ['ErrorBarData1', '0.00298076', '-0.000466507'], ['ITMs', '-0.573825', '-0.0865747'], ['PRM', '1.94537', '0.534968']], 'REFL33_Q': [['ErrorBarData0', '0.000868208', '0.000785702'], ['ErrorBarData1', '-0.00136268', '-0.000288528'], ['ITMs', '-0.0653009', '-0.0112035'], ['PRM', '0.875275', '0.419765']], 'REFL11_I': [['ErrorBarData0', '-0.147347', '0.136075'], ['ErrorBarData1', '0.351823', '0.160556'], ['ITMs', '-12.0739', '-80.1513'], ['PRM', '6991.11', '7073.74']], 'REFL33_I': [['ErrorBarData0', '-0.00100624', '0.00134366'], ['ErrorBarData1', '0.00373581', '0.000783243'], ['ITMs', '-0.399404', '-0.774793'], ['PRM', '67.4138', '68.8886']], 'REFL11_Q': [['ErrorBarData0', '-0.0173368', '0.0141987'], ['ErrorBarData1', '0.100048', '0.0882165'], ['ITMs', '6.46585', '-26.2841'], ['PRM', '1653.42', '1663.96']], 'AS55_I': [['ErrorBarData0', '-1.87626e-05', '2.24596e-05'], ['ErrorBarData1', '-5.46466e-05', '-2.96552e-07'], ['ITMs', '-0.00531763', '0.00130579'], ['PRM', '-0.100501', '-0.0706334']], 'REFL55_I': [['ErrorBarData0', '-0.000774208', '-5.32631e-05'], ['ErrorBarData1', '0.00347621', '0.0025103'], ['ITMs', '-0.115633', '-0.83847'], ['PRM', '72.8058', '74.2347']]}

The structure is that each sensor has some "error bar" measurements, when there was no drive to any optics (I, then Q of the lockin), and then response to different optics' drives (waiting 20sec after turning on the oscillator before making a measurement, since the lockin has 0.1Hz lowpasses.  ).

The amplitude that Kiwamu had of 4000 cts in the LSC lockin was fine for MICH, but made PRCL unlock, so this data was taken with an amplitude of 1000 counts, at a frequency 283.1030 Hz. 

Since this is only barely above the UGF for both MICH and PRCL loops, I also have OLTF information at 283Hz from DTT:  PRCL mag = -1.05264 dB, phase = 24.6933 deg, MICH mag = -8.50951 dB, phase = 31.3948 deg.

I have started writing a script SensMatAnalysis.py in the scripts/LSC directory to do the analysis, but after having talked to Koji, I need to do more thinking to make sure I know what I'm doing.  Stay tuned for actual analysis later.

  8602   Mon May 20 18:50:22 2013 JenneUpdateLSCKiwamu's sensing matrix measurement script revived

So that I don't have to do loop compensation every time I measure a sensing matrix, I have put (back) in notches into FM10 of all the LSC filter banks, except MC2.  

MICH already had this notch, PRCL and CARM both had it, although it was mislabeled in the filter title as "Notch410" rather than the truth, which is "Notch628". 

The XARM and YARM filter banks were full, since we have not (in those filter banks) combined all of the resonant gains - 3.2Hz, 16Hz, 24Hz - into one module.  I took out a CLP3000 (  cheby1('LowPass",2,3,3000)gain(1.41254)  ) in each of those filter banks, and put in the notch.

I also have changed the band pass filters in the LSC-Lockin#_SIG filter banks to match this new drive frequency.

  8619   Wed May 22 18:07:36 2013 JenneUpdateLSCKiwamu's sensing matrix measurement script revived

 

 To avoid exciting at the PRM violin mode frequency, I have changed all of the filters relevant to the sensing matrix measurement from 628Hz to 580.1Hz.  This includes notches in the LSC control loops, as well as the band pass filters in the lockins.  I have not yet loaded the new filters, since arm locking is in progress.

 

  10318   Fri Aug 1 03:49:26 2014 KojiSummaryGeneralKoji - to do

- Put the circuit diagram of the sum amp on/in the circuit enclosure and associate it with an elog [done].
- Update the circuit diagram of the pomona box [done]

ALL DONE

  15313   Fri Apr 24 00:26:59 2020 ranaSummaryPEML.A. EQ from Tuesday night
Attachment 1: April22-EQ.pdf
April22-EQ.pdf
  2425   Thu Dec 17 02:57:08 2009 JenneUpdateWienerFilteringL1 DARM Static Wiener Filtered data

This is perhaps best put in the LLO elog, but I'm not yet a 'person' there, so I can't write to their elog (yet another thing for the eternal to-do list).  So for now, we're putting things here...

This isn't totally finalized, but I do want to get what I have posted before I hop on a plane in the morning.  Mostly it just needs more time to run, to make the plot longer.  Hopefully I'll be able to edit this in the morning and have a longer-duration plot. 

What's plotted:

This spectrogram shows the amplitude spectra of L1:LSC-DARM_CTRL, after being subtracted via a Static Wiener Filter.  Each spectra is normalized by the very first one, which was created from the same data that was used to determine the Wiener Filter.  The X-axis is time.  The Y-axis is frequency, and the Color/Z-axis is amplitude in dB.  I'm only looking at Science Mode time, so other times when the IFO isn't in science mode, I plot a black stripe to fill in the plot.  The start time of the plot is 83675598, which is Jul 08 2006 06:33:04 UTC. 

Why?

The idea is to see that the filter does equally well a long time after it was created, as when it was initially made.  This will help tell us how often it is useful to recompute the Wiener filters.  Less often is nice, because redoing the Wiener filters may also include remeasuring the high precision transfer functions...if the filter isn't working as well anymore it may be because the transfer function has changed ever so slightly. 

How the plot is created / the background story:

I use one hour of DARM_CTRL data and the following seismometer channels to create an optimal Wiener Filter (pem indicates L0:PEM- , sei indicates L1:SEI- , and lsc indicates L1:LSC- ) :

chans = {[pem 'EX_SEISX'],...
         [pem 'EX_SEISY'],...
         [pem 'EX_SEISZ'],...
         [pem 'EY_SEISX'],...
         [pem 'EY_SEISY'],...
         [pem 'EY_SEISZ'],...
         [pem 'LVEA_SEISX'],...
         [pem 'LVEA_SEISY'],...
         [pem 'LVEA_SEISZ'],...
         [sei 'LVEA_STS2_X'],...
         [sei 'LVEA_STS2_Y'],...
         [sei 'LVEA_STS2_Z'],...
         [sei 'ETMX_STS2_X'],...
         [sei 'ETMX_STS2_Y'],...
         [sei 'ETMX_STS2_Z'],...
         [sei 'ETMY_STS2_X'],...
         [sei 'ETMY_STS2_Y'],...
         [sei 'ETMY_STS2_Z'],...
         [lsc 'DARM_CTRL']};

I then apply this one filter to ten minute chunks of science mode data, for some long period of time.  The game plan is to have a month long plot, but it takes a while to fetch all of the data in separate 10min intervals (~45sec per iteration, times ~3000 iterations), so this plot isn't a full month.  Even if I don't get a chance to plot a full month by Thursday morning, it'll go up here within the next few days. The particular times chosen have the most science mode data within a 30 day period.  I can easily run the code for some other time, if there is a known time (or season) which might be more interesting.  For the spectrogram plot, I then normalize each amplitude spectra by the first one, which comes from the first ten minutes in the hour which was used to make the filter.  This makes it easier to see how the filter's efficacy changes over time.

The analogous analysis for Hanford is in the 40m elog: 1606.  The Hanford stuff in the elog has some cool BLRMS plots also, but I'm not sure that they're so helpful when I only have a few days of L1 data so far.  I'll do those and add them later.

Conclusions:

I can't really say anything yet about the long-term efficacy of a Wiener Filter for LLO yet, since my code hasn't finished filtering my one month of S5 L1 data.  It definitely looks like (so far) that there was a big seismic event around the (arbitrarily defined) 'Day 4'. 

Attachment 1: L1darmCompPlot_17Dec2009_4daysLong.png
L1darmCompPlot_17Dec2009_4daysLong.png
  2426   Thu Dec 17 07:47:29 2009 JenneUpdateWienerFilteringL1 DARM Static Wiener Filtered data

This surface plot is the same as the previous one, with a little more data than I had previously. 

This time around, I also include the "BLRMS" plots for this data.  The first one takes each residual and normalizes it by the DARM_CTRL signal at that time, separates the spectra into bands, and integrates underneath the spectra within that band.  The second one is the raw DARM_CTRL signal's spectra at each time, and integrates under the spectra for each band, and the third BLRMS plot does the same thing for the residuals.  Unfortunately, these plots don't have the same handy black stripe during time which I don't analyze that the spectrogram utilizes.

From the second BLRMS plot we can see that the large red splotch in the spectrogram is due to higher noise in the DARM spectrum, and that (by looking at the Ratio BLRMS plot) the Wiener filter still does a pretty good job during this time.  I expect that for later times when the seismic (or something) event is gone, the Wiener filter will continue performing almost as well as it had been initially.

Again, once the script finishes applying the filter to the many ten minute chunks (the huge time drain is the data fetching, so this shouldn't be a limiting factor for using Wiener filters online), I'll post a final plot.

Attachment 1: L1darmComp_17Dec2009_6day_residualsNormSurfacePlot.png
L1darmComp_17Dec2009_6day_residualsNormSurfacePlot.png
Attachment 2: L1darmComp_17Dec2009_6day_ratioBLRMS.png
L1darmComp_17Dec2009_6day_ratioBLRMS.png
Attachment 3: L1darmComp_17Dec2009_6day_rawBLRMS.png
L1darmComp_17Dec2009_6day_rawBLRMS.png
Attachment 4: L1darmComp_17Dec2009_6day_residualsBLRMS.png
L1darmComp_17Dec2009_6day_residualsBLRMS.png
  10123   Wed Jul 2 16:16:45 2014 NichinUpdateGeneralLAN wire added

 [Nichin, Eric Q]

We added a new LAN wire from Rack 1Y4 to 1Y1 to connect the RF switch at 1Y1 to the martian network. The wire is labelled "To RF Switch (1Y1)"

The wire was run along the Y arm in the tray right next to the vaccum chamber, not the one on top.

 

  15678   Mon Nov 16 16:00:19 2020 gautamUpdateEquipment loanLB1005-->Cryo lab

Shruti picked it up @4pm.

  188   Wed Dec 12 16:22:22 2007 albertoOmnistructureElectronicsLC filter for the RF-AM monitor circuit
In the LC configuration (see attached schematic) the resonant frequency is tuned to one of the peak of our RF-AM monitor and it is amplified by a factor equal to the Q of the filter. As I wrote in one of the last elog entries, we would like amplifications of about 10-30 dB in order to have negligible couplings. Such values are obtained only with small capacitances (few or less pF). The drawback is relatively large inductance (uH or more) which has inevitably low Self Resonant Frequencies (SRF - the resonant frequencies of the RLC circuit usually associated with an actual inductor - ~ MHz). Even before, one limit is also the input impedance of the RF amplifier. Quality factors > 1 require megaohms, far from the 50 ohms in the MiniCircuit amplifiers Iím using now. So, if we plan to use these even for the final design of the circuit, we have to abandon the LC configuration.
For this same reason the only way I could get the expected responses from my several test boards was with a 10 megaohm input probe (see attachment for the measurement with and without probe). Assuming that impedance, I found these as the best trade-offs between the attenuation requirements and the values of the inductors for respectively the peaks at 33, 66,133, 166,199 MHz:
26uH, 6.6u, 20u, 73u, 16u
If we could find inductor with these values and high SRF the configuration should work. The problem is I couldnít find any. Above a few uH they all seem to have SRF ~ MHz.
That is why I switched to the Butterworth. This should work despite the input impedance of the amplifier and with much smaller inductances. I made a totally new test circuit, with surface mount components. I think I still have to fix some things in the measurements but (this time I got rid of the simulator I was using earlier and designed a new configuration with new values from the Horowitzís tables) it seems I have the expected peaks. More soon.
Attachment 1: TF_LC_filter_10pF_1.8uH_scope_probe.png
TF_LC_filter_10pF_1.8uH_scope_probe.png
Attachment 2: TF_LC_filter_10pF_1.8mH_no_probe.png
TF_LC_filter_10pF_1.8mH_no_probe.png
Attachment 3: LC_filter_schematic.png
LC_filter_schematic.png
  6247   Fri Feb 3 16:13:49 2012 steveUpdatePEMLED lights for chamber illumination

Cold LED lights replaced hot halogen ones. Flat LED MYAL 6S,  model #112560002  24VAC

This is a LATE ENTRY.  They were purchased  in Jan 2010 and installed 6 of them around May 2010

Attachment 1: P1080526.JPG
P1080526.JPG
  12943   Thu Apr 13 21:01:20 2017 ranaConfigurationComputersLG UltraWide on Rossa

we installed a new curved 34" doublewide monitor on Rossa, but it seems like it has a defective dead pixel region in it. Unless it heals itself by morning, we should return it to Amazon. Please don't throw out he packing materials.

Steve 8am next morning: it is still bad The monitor is cracked. It got kicked while traveling. It's box is damaged the same place.

Shipped back 4-17-2017

Attachment 1: LG34c.jpg
LG34c.jpg
Attachment 2: crack.jpg
crack.jpg
  11899   Wed Dec 23 03:27:04 2015 ranaUpdateComputer Scripts / ProgramsLHO EPICS slow down

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=24321

This LHO log indicates that EPICS slow down could be due to NFS activity. Could we make some trend of NFS activity on Chiara and then see if it correlates with EPICS flatlines?

I wonder if our EPICS issues frequency is correlated to the Chiara install.

  4263   Tue Feb 8 16:44:43 2011 JenneUpdateComputersLIGO Grid Cluster client upgraded on Rossa

I did a yum-install of the latest ldg-client (to get onto the LIGO Clusters) on Rossa. 

I followed the instructions on the wiki page, and everything seemed to work nicely.

I think the new ldg client installs somewhere on the local computer, so if anyone wants cluster access on any other computer, they should follow the same directions.

  2130   Wed Oct 21 16:18:12 2009 SteveSummarySAFETYLIGO Safety Officers visited the 40m

David Nolting, chief LIGO Safety Officer and his lieutenants from LLO and LHO paid homage to the 40m lab this morning.

They give us a few recommendation: update safety documents, move optical table from the front of ETMX-rack and label-identify absorbent plastics on enclosure windows-doors.

We'll correct these short comings ASAP

 

  8776   Thu Jun 27 22:52:38 2013 Rana, Gabriele, FrancescoSummaryComputer Scripts / ProgramsLIGO-DV installed

I installed ligoDV in the /ligo/apps/ligoDV/

Now, by pointing the tool at the local NDS2 server (megatron:31200) you can access the recent local data (raw, trends, etc.)

by running /ligo/apps/ligoDV/ligodv from the command line.

Attachment 1: ldv.png
ldv.png
  9488   Wed Dec 18 13:34:03 2013 SteveUpdateGeneralLIGOX people

40m crew and visitor Holger Muller from Berkeley.

Attachment 1: 40m2013Dec.jpg
40m2013Dec.jpg
Attachment 2: 40mCup.jpg
40mCup.jpg
ELOG V3.1.3-