40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 97 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  4188   Sat Jan 22 02:03:55 2011 KojiUpdateGreen LockingExamining the stability of VCO PLL at low frequencies

Damn. If this figure is true, we were looking at wrong signal. We should look at the feedback signal to the VCO.

  4190   Sat Jan 22 02:23:26 2011 KojiUpdateGreen Lockingsome more progress

What is the point to use the error instead of the feedback? It does not make sense to me.

If the cable is flaky why we don't solder it on the circuit? Why we don't put a buffer just after the test point?

It does not make sense to obtain the error signal in order to estimate the freeruning noise without the precise loop characterization.
(i.e. THE FEEDBACK LOOP TRINITY: Spectrum, Openloop, Calibration)

RA: I agree that feedback would be better because we could use it without much calibration. But the only difference between the "error signal" and the "feedback signal" in this case is a 1.6:40 pole:zero stage with DC gain of 0 dB. So we can't actually use either one without calibration and the gain between these two places is almost the same so they are both equally bad for the SNR of the measurement. I think that Suresh and Kiwamu are diligently reading about PLLs and will have a more quantitative result on Monday afternoon.

 

  4193   Mon Jan 24 10:19:21 2011 KojiUpdateGreen LockingX arm locked !

Well... The ALS loop is engaged and the error was suppressed.
So, how is the IR error signal stabilized when the IR is brought in to the resonance?

I can see the linear trend of 0.1V/s from 5s to 10s.  This corresponds to 100kHz/s and 13nm
for the residual beat drift and the arm length motion, respectively. That sounds huge. The DC gain must be increased.

  4197   Tue Jan 25 00:09:54 2011 KojiUpdateGeneralJenne laser is at PSL Lab

I found Tara's elog entry that Jenne laser is at PSL Lab.
Since we recently use it frequently, we should be aware where it is now.

  4202   Tue Jan 25 21:57:59 2011 KojiUpdateGreen LockingSlow servo for green laser

1. The dewhitening filter CH6 had no output. I disconnected the cable and put it to the monitor out of the AI filter.
So the dewhitening is not in the loop.

2. I have made a thermal control filter

BANK1: pole 0Hz, zero 1mHz / LF boost stage
BANK2: pole 1mHz, zero 30mHz / LPF stage
BANK3: pole 1Hz, zero 0.1Hz / phase compensation stage
Gain: 0.05

It seems working with the gain of 0.05. As the thermal is very strong, the output has less than 10.
This means the we are effectively only using ~4bit. We need external filter.

Note that output of 30000counts were about 3V at  CH6.

3. Measured End PZT feedback with and without the thermal control. The UGF seems to be 0.2Hz.
The suppression at 10mHz is ~100. This is so far OK.

Quote:

I implemented a slow servo for green laser thermal control on c1scx.mdl. Ch6,7 of ADC and ch6 of DAC are assigned for this servo as below;

 

Ch6 of ADC: PDH error signal

CH7 of ADC: PZT feedback signal

CH6 of DAC: feedback signal to thermal of green laser

 

Note that old EPICS themal control cable is not hooked anymore.

I made a simple MEDM screen(...medm/c1scx/master/C1SCX_BCX_SLOW.adl) linked from GREEN medm screen (C1GCV.adl) on sitemap.

During this work, I noticed that some of the epics switch is not recovered by autoburt. What I noticed is filter switch of SUSPOS, SUSPIT, SUSYAW, SDSEN, and all coil output for ETMX.

I had no idea to fix them, probably Joe knows. I guess other suspensitons has the same problems.

 

Attachment 1: 110125_Xend_thermal.pdf
110125_Xend_thermal.pdf
  4203   Tue Jan 25 22:49:13 2011 KojiUpdateCDSFront End multiple crash

STATUS:

  • Rebooted c1lsc and c1sus. Restarted fb many times.
  • c1sus seems working.
  • All of the suspensions are damped / Xarm is locked by the green
  • Thermal control for the green is working
  • c1lsc is frozen
  • FB status: c1lsc 0x4000, c1scx/c1scy 0x2bad
  • dataviewer not working

1. DataViewer did not work for the LSC channels (liek TRX)

2. Rebooted LSC. There was no instruction for the reboot on Wiki. But somehow the rebooting automatically launched the processes.

3. However, rebooting LSC stopped C1SUS processes working

4. Rebooted C1SUS. Despite the rebooting description on wiki, none of the FE processes coming up.

5. Probably, I was not enough patient to wait for the completion of dorphine_wait? Rebooted C1SUS again.

6. Yes. That was true. This time I wait for everything going up automatically. Now all of c1pemfe,c1rfmfe,c1mcsfe,c1susfe,c1x02fe are running.
FB status for c1sus processes all green.

7. burtrestored c1pemfe,c1rfmfe,c1mcsfe,c1susfe,c1x02fe with the snapshot on Jan 25 12:07, 2010.

8. All of the OSEM filters are off, and the servo switches are incorrectly on. Pushing many buttons to restore the suspensions.

9. I asked Suresh to restore half of the suspensions.

10. The suspensions were restored and damped. However, c1lsc is still freezed.

11. Rebooting c1lsc freezed the frontends on c1sus. We redid the process No. 5 to No.10

12. c1x04 seems working. c1lsc, however, is still frozen. We decided to leave C1LSC in this state.

 

  4204   Wed Jan 26 02:18:12 2011 KojiUpdateSUSETMX length to angle matrix

I have put an offset of 1000 counts to C1:SUS-ETMX_ALS_OFFSET. This actually misalign the mirror a lot.

While the offset is applied. I adjusted the balance of the coil matrix.
UL 1.580 UR 0.620
LL 0.420 LR 1.380

> ezcaread C1:SUS-ETMX_TO_COIL_0_0_GAIN
C1:SUS-ETMX_TO_COIL_0_0_GAIN = 1.58
> ezcaread C1:SUS-ETMX_TO_COIL_0_1_GAIN
C1:SUS-ETMX_TO_COIL_0_1_GAIN = 0.62
> ezcaread C1:SUS-ETMX_TO_COIL_0_2_GAIN
C1:SUS-ETMX_TO_COIL_0_2_GAIN = 0.42
> ezcaread C1:SUS-ETMX_TO_COIL_0_3_GAIN
C1:SUS-ETMX_TO_COIL_0_3_GAIN = 1.38

Now, we can keep TEM00 for green with +/-1000counts of push although the fast step of the offset make the lock lost.

It turned out that the step longitudinal input temporary misalign the mirror in pitch because the length and pitch are coupled.
I guess that we don't excite pitch if we push the mirror slowly. Eventually, we need f2p transfer function adjusted in the output matrix.

Kiwamu told us that:
(2)  Length to Alignment coupling. Pushing ETMX causes a misalignment.

 

  4207   Wed Jan 26 12:03:45 2011 KojiUpdateCDSFront End multiple crash

This is definitely a nice magic to know as the rebooting causes too much hustles.

Also, you and I should spend an hour in the afternoon to add the suspension swtches to the burt requests.

Quote:

I killed the dead c1lsc model by typing:

sudo rmmod c1lscfe

I then tried starting just the front end model again by going to the /opt/rtcds/caltech/c1/target/c1lsc/bin/ directory and typing:

sudo insmod c1lscfe.ko

This started up just the FE again

 

  4211   Thu Jan 27 11:04:27 2011 KojiUpdateGreen Lockingbeat freq scan

Experiment in the night of Jan 26.

o The arm was locked for the IR beam and was aligned for it.
o The green was aligned to the arm
o The beat freq was observed with the RF analyzer and the webcam.
o Engaged the ALS servo
o Compared the fluctuation of the beat freq with and without ALS
o Scanned the beat freq in order to find an IR resonance

The beat freq was scanned. A resonance for IR was found.
However, the residual motion of the arm was not within the line width of the IR resonance.

 To Do
- Improve the ALS servo (==>Koji)
- VCO noise characterization (==>Suresh is on it)
- Calibrate the PLL feedback (i.e. ALS error) into Hz/rtHz (==>Suresh)
- Calibrate the end green PZT fb into Hz/rtHz (==>Osamu is on it)
- Tuning of the suspension filters to reduce the bounce mode coupling.


DETAILS

o How to lock the arm with IR

  • Coarsely align the arm without lock. Transmittion was ~300 with MCTRANS ~40000
  • REFL11I is the error signal. unWhiten filter (FM1) should be on.
  • Unlock the MC and null the error and the arm trans offset by running the following commands

ezcaservo -g -0.1 -r C1:LSC-REFL11_I_OUTPUT C1:LSC-REFL11_I_OFFSET
ezcaservo -g -0.1 -r C1:LSC-REFL11_Q_OUTPUT C1:LSC-REFL11_Q_OFFSET
ezcaservo -g 0.1 -r C1:LSC-TRX_OUTPUT C1:LSC-TRX_OFFSET

  • Confirm the input matrix to pass REFL11I to MC path (why don't we use XARM path...?)

ezcawrite C1:LSC-MTRX_81 1.0

  • Servo configuration
    • For acquisition: Gain of 2. Only FM1 (1000:10) has to be on.
    • After the acquisition (TRX>200): The gain is to be changed to 1. FM2 and FM3 can be turned on for the LF boost.
  • Actuator matrix: connect MC path to ETMX and MC2

ezcawrite C1:LSC-OM_MTRX_18 1.0
ezcawrite C1:LSC-OM_MTRX_78 1.0

 

o How to align the green beam

  • After the alignment I went the end and aligned the last two steering mirrors.


o The beat freq monitor

  • Put the RF analyzer at the RF splitter of the RFPD output.
  • Used Zonet webcam (http://192.168.113.201:3037) for the remote monitoring

 

o How to engage the ALS servo

  • Preparation:
    • VCO PLL feedback comes to X_FINE path.
    • Put an offset of -850 to cancel too big offset (when the VCO is unlocked)
    • Use Y_FINE channel for the offset addtion. FM1 is 10mHz LPF in order to make the offset smooth.
    • Add X_FINE and Y_FINE by the matrix.
  • Control
    • Turn off X_FINE out. Leave Y_FINE output turned on.
    • Turn on ETMX ALS path.
    • Servo setting: FM1 1000:30 ON, others OFF, gain1
    • Wait for the beat comes in to the locking range at around 80MHz.
    • If the peak is too far, sweep Y_FINE offset in order to . Or change GCV slow thermal offset to let the beat freq jump.
    • You may have ambiguity of the feedback sign depending on which green has higher freq.
    • After the capture of the ALS lock, increse the gain up to 20. Turn on 0.1:boost at FM3.

 

o Comparison of the stability of the beat freq (Attachment3)

  • The spectra of the VCO PLL feedback was measured.
  • First of all, the signal was measured without ALS (blue).
    The PLL lost lock quite frequently, so the careful adjustment of the offset was necessary.Still I think there was slight saturation upconversion.
  • Then, the ALS was turned on (red). The gain was 20. This is an in-loop evaluation of the servo. The suppression was ~1000 at 1Hz.

o Beat freq scanning

  • The following command was used for the beat note scanning 

ezcastep -- "C1:GCV-YARM_FINE_OFFSET" "5,500"

  • Once the IR transmission was found, the scan was stopped.
  • Because the resultant rms stability of the arm was not within the line width of the cavity, the smooth resonant curve was not obtained.
  • From the shape of the error signal the peak-to-peak displacement (f>1Hz) was estimated to be +/-0.7nm. The dominant displacement
    in the period is 16Hz component.

 

Attachment 1: arm_scan.pdf
arm_scan.pdf
Attachment 2: arm_cav_scan3.png
arm_cav_scan3.png
Attachment 3: 110126_ALS_inloop.pdf
110126_ALS_inloop.pdf
  4215   Thu Jan 27 21:43:37 2011 KojiUpdateGreen Lockingno transmission of ALS signals

No signal is transmitted from C1:GCV-SCX_ETMX_ALS (on c1gcv) to C1:GCV-SCX_ETMX_ALS (on c1scx)

I can't find RFM definition for ALS channels in c1rfm. Where are they???

  4221   Fri Jan 28 13:05:56 2011 KojiConfigurationComputersscript path fixed

We had some issues in terms of the script paths. I have fixed it by replacing /cvs/cds/caltech/scripts to /cvs/cds/rtcds/caltech/c1/scripts

Here is the output of diff

----------------------------------------------


rossa:caltech>diff cshrc.40m cshrc.40m.20110128
44,47c44,45
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general)
< # OBSOLETE set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general)
< set path = ($path /cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata)
---
> set path = ($path /cvs/cds/caltech/scripts/general)
> set path = ($path /cvs/cds/caltech/scripts/general/netgpibdata)
50,51c48
< # OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules:/cvs/cds/caltech/libs/solaris9/usr_local_lib/perl5/5.8.0/:/cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
61,64c58,59
< #OBSOLETE setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
< setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/rtcds/caltech/c1/scripts/general/netgpibdata:$PATH
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv PATH ${SOLARISPATH}/bin:$GDSPATH/bin:$ROOTSYS/bin:$TDSPATH/bin:/cvs/cds/caltech/scripts/general/netgpibdata:$PATH
> setenv SCRIPTS /cvs/cds/caltech/scripts
87,88c82
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
99,100c93
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
103,104c96
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
135,137c127
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
<
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
156,157c146
< #OBSOLETE setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
< setenv PERL5LIB /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/c1/scripts/general/perlmodules
---
> setenv PERL5LIB /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/perlmodules
167,168c156
< #OBSOLETE setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
< setenv SCRIPTPATH /cvs/cds/rtcds/caltech/c1/scripts/general:/cvs/cds/rtcds/caltech/scripts/general/netgpibdata
---
> setenv SCRIPTPATH /cvs/cds/caltech/scripts/general:/cvs/cds/caltech/scripts/general/netgpibdata
172,173c160
< #OBSOLETE setenv SCRIPTS /cvs/cds/caltech/scripts
< setenv SCRIPTS /cvs/cds/rtcds/caltech/c1/scripts
---
> setenv SCRIPTS /cvs/cds/caltech/scripts
198,199c185
< #OBSOLETE alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
< alias listenDARM '/cvs/cds/rtcds/caltech/c1/scripts/c1/listenDARM'
---
> alias listenDARM '/cvs/cds/caltech/scripts/c1/listenDARM'
288,295c274,277
< #OBSOLETE alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
< #OBSOLETE alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
< #OBSOLETE alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
< #OBSOLETE alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'
< alias makefiltscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeFilterScreen.pl'
< alias makelockinscreen '/cvs/cds/rtcds/caltech/c1/scripts/Admin/makeLockInScreen.pl'
< alias f_and_r '/cvs/cds/rtcds/caltech/c1/scripts/Admin/find_and_replace.pl'
< alias plotrgascan '/cvs/cds/rtcds/caltech/c1/scripts/RGA/plotrgascan'
---
> alias makefiltscreen '/cvs/cds/caltech/scripts/Admin/makeFilterScreen.pl'
> alias makelockinscreen '/cvs/cds/caltech/scripts/Admin/makeLockInScreen.pl'
> alias f_and_r '/cvs/cds/caltech/scripts/Admin/find_and_replace.pl'
> alias plotrgascan '/cvs/cds/caltech/scripts/RGA/plotrgascan'

  4228   Sun Jan 30 19:26:03 2011 KojiSummaryGreen LockingPrototype freq divider

A prototype freq divider has been made which works up to ~40MHz.

74HC4060 (14bit binary ripple counter) divides the freq of the input signal, which is comverted by the comparator LT1016
into the rectangular signal. The division rate is 2^14.

Attachment1: Circuit diagram

Attachment2:
Photo, the prototype bread board

Attachment3:
Photo, the spectrum of the freq divided output. The 40MHz input has been divided into 2.4k.
There are the 3rd and 5th harmonics seen. The peak was pretty sharp but the phase noise was not evaluated yet.


The circuit was made on the prototype bread board which is apparently unsuitable for RF purposes.
Indeed, it was surprising to see its working up to 40MHz...

In order to increase the maximum freq of the system we need the following considerations

  • RF PCB board
  • Input RF buffer (or amplifier) with a 50Ohm input impedance.
  • Faster comparator. LT1016 has the response time of 10ns, which is not enough fast.
  • Faster counter. Faster chip 74HC4020 has already been ordered.
Attachment 1: freq_divider.pdf
freq_divider.pdf
Attachment 2: IMG_3813.jpg
IMG_3813.jpg
Attachment 3: IMG_3814.jpg
IMG_3814.jpg
  4235   Tue Feb 1 15:09:41 2011 KojiOmnistructureGeneralProjector - fixed

The projector in the controls room has been fixed the orange blinking of the status LED.

What we needed was to push "Volume -" and "Menu" for 5 sec.
This resets the timer of the lamp. When the timer reaches 2500 hours, it automatically start sabotaging.

We've got the spare lamp. It is in the top drawer of the computer cabinet on which the label makers are.

  4237   Wed Feb 2 03:27:20 2011 KojiSummaryGreen Locking85MHz Freq divider

The freq divider was built and installed in the beat detection path.

Attachment 1: Circuit diagram

  • Input stage:  Wideband RF amp with DC block at the input and the output. The gain is 10dB typ.
  • 2nd stage: Ultra fast comparator AD9696. Note: AD9696 is an obsolete IC and there are only a few extra at Wilson house.
    The output is TTL/CMOS compatible.
  • 3rd stage: 14bit binary ripple counter (fmax~100MHz.)

Note: I have added 7805/7905 regulators to the circuit as I could not find -5V supply on the 1X1/2 racks.

Attachment 2: Packaging

  • The box is german made Eurocard size box from Techno-Isel Linear Motion http://www.techno-isel.com/lmc/Products/EnclosureProfiles11055.htm
    The box is excellent but I didn't like the fixing bolts as they are self-tapping type. I tapped the thread and used #6-32 screws.
     
  • The prototyping board is BPS's (BusBoard Prototype System http://www.busboard.us/)  SP3UT. The card size is 160mm x 100mm.
    The other side is a ground plane and the small holes on the board are through holes to the ground plane.
    This particular card was not easy to use.
     
  • The input is SMA. Unfortunately, it is not isolated. The output is an isolated BNC.
     
  • The supply voltage of +/-15V is given by the 3pin D-connector. The supply voltages have been obtained from the cross connect of 1X1.

Attachment 3: Input specification

  • The input frequency is 10MHz~85MHz. At lower frequency chattering of the comparator against the multiple zero crossing of the (relatively) slow sinusoidal waves.
  • The input amplitude. There are no apparent degradation of the freq jitter when the input power was larger than -30dBm.

 

Attachment 1: freq_divider.pdf
freq_divider.pdf
Attachment 2: IMG_3816.JPG
IMG_3816.JPG
Attachment 3: IMG_3818.JPG
IMG_3818.JPG
  4238   Wed Feb 2 09:56:55 2011 KojiSummaryGreen LockingInstalled the freq divider and Rana's PFD

- The freq divider and Rana's PFD were hooked up to the ADCs. (Attachment 1)
(I leave the analog PFD not explained in this entry.)
For this purpose, the VCO feedback signal has been disconnected and the beat signal was moved from the VCO loop to the analog PFD.

The output level of the splitter was +12dBm and was too high for the freq divider.
So, I had to stupidly add an attenuator of 10dB before the box.

- Gain of the digital PFD LPF

The LPF of the digital PFD had the gain of -4096 to let the output signal indicate the direct frequency reading.

The gain has been changed to -67.108864
such that the output shows the direct reading of the beat freq in the unit of MHz

-4096*2^14/10^6 = -67.108864

 

- Attachment 2 shows the acquired beat note through the freq divider.
The blue is the beat note between "green locked" and "IR locked only to MC" (i.e. MC vs XARM)
The red is the beat note with the both beam locked to the arm

The freq divider is a bit flaky in some freq region as the divided output sometimes shows freq jumps or the captured at a freq.
I still don't know why it happens. We have to check why this happens.

Attachment 1: freq_divider_installation.pdf
freq_divider_installation.pdf
Attachment 2: 110201_freq_divider_output.pdf
110201_freq_divider_output.pdf
  4239   Wed Feb 2 10:44:26 2011 KojiSummaryGreen LockingFreq fluctuation measured by the freq divider and Rana's analog PFD

The freq fluctuation of the beat note has been measured with the following condition

  • The IR beam only locked to the MC. The green beam locked to the arm
  • Both of the IR and green locked to the x-arm

Calibration
- The output of the freq divider is already calibrated to have the unit of MHz.

- The transfer function between the analog PFD channel and the digital PFD output was measured to be -23dB = 0.7.
  The gain of the XARM-FINE channel was changed to 0.7 such that the output is calibrated in MHz.

Results

- I have not checked the analog noise level of the analog PFD path. We may need more whitening gain (by icreasing the gain of SR560).

- The analog PFD is always better than the digital PFD above 20Hz.

- Both the digital and analog PFD showed good agreement below 20Hz.
  Note the measurement was not simultaneous.

- When the arm is locked with the ETMX being actuated , the fluctuation of the arm length must be stabilized by a huge factor
(~10^5 according to Kiwamu's entry) However, we only could see the stabilization factor of 30.

As this residual is the difference of the freq noise felt by the IR and the green,
this is a real issue to be tackled.

- The RMS fluctuations of the arm with and without the IR beam being locked are 2MHz and 0.1MHz,
which correcponds to the arm length motion of 250nm and 13nm, respectively.
Ed: I had to use 532nm in stead of 1064nm. The correct numbers are 130nm and 7nm.

- Without the IR locked, The typical peak-to-peak fluctuation of the beat freq was 10MHz.

Attachment 1: 110201_green_freq_fluctuation.pdf
110201_green_freq_fluctuation.pdf
  4240   Wed Feb 2 12:55:34 2011 KojiSummaryGreen LockingFreq fluctuation measured by the freq divider and Rana's analog PFD

I found that some flakiness of the beat signals comes from the RF components for the beat detection.
They are touching the racks in an indefinite way. If we move the components the output of the analog PFD
goes crazy.

Once Kiwamu is back I will ask him to clean up all of the green setting in an appropriate way.

 

  4244   Thu Feb 3 11:13:52 2011 KojiUpdateElectronicsPOY Shot Noise and Dark Spectrum

I wonder why POY11 has the dark noise level of 90nV/rtHz that is 5 times larger than that of POX (18nV/rtHz)
even though the Q are the same (~15) and the transimpedance is better (3.9k instead of 2k).

What cause this high noise level?
What is the expected dark noise level?

Quote:

[Koji and Kevin]

I measured the shot noise of POY and fit the data to determine the RF transimpedance at 11 MHz and the dark current. The transimpedance is (3.860 +- 0.006) kΩ. I realize that there are not many data points past the dark current but I did not want to take any further data because the light bulb was getting pretty bright. If this is a problem, I can try to redo the measurement using a lens to try to focus more of the light from the bulb onto the photodiode.

I also measured the spectrum and recorded a time series of the RF signal with the light to the photodiode blocked. These measurements do not show any large oscillations like the ones found for POX.

The plots of the measurements are on the wiki at http://lhocds.ligo-wa.caltech.edu:8000/40m/Electronics/POY.

 

  4277   Sun Feb 13 02:33:37 2011 KojiUpdateElectronicsREFL11 Photodiode replaced

Suresh is saying 375mW and 0.375mW. Let's wait for his update of the actual power.

Also he is not using EPICS, there may be the factor of two missing for now.

Quote:

I also checked to see if we have a DC output from the new PD.  With 375mW of 1064nm light incident we have 15mV of output.  Which matches well with the typical Reponsivity of 0.8V/A reported in the datasheet and our REFL11 ckt .  The schematic of the ckt is also attached here for easy reference.  The various factors are

V_dc = 0.375 mW x 0.8 V/A x 10 Ohm x 5 = 15mV

 

  4283   Mon Feb 14 01:40:14 2011 KojiOmnistructureCDSName of the green related channels

I propose to use C1:ALS-xxx_xxx for the names of the green related channels, instead of GCV, GCX, GCY, GFD...

Like C1:SUS or C1:LSC, we name the channels by the subsystems first, then probably we can specify the place.

We can keep the names of the processes as they are now.

  4340   Tue Feb 22 23:40:31 2011 KojiUpdateIOOMC mode mach improvement

As per Kiwamu's request I made a light touch to the input steering and the mode matching lens.

Here V_ref and V_trans are C1:IOO-MC_RFPD_DCMON and C1:IOO-MC_TRANS_SUM, respectively.

Result: Visibility = 1 - V_ref(resonant) / V_ref(anti_reso) = 1 - 0.74 / 5.05 = 85%

What has been done:

  • Alignment of the steering mirrors before and after the last mode matching lens
       V_ref: 2.7 ==> 2.2, V_trans: 34000 ==> 39000
  • Moving of the last mode matching lens away from the MC (+ alignment of the steering mirrors)
       V_ref: 2.2 ==> 0.74, V_trans: 39000 ==> 55000
Attachment 1: IOO_MMT_110222.png
IOO_MMT_110222.png
  4359   Fri Feb 25 14:50:16 2011 KojiSummaryGeneralto do list

- Put priority on the list

- Put names on the items

- Where is the CDS TO DO ==> Joe

-

- Remote disconnection of the greeen PDH 

- What is the situation of the PD DC for the LSC PDs?

- SUS Satelite box Resister replacement ==> Jamie

- IMC mode matching ==> Jamie/Larisa 

- Mechanical shutters everywhere

- SRM OPLEV Connection

- MC OAF

- Better LSC whitening boards

- DAFI 

Quote:
 Anything else ?

  4360   Sat Feb 26 00:25:38 2011 KojiUpdateIOOMC servo improvement

[Rana / Koji]

The MC servo loop has been investigated as the MC servo was not an ideal state.

With the improved situation by us, the attached setting is used for the MC and the FSS.
The current UGF is 24kHz with phase margin is ~15deg, which is unbearably small.
We need to change the phase compensation in the FSS box some time in the next week.


- We found the PD has plenty of 29.5MHz signal in in-lock state. This was fixed by reducing the LO power and the modulation depth.

- The LO power for the MC demodulator was ~6dBm. As this was too high for the demodulator, we have reduced it down to 2dBm
by changing attenuator to 12dB (at 6 oclock of the dial) on the AM stabilization box.

- The RF power on the MC PD was still too high. The PD mush have been saturated. So the modulation slider for 29.5MHz was moved
from 0.0 to 5.0. This reduced the 29.5MHz component. (But eventually Koji restored the modulation depth after the servo shape has been modified.)

- The openloop gain of the loop has been measured using EXC A/TEST1/TEST2. The UGF was ~5kHz with the phase mergin of ~10deg. 

- This quite low phase margin is caused by the fact that the loop has f^-2 shape at around 4k-100kHz. The reference cavity has
the cavity pole of 40kHz or so while the IMC has the pole of ~4kHz. Basically we need phase lead at  around 10-100kHz.

- We decided to turn off (disable) 40:4000 boost of the MC servo to earn some phase. Then MC did not lock. This is because the LF gain was not enough.
So put Kevin's pomona box in the FAST PZT path (1.6:40). By this operation we obtain ~75deg (max) at 560Hz, ~35deg at 5kHz, ~20deg at 10kHz.

- In this setup the UGF is 24kHz. Still the phase margin is ~15kHz. This phase lag might be cause by 1)  the MC servo circut 2) PMC cavity pole

NEXT STEP

- Put/modify phase lead in the FSS box.
- Measure the PMC cavity pole
- Measure and put notch in the PZT path
- Increase the UGF / measure the openloop TF

Attachment 1: fss_servo.png
fss_servo.png
Attachment 2: mc_servo.png
mc_servo.png
  4366   Wed Mar 2 04:01:51 2011 KojiUpdateIOOMC servo improvement

[Koji / Rana]

- Since the MC servo had UGF up to ~20kHz and huge servo bump at 50kHz, we needed more phase between 20kHz to 100kHz.

- Today a phase compensation filter in a Pomona box has been inserted between the MC servo box and the FSS box.
  This is a passive filter with zero@14kHz and pole@140kHz. We obtain ~60deg at around 50kHz.

- After the insertion, the lock of the MC was achieved immediately. The overall gain as well as the PZT fast gain was tweaked
  such that the PC feedback is reduced down to 1~2.

- The OLTF has been measured.
  The insertion of the filter change increased the UGF to 130kHz even with "40:4kHz" and double super boost turned on.

  The phase margin is 54deg. Quite healthy.

- Rana modified the existed Auto Locker script.
  It is now continuously running on op340m!
  We made a couple of testsif it correctly relock the MC and it did. VERY COOL.

-----------------

NEXT STEPS
- Measure the PMC cavity pole
- Measure the circuit TF and try to shave off the phase lag.
- Measure the PZT resonance of the NPRO and put notch in the PZT path
- Increase the UGF / measure the openloop TF

Attachment 1: IMG_3904.jpg
IMG_3904.jpg
Attachment 2: MC_OLTF.pdf
MC_OLTF.pdf
  4399   Thu Mar 10 14:29:05 2011 KojiUpdateGreen LockingIntensity noise limits the beatnote sensitivity

We can modify the freq divider circuit to make it a comparator.

Quote:

The next steps we should do are :

    - to investigate a cause of the intensity fluctuation
          * end green laser
          * suspensions' angular motions
          * doublecheck the RIN contribution if it's from the PSL or the X arm in the beatnote RFPD to make sure the RIN is dominated by the X arm transmitted light
  
    - to think about how to make the system insensitive to the intensity noise
          - bring the beat frequency to the zero cross point of the MFDs ?
          - PLL ?

Quote:

We are limited by the intensity noise of the X arm transmitted green light.

 

  4417   Mon Mar 21 13:26:25 2011 KojiUpdatePSLPMC Trans/RFPDDC

PMC TRANS/REFL on MEDM showed red values for long time.
TRANS (a.k.a C1:PSL-PSL_TRANSPD) was the issue of the EPICS db.

REFL (a.k.a. C1:PSL-PMC_RFPDDC) was not physically connected.
There was an unknown BNC connected to the PMC DC output instead of dedicated SMA cable.
So they were swapped.

Now I run the following commands to change the EPICS thresholds:

ezcawrite C1:PSL-PMC_PMCTRANSPD.LOLO 0.8
ezcawrite C1:PSL-PMC_PMCTRANSPD.LOW 0.85
ezcawrite C1:PSL-PMC_PMCTRANSPD.HIGH 0.95
ezcawrite C1:PSL-PMC_PMCTRANSPD.HIHI 1

ezcawrite C1:PSL-PMC_RFPDDC.HIHI 0.05
ezcawrite C1:PSL-PMC_RFPDDC.HIGH 0.03
ezcawrite C1:PSL-PMC_RFPDDC.LOW 0.0
ezcawrite C1:PSL-PMC_RFPDDC.LOLO 0.0

As these commands only give us the tempolary fix, /cvs/cds/caltech/target/c1psl/psl.db was accordingly modified for the permanent one.

grecord(ai,"C1:PSL-PMC_RFPDDC")
{
        field(DESC,"RFPDDC- RFPD DC output")
        field(DISV,"1")
        field(SCAN,".1 second")
        field(DTYP,"VMIVME-3113")
        field(INP,"#C0 S32 @")
        field(EGUF,"10")
        field(EGUL,"-10")
        field(EGU,"Volts")
        field(PREC,"3")
        field(LOPR,"-10")
        field(HOPR,"10")
        field(AOFF,"0")
        field(LINR,"LINEAR")
        field(LOW,"0.0")
        field(LSV,"MINOR")
        field(LOLO,"0.0")
        field(LLSV,"MAJOR")
        field(HIGH,"0.03")
        field(HSV,"MINOR")
        field(HIHI,"0.05")
        field(HSV,"MAJOR")
}

grecord(ai,"C1:PSL-PMC_PMCTRANSPD")
{
        field(DESC,"PMCTRANSPD- pre-modecleaner transmitted light")
        field(DISV,"1")
        field(SCAN,".1 second")
        field(DTYP,"VMIVME-3123")
        field(INP,"#C0 S10 @")
        field(EGUF,"10")
        field(EGUL,"-10")
        field(EGU,"volts")
        field(PREC,"3")
        field(LINR,"LINEAR")
        field(HOPR,"10")
        field(LOPR,"-10")
        field(AOFF,"0")
        field(LOW,"0.8")
        field(LSV,"MINOR")
        field(LOLO,"0.85")
        field(LLSV,"MAJOR")
        field(HIGH,"0.95")
        field(HSV,"MINOR")
        field(HIHI,"1.00")
        field(HSV,"MAJOR")
}

  4433   Wed Mar 23 14:19:35 2011 KojiSummaryGeneralGrand Plan

This is the grand plan we talked about in the beginning of the meeting.

  • (Kiwamu) X-end Green cleaning up / Prep for DRMI
  • (Bryan) Y-end Green
  • (Suresh) Help Bryan / RF (w. Kevin)
  • (Jenne) MC WFS / Y-arm IR alignment / MC adaptive feedforward (incl. CDS)
  • (Koji) LSC
  • (Joe) CDS cleaning up
  • (Jamie) Help Joe / Noise Budget
  • (Larisa) PMC scan / PSL photo&diagram
  • (Barbarela) ASS
  4455   Tue Mar 29 00:00:55 2011 KojiUpdateIOOFixing MC/Freq Divider Box

This is the log of the work on Wednesday 23rd.

1. Power Supply of the freq divider box

Kiwamu claimed that the comparator output of the freq div box only had small output like ~100mV.
The box worked on the electronics bench, we track down the power supply and found the fuse of the +15V line
brew out. It took sometime to notice this fact as the brown-out-LED of the fuse was not on and the power
supply terminal had +15V without the load. But this was because of the facts 1) the fuse is for 24V, and 2)
the large resistor is on the fuse for lighting the LED when the fuse is brown out.

I found another 24V fuse and put it there. Kiwamu is working on getting the correct fuses.

2. MC locking problem

After the hustle of the freq divider, the MC didn't lock. I tracked down the problem on the rack and found
there was no LO for the MC. This was fixed by pushing the power line cable of the AM Stabilizer for the MC LO, which was a bit loose.

  4457   Tue Mar 29 15:50:21 2011 KojiUpdateElectronicsLow pass filter for X arm laser temperature control

For bode plot:

USE LOG-LOG plot for the amplitude

USE LOG-LINEAR plot for the phase

 

Search "Bode Plot" on web

  4463   Wed Mar 30 18:50:57 2011 KojiConfigurationComputer Scripts / ProgramsAdded a sitemap alias

I thought that "m40m" was the traditional alias for the sitemap...

rossa:~>alias
...

m40m ${medm_base} ${medm_newtail} &
...
sitemap medm -x /cvs/cds/rtcds/caltech/c1/medm/sitemap.adl

rossa:~>set|grep medm
medm_base       medm
medm_newtail    -x /opt/rtcds/caltech/c1/medm/sitemap.adl

medm_tail       -x /cvs/cds/caltech/medm/sitemap.adl

Quote:

I added an alias to the sitemap MEDM screen in /cvs/cds/caltech/target/cshrc.40m

Now you can enjoy launching sitemap from a terminal.

alias sitemap 'medm -x /cvs/cds/rtcds/caltech/c1/medm/sitemap.adl'

 

 

  4473   Thu Mar 31 02:59:49 2011 KojiConfigurationGreen LockingThe wonderful world of mode-matching

 I went through the entries.

1. Give us a photo of the day. i.e. Faraday, tilted lens, etc...

2. After all, where did you put the faraday in the plot of the entry 4466?

3. Zoomed-in plot for the SHG crystal show no astigmatism. However, the zoomed out plot shows some astigmatism.
How consistent are they? ==> Interested in seeing the fit including the zoomed out measurements.

  4489   Tue Apr 5 19:54:39 2011 KojiSummaryGreen LockingHamamatsu S3399 test

Since last Friday I have been testing the broadband RF photodetector in order to figure out the capability of S3399 with the similar circuit as Matt's BBPD
We also like to figure out if it has sufficient performance for the 40m green locking.

The circuit diagram is shown in the first attachment. The RF amplifier is attached at the diode while the reverse bias voltage is applied at the other side of the diode. The amplifier's input impedance is used as the transimpedance resister. Note that the bandwidth of this configuration is limited by the RC filter that consists of the junction capacitance of the diode, the series resistance of the diode, and the transimpedance resister. This cut off freq is in general lower than that cut off obtained with the usual transimpedance amplifier which has the readout resister at the feedback path of the opamp.

The transfer function of the PD is measured using Jenne's laser. At the reverse bias voltage of 30V, the -3dB bandwidth of 178MHz was obtained. This is quite high bandwidth for the most of the applications at the 40m.

Because of the low transimpedance the low-noise level of the RF amplifier is very crucial. Recently we can obtain an ultra low noise RF amplifier like Teledyne Cougar AC688 which has the NF of 0.9dB with the bandwidth between 10MHz - 600MHz. Next step will be to obtain this kind of amplifier to test the noise performance.

 

 

Attachment 1: S3399_test_110405.png
S3399_test_110405.png
Attachment 2: S3399_test_110405.pdf
S3399_test_110405.pdf
  4490   Tue Apr 5 21:20:11 2011 KojiSummaryGreen LockingX-arm cavity locked with LB1005 servo box

Last Thursday, I tested Newport Servo Controller LB1005 with the X_arm green PDH servo.

The setup and the settings I could lock the arm is depicted in the attached figure.
To lock the cavity, follow the steps below

1) Toggle the switch to the "lower" position. This disengages the servo and reset the integrator.

2) Toggle the switch to the "middle" position. The zero freq is set to the "PI corner" freq. At the low freq the gain is limited
at the value of "LF Gain Limit". This gives us a single pole at the low freq.

3) Once the lock is acquired, toggle the switch to the "upper" position. This moves the pole freq to DC, resulting in the complete integration of the signal at the low frequency.

I measured the openloop transfer function (attachment 2). The amp is quite fast and exhibits almost no phase delay upto 100kHz.
The UGF was 10kHz with the phase mergin of ~45deg. I had to tune the input offset carefully to stay at the center of the resonance.

Attachment 1: servo.png
servo.png
Attachment 2: OLTF.pdf
OLTF.pdf
  4498   Thu Apr 7 13:12:23 2011 KojiHowToVIDEOVideo switching tip

Long time ago, I looked at the manual of the video switcher.
http://media.extron.com/download/files/userman/Plus_Ultra_MAV_C.pdf
Here is the summary. This will be the basic of the more sophisticated switching program which may have GUI.

In principle, you can manually control the matrix via telnet. At the console machines, you can connect to the matrix using telnet

telnet 192.168.113.92

This opens TCP/IP port 23 of the specified machine. You will receive some messages.
Then type some command like:
--------------------

  • 1*2!       (connect input#1 to output#2)
  • 1,           (save the current setting into preset1)
  • 1.           (restore the setting from preset1)

--------------------

Basicaly that's all. There are many other features but I don't think we need them.

We can create a simple program with any of the language as any of the language has the capability of the TCP/IP connection.
e.g. C, Perl, Python. Tcl/Tk
Any of them are fine.

Now what we have to think about is how to implement the interface in the epics screen (or whatever).
It needs some investigation how the people is thinking as the ideal interface.
But, first of all, you should make the above three operations available as a simple UNIX command like:

videoswitch -i 192.168.113.92 1 2
videoswitch -i 192.168.113.92 -store 1
videoswitch -i 192.168.113.92 -recall 1
(There is no such command yet. These are showing what it should be!)

This can be done by a single day work and our life will be much better.

  4501   Thu Apr 7 19:28:02 2011 KojiSummaryGreen Locking(In)sanity check of Green PD - some inconsistencies

Responsivity of SGD-444A

Quote:

For instance, the PDA100A Si detector from Thorlabs has a responsivity of 0.35-0.4A/W at 1064nm.

 

Attachment 1: SGD-444A.png
SGD-444A.png
  4506   Sun Apr 10 19:14:08 2011 KojiUpdateGreen LockingNew Green PD test1

I started to modify another green PD set.

It so far has the transimpedance of 240 Ohm on CLC409 for the RF output.

It shows the BB output upto ~100MHz.
The measurement shows the transimpedenca of ~90Ohm which is ~25% smaller than the expected gain of 120Ohm.
It is calibrated based on the transimpedances of Newfocus 1611 (10kOhm and 700Ohm for AF and RF).

The next step is to change the transimpedance resister to 2k and replace the PD to S3399 Si PD, which has the diameter of 3mm.
Then, the noise level will be measured. (and replace the RF opamp if necessary)

 

Attachment 1: SGD444A_240.png
SGD444A_240.png
Attachment 2: SGD444A_240_test.png
SGD444A_240_test.png
  4508   Mon Apr 11 11:34:05 2011 KojiUpdateElectronicsNew Green PD test1

Quote:

 Ooh. Can you explain the purpose of the resistors which are connected to the (+) inputs? It looks like some real electronics ninjitsu.

51 Ohm for CLC409

The datasheet of CLC409 uses 25Ohm there. This is to cancel the input bias current of the two inputs of the opamp.

The source impedance (series) of SGD444 is 50Ohm. So I used 50Ohm for the + input shunting.

However, I could probably use anything between 0-50Ohm as the datasheet itself tells that the bias currents are
not related between the two inputs. In addition, I am not sure how much the real series resistance of the PD is.

1kOhm for OP27

This resister is to ensure the (+) input to have a high impedance at high frequencies.

As far as OP27 is behaving as an ideal opamp, the (+) input has a high impedance.
Also if the inductor behaves as the ideal inductor, no photocurrent comes to the AF path.

However, if both of the op27 and the inductor show similar impedances to the RF transimpedance of 240Ohm,
the AF path absorbs some photocurrent and affects the RF transimpedance of the RF output.

We know that the inductor has a self resonance where the shunt capacitance take over the impedance of the coil.
Above that frequency, the inductor is no longer the inductor. The self resonant freq of this inductor is ~300MHz. It is OK, but not
too far from the freq of interest if we like to see clear cut off at around f>100MHz.
Also OP27 is an AF amplifier and I had no confidence about the input impedance of the OP27 at 100~300MHz.

If I put 1k in the (+) input of the OP27, I can ensure the entire AF path has the impedance of ~1k (at least 500Ohm even when L and OP27 are shorted).
I think the chip resister easily works as a resister up to 1GHz.

Attachment 1: SGD444A_240_test.png
SGD444A_240_test.png
  4513   Mon Apr 11 21:13:15 2011 KojiUpdateElectronicsNew Green PD test1

Correction:

The (-) input has been decoupled by the capacitor. So the series resistance of the PD is not the matter.
In this sense, we should use 0Ohm for the (+) input shunting.

Quote:

51 Ohm for CLC409

The datasheet of CLC409 uses 25Ohm there. This is to cancel the input bias current of the two inputs of the opamp.

The source impedance (series) of SGD444 is 50Ohm. So I used 50Ohm for the + input shunting.

However, I could probably use anything between 0-50Ohm as the datasheet itself tells that the bias currents are
not related between the two inputs. In addition, I am not sure how much the real series resistance of the PD is.

  4522   Thu Apr 14 00:21:28 2011 KojiUpdateCDSNew C1LSC code running

[Jamie, Jenne, Koji]

We installed the new c1lsc and started the process.

We still need to configure bunch of the EPICS variables, matrices, and some of the filters.
This should be done in order to transmit the signals to the suspensions.
Jenne is going to work on this task tomorrow (Friday) morning,
and Koji will take over the task afternoon/evening.

  4523   Thu Apr 14 01:03:43 2011 KojiUpdateLSCLSC Campaign ~ Status

Target: To lock the Michelson with the new RF/LSC


Status

RF generation box: READY - already ready to go to the IOO rack. (Suresh)

RF distribution box: In Progress - the internal components are to be connected. (13th evening - Suresh)

Placing PD and CCD: Done - PD and CCD on the AP table (13th Afternoon - Aidan, Larisa with supervision of Kiwamu)

Cabling1: Done - PD signal AP table to the demodulator (13th Afternoon - Jamie with supervision of Suresh)

Cabling2: Done - RF generation box (IOO Rack) to the demodulator

Demodulator: In Progress - Test and install (13th night - Kiwamu with supervision of Suresh)

LSC model: Done - Run the new LSC model. (It is named as "C1LST" so far) (13th evening - Jamie)

LSC medm: Done on 14th - Modify the current LSC medm screens Update the EPICS database Adjust the matrices (- Jenne with supervision of Koji)

  4526   Thu Apr 14 19:05:17 2011 KojiUpdateLSCNew (temporary) LSC screen

[Jenne Koji]

The PD signals are transmitted to the suspension now.

The trigger thresholds were set to -1. This means the triggers are always on.

Attachment 1: temporary_LSC_screen.png
temporary_LSC_screen.png
  4528   Fri Apr 15 02:18:50 2011 KojiUpdateLSCBunch of RF cables removed

While Kiwamu was working on the RF cabling at the LSC rack, I removed 80% of SMA cables which were not connected anywhere.
The rack is cleaner now, but not perfect yet. We need patch panels/strain relieving for heliaxes, cleaning up of the RF/LO cables, etc.

  4529   Fri Apr 15 02:30:24 2011 KojiHowToVIDEOVideo switching tip

I have made a small python script to handle the video matrix.

It is too far from the perfection, but I release it as it is already useful in some extent.

The script is in the /cvs/cds/rtcds/caltech/c1/scripts/general directory.

usage:

videoswitch.py in_ch_name out_ch_name

in_ch_name is one of the followings

MC2F, IFOPO, OMCR, FI, AS_Spare, ITMYF, ITMXF, ETMYF, ETMXF,
PMCR, RCR, RCT, PSL_Spare, PMCT, ETMXT, MC2T, POP, IMCR, REFL,
MC1F, SRMF, AS, ETMYT, PRM, OMCT, Quad1, Quad2, Quad3

out_ch_name is one of the followings

Mon1, Mon2, Mon3, Mon4, Mon5, Mon6, Mon7,
ETMY, MC1, PSL1, PSL2, ETMX, MC2, CRT9,CRT10,Projector,
Quad1_1, Quad1_2, Quad1_3, Quad1_4,
Quad2_1, Quad2_2, Quad2_3, Quad2_4,

Quad3_1, Quad3_2, Quad3_3, Quad3_4

  4544   Tue Apr 19 17:34:02 2011 KojiUpdateCDSMEDM screens and Front Ends updated to new Matrices

Just a curiosity:

I just wonder how you have distingushed the difference between _111 and _111.

They are equivalent alone themselves. Have you looked at the contexts of the lines?
Or you just did not have the larger matrix than 16x16, did you?

  4585   Fri Apr 29 03:39:49 2011 KojiSummaryLSCCavity lengths

I tried the idea that the PRC can resonate f1 and f2 at the same time if the arm gives the reflection phase to f1 and f2 with the ratio of 1 vs 5.

The details are described on wiki. The point is this removes all of the PRC/SRC/asymmetry mumbo jumbo.

The calculated cavity lengths for f_mod of 11.065399MHz are:

  • Arm Length: 37.7974 [m]

  • PRC Length: 6.7538 [m]

  • SRC Length: 5.39915 [m]

  • Asymmetry (lx-ly): 0.0342 [m]


Here is the actual values derived from the photos.

  • Arm Length: 37.54 [m] (0.26m too short)

  • PRC Length: 6.760 [m] (6mm too long)

  • SRC Length: 5.415 [m] (16mm too long)

  • Asymmetry (lx-ly): 0.0266 [m] (8mm too long)

  4593   Sat Apr 30 05:14:33 2011 KojiUpdateGreen LockingElectronics schematic for vertex beatbox

- AC coupling for the comparator circuit of the green locking

In order to relieve the power consumption of the RF buffer, ac coupling circuits have been added.

The ac coupling before the buffer amp helps to relieve the power consumption in the chip.
But because of the distortion of the signal (and the limitation of the bandwidth), the output still has some DC (~0.6V).
Therefore, the output is also AC coupled.

Note that the BW pin of BUF634P should be directly connected to -15V in order to keep the bandwidth of the buffer.

The drawings are also uploaded on the green electronics wiki

Attachment 1: freq_divider.png
freq_divider.png
  4603   Tue May 3 00:44:02 2011 KojiConfigurationComputersMartian WIreless Bridge

The Martian wireless bridge has the ethernet cable inserted in the wrong connector.

It should be inserted to one of the four port. Not in the "INTERNET" connector.

Once the connector has been changed, the martian net as well as the internet became accessible from the laptops.

  4605   Tue May 3 04:09:53 2011 KojiUpdateLSCREFL55 PD update

[Rana, Koji]

REFL55 was modified. The noise level confirmed. The PD is now ready to be installed.

 


Kevin's measurement report told us that something was wrong with REFL55 PD. The transimpedance looked OK, but the noise level was terrible (equivalent to the shotnoise of 14mA DC current).

Rana and I looked at the circuit, and cleaned up the circuit, by removing unnecessary 11MHz notch, 1k shunt resister, and so on.

I made a quick characterization of the PD.

First page:

The transimpedance ws measured as a function of the frequency. The resonance was tuned at 55MHz. The notch was tuned at 110MHz in order to reject the second harmonics. The transimpedance was ~540V/A at 55MHz. (For the calibration, I believed the DC transimpedance of 50V/A and 10000V/A for the DC paths of this PD and #1611, respectively, as well as the RF impedance (700V/A0 of #1611.

Second page:

Output noise levels were measured with various amount of photocurrent using white light from a light bulb. The measurement was perforemed well above the noise level of the measurement instruments.

Third page:

The measured output noise levels were converted into the equivalent current noise on the PD. The dark noise level agrees with the shot noise level of 1.5mA (i.e. 22pA/rtHz). In deed, the noise level went up x~1.5 when the photocurrent is ~1.4mA.

Attachment 1: REFL55.pdf
REFL55.pdf REFL55.pdf REFL55.pdf
  4607   Tue May 3 10:21:25 2011 KojiUpdateLSCdaytime tasks

I think the installation of the PD DC signals are quite important. What to do
1) Connect the DC signals to the right top whitening board (be aware that there may be the modification of the whitening circuit).
2) Reconfigure the LSC model such that the DC signal is passed to the right channels (modify the left top part of the model)

Quote:

Daytime tasks :

 - PRM & BS oplev (Steve)

 - LSC binary outputs (Joe/Jamie)

 - installation of the REFL55 RFPD (Suresh/Jamie)

 - Adjustment of demodulation phases (Kiwamu)

 - Bounce-Roll filters on BS and PRM (Suresh/Joe)

 - Suspension diagnostic using the free-swinging spectra (Leo)

 - PMC alignment (Jenne/Koji)

 

  4610   Tue May 3 11:49:03 2011 KojiUpdateLSCdaytime tasks

Done. C1:PSL-PMC_PMCTRANSPD was improved from ~0.75 to 0.87.

Quote:

- PMC alignment (Jenne/Koji)

 

ELOG V3.1.3-