ID |
Date |
Author |
Type |
Category |
Subject |
2491
|
Sat Jan 9 09:47:03 2010 |
Alberto | Update | LSC | Problems trying to lock the arms |
This morning I've been having problems in trying to lock the X arm.
The X arm's filter FM6 in the LSC screen starts blinking as it was halfloaded. Then the transmitted power drops from 1 to ~0.5 and eventually the arm loses lock.
To me it looked like a computer related issue. So I decide to reboot C1ISCEX by powercycling it.
That doesn't seem to have solved the problem. The X arm can get locked but TRX slowly moves between 0.2 and 1. |
2492
|
Sat Jan 9 11:07:30 2010 |
Alberto | Update | LSC | Problems trying to lock the arms |
Quote: |
This morning I've been having problems in trying to lock the X arm.
The X arm's filter FM6 in the LSC screen starts blinking as it was halfloaded. Then the transmitted power drops from 1 to ~0.5 and eventually the arm loses lock.
To me it looked like a computer related issue. So I decide to reboot C1ISCEX by powercycling it.
That doesn't seem to have solved the problem. The X arm can get locked but TRX slowly moves between 0.2 and 1.
|
The X arm is now locked with TRX stable at ~1.
I think earlier on today I was having problems with running the alignment scripts from op540. Now I'm controlling the IFO from Rosalba and I can easily and stably lock all degrees of freedom.
I needed the X arm to be locked to align the auxiliary beam of the AbsL experiment to the IFO. To further stabilize TRX I increased the loop gain from 1 to 1.5.
Now the auxiliary beam is well aligned to the IFO and the beat is going through the PRC. I'm finally ready to scan the recycling cavity.
I also changed the gain of the PRC loop from -0.1 to -0.5. |
2552
|
Thu Jan 28 09:17:32 2010 |
Alberto | Update | LSC | 166 Modulation turned off |
I temporarily turned off the 166 modulation. |
2605
|
Tue Feb 16 10:01:16 2010 |
Alberto | Configuration | LSC | Arms and PRC not locking |
Since last Friday either the arms or the PRC can't lock.
The montors show the beam flashing on the end mirrors, but the cavity can't get locked. The error signal looks fine. I suspect a computer problem.
Also PRC can't lock. SPOB is suspiciously stuck at about -95. Although that's not a fixed number, but covering the by hand the SPOB PD on the ITMY table doesn't change the number. I check the DC output of the photodetector and it is actually seen the beam.
Suspecting computer problems started after last Thursday's IP switch, I rebooted the frame builder, c1dcuepics, c1daqctrl and all the front ends. I then burtrestored to February 1st at 1:00 am.
Before I burtrestored c1iscepics, SPOB had gone back to more typical numbers around 0, as it usually read when PRC wasn't locked.
But burtrestoring c1iscepics, return it to the -95 of earlier.
Burterestoring to other times or dates didn't solve the problems. |
2607
|
Tue Feb 16 14:10:06 2010 |
josephb, rob, koji | Configuration | LSC | Arms and PRC not locking |
Quote: |
Since last Friday either the arms or the PRC can't lock.
The montors show the beam flashing on the end mirrors, but the cavity can't get locked. The error signal looks fine. I suspect a computer problem.
Also PRC can't lock. SPOB is suspiciously stuck at about -95. Although that's not a fixed number, but covering the by hand the SPOB PD on the ITMY table doesn't change the number. I check the DC output of the photodetector and it is actually seen the beam.
Suspecting computer problems started after last Thursday's IP switch, I rebooted the frame builder, c1dcuepics, c1daqctrl and all the front ends. I then burtrestored to February 1st at 1:00 am.
Before I burtrestored c1iscepics, SPOB had gone back to more typical numbers around 0, as it usually read when PRC wasn't locked.
But burtrestoring c1iscepics, return it to the -95 of earlier.
Burterestoring to other times or dates didn't solve the problems.
|
Koji and I started poking around, trying to understand what was going on. At first, we thought it might be related to a computer error, as it seemed.
Fortunately, Rob stopped by and explained that the boost stage of the filter comes under c1lsc control, and will be turned on or off depending on the power in the arms. Although if you turn it off, it will remain off, it just if its manually selected on, it may go on or off.
Similarly, the output from the Xarm filter bank to the ETMX filter input will be turned on or off depending on the power in the arm.
Anyways, the locking trouble turns out to be due to no RF sidebands at 33 MHz. The output of the Marconi was unplugged. I don't know who, or why did it, but I've plugged it in for now, so we can lock the arms. Let us know if you need in unplugged. Thanks. |
2608
|
Tue Feb 16 15:25:00 2010 |
Alberto | Configuration | LSC | Arms and PRC not locking |
 |
2836
|
Fri Apr 23 21:02:14 2010 |
rana, joe | Update | LSC | Started dev of LSC FE |
Joe and I started working on the new LSC FE control today. We made a diagram of the system in Simulink, but were unable to compile it.
Joe checked out the latest CDS software out of their new SVN and put it somewhere (perhaps his home directory).
We then copied the directory with the .mdl files and the CDS parts library into our real Simulink Model Directory:
/cvs/cds/caltech/cds/advLigo/src/epics/simLink
Use this and not someplace in Alex or Rob's home directory !
Joe will put in more details on Monday once he figures out how to build the new stuff. Basically, we decided not to support multiple versions of the CDS real time code here. We'll just stay synced to the latest stable ~versions.
I exported the current version of the LSC FE into our public_html/FE/ area on nodus where we will put all of the self-documenting FE diagrams:
https://nodus.ligo.caltech.edu:30889/FE/lsc_slwebview_files/index.html
To make a web setup like this, you just use the "Export to Web" feature from the top-level Simulink diagram (e.g. lsc.mdl). Choose the following options:

Note: in order to get the web page to work, I had to change the apache httpd.conf file to allow AddType file overriding. Here's the term cap of the diff:
nodus:etc>diff httpd.conf httpd.conf~
155c155
< ServerAdmin jenne@caltech.edu
---
> ServerAdmin aso@caltech.edu
225d224
< AllowOverride FileInfo |
2839
|
Sun Apr 25 02:56:07 2010 |
rana | Update | LSC | Started dev of LSC FE |
LSC Plant Model. That is all. |
2840
|
Sun Apr 25 10:40:21 2010 |
Koji | Update | LSC | Started dev of LSC FE |
Once you made a CDS model, please update the following wiki page. This will eventually help you.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Electronics/Existing_RCG_DCUID_and_gds_ids
|
2841
|
Mon Apr 26 10:21:45 2010 |
josephb | Update | LSC | Started dev of LSC FE |
Quote: |
Joe and I started working on the new LSC FE control today. We made a diagram of the system in Simulink, but were unable to compile it.
Joe checked out the latest CDS software out of their new SVN and put it somewhere (perhaps his home directory).
|
The SVN checkout was done on megatron. It is located under /home/controls/cds/advLigoRTS
So, to compile (or at least try to) you need to copy the .mdl file from /cvs/cds/caltech/cds/advLigo/src/epics/simLink to /home/controls/cds/advLigoRTS/src/epics/simLink on megatron, then run make SYS in the advLigoRTS directory on megatron.
The old checkout from CVS exists on megatron under /home/controls/cds/advLigo. |
2968
|
Fri May 21 16:24:11 2010 |
Koji | Update | LSC | 40mUpgrade Field Power and RF Power Spectrum at the ports. 38m/38.55m arm length issue. |
1. Give us the designed arm length. What is the criteria?
2. The arm lengths got shorter as the ITMs had to shift to the end. To make them longer is difficult. Try possible shorter length. |
2973
|
Mon May 24 10:03:14 2010 |
rana | Update | LSC | 40mUpgrade Field Power and RF Power Spectrum at the ports. 38m/38.55m arm length issue. |
If you have a working 40m Optickle model, put it in a common place in the SVN, not in your own folder.
I can't figure out why changing the arm length would effect the RF sidebands levels. If you are getting RF sidebands resonating in the arms, then some parameter is not set correctly.
As the RF sideband frequency gets closer to resonating in the arm, the CARM/DARM cross-coupling to the short DOFs probably gets bigger. |
2974
|
Mon May 24 11:32:05 2010 |
rana | Update | LSC | 40mUpgrade Field Power and RF Power Spectrum at the ports. 38m/38.55m arm length issue. |
Quote: |
If you have a working 40m Optickle model, put it in a common place in the SVN, not in your own folder.
I can't figure out why changing the arm length would effect the RF sidebands levels. If you are getting RF sidebands resonating in the arms, then some parameter is not set correctly.
As the RF sideband frequency gets closer to resonating in the arm, the CARM/DARM cross-coupling to the short DOFs probably gets bigger.
|
I uploaded the latest iscmodeling package to the SVN under /trunk. It includes my addition of the 40m Upgrade model: /trunk/iscmodeling/looptickle/config40m/opt40mUpgrade2010.m.
I don't know the causes of this supposed resonances yet. I'm working to try to understand that. It would be interesting also to evaluate the results of absolute length measurements.
Here is what I also found:

It seems that 44, 66 and 110 are resonating.
If that is real, than 37.5m could be a better place. Although I don't have a definition of "better" yet. All I can say is these resonances are smaller there. |
3084
|
Thu Jun 17 17:09:44 2010 |
Alberto | Update | LSC | Short Cavity Length Adjustments |
I calculated the phase shifts that the sidebands would pick up in the arms in the case we changed the arm length to 38.4m as proposed. I obtained the following values (in degrees):
phi(-f2) = 0.66; phi(-f1) = -0.71; phi(f1) = 0.71; phi(+f2) = -0.66
These are the plots with the results as I obtained from an Optickle simulation (the second zooms in around 38.4m).

These values agree with what Koji had already estimated (see elog entry 3023).
Since we can't make the arm longer than that, to increase the distance from the resonance, we would like to adjust the length of the short cavities to compensate for that. For f2 (=55MHz), 0.7 degrees correspond to about 5cm. That is about the length change that we expect to make to the design.
I simulated with Optickle the effect of changing the length of either the SRC or the PRC. The best way I found to do that, was to measure the cavity circulating power when the macroscopic lengths change.
The following plots show the effect of changing either the PRC or SRC length (left or right figure), on the circulating power of both cavities at the same time (top and bottom plots).

You can compare these with the case of perfect antiresonance as in the following plots:

It seems that the design length for the short cavities are not too bad. f1 is not optimized in the PRC, but changing the length of the cavity wold just make f2 worse in SRC.
These simulations seem to support the choice of not changing the design cavity lengths for PRC and SRC.
Of course these are only an "open loop" simulations. At the moment we don't know what would be the effect of closing the control loops. That is something I'm going to do later. It'll be part of my studies on the effects of cavity absolute length on the whole IFO. |
3086
|
Fri Jun 18 13:47:20 2010 |
Koji | Update | LSC | Short Cavity Length Adjustments |
You should have been in my lecture yesterday!
Power in the cavity is not a good index (=error signal) to judge the optimal length.
You should look at the phases of the length signals. (i.e. demodulation phase which gives you the maximum amplitude for CARM, PRC, SRC, etc)
You must move the SRC and PRC lengths at the same time.
The resonance of f1 (mostly) depends on the PRC length, but that of f2 depends on both the PRC and SRC lengths. |
3087
|
Fri Jun 18 15:07:26 2010 |
Alberto | Update | LSC | Short Cavity Length Adjustments |
Quote: |
You should have been in my lecture yesterday!
Power in the cavity is not a good index (=error signal) to judge the optimal length.
You should look at the phases of the length signals. (i.e. demodulation phase which gives you the maximum amplitude for CARM, PRC, SRC, etc)
You must move the SRC and PRC lengths at the same time.
The resonance of f1 (mostly) depends on the PRC length, but that of f2 depends on both the PRC and SRC lengths.
|
Right. Ultimately the phase gain inside the cavity is what we look at. Calculating that for the SBs inside PRC and SRC is actually the first thing I did.
But I kept getting very small angles. Too small, I thought. Maybe there was some problem in the way I calculated it.
Then I made a power analysis to check if the SBs were getting affected at all by that 0.7degree phase shift they're picking up in the arms.
I wanted to show the point where I am, before leaving. But, I keep working on it. |
3227
|
Thu Jul 15 12:21:08 2010 |
Alberto | Configuration | LSC | PRC and SRC length adjustements |
Lately I've been trying to calculate the corrections to the recycling cavity lengths that would compensate for the phase that the sidebands will pick up from the arms in the upgraded interferometer.
To do that calculation , I tried two quite different ways, although equivalent in principle. They both use the optickle model of the 40m, but the calculation is made differently.
In the first way, I looked directly at the phases of the field: phase of [input field] / [reflected field], phase of [input field at PRM] / [transmitted field at SRM].
In the second way I looked at the demodulation phases of the LSC signals.
The first way is much simpler, especially from a computational point of view. It is the first I tried several weeks ago, but then I had abandoned because back then I thought it wasn't the correct way.
Anyway, both ways gave me the same results for the PRC length.
For the SRC length, the first way has given me a clear outcome. On the other hand, the second way has produced a less clear result.
According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m
I) 1st Way
a) case of arms ideal length (33.86 m)

b) case arm length = 38.40 m
PRC
zoom -> 
SRC
zoom -> 
II) 2nd Way
a) case of arms ideal length (33.86 m)

b) case arm length = 38.40 m

|
3228
|
Thu Jul 15 15:57:10 2010 |
Koji | Configuration | LSC | PRC and SRC length adjustements |
Tell me whether it is correct or not. Otherwise I won't be able to sleep tonight.
Quote: |
According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.612 m
|
|
3229
|
Thu Jul 15 16:16:51 2010 |
Alberto | Configuration | LSC | PRC and SRC length adjustements |
Quote: |
Tell me whether it is correct or not. Otherwise I won't be able to sleep tonight.
Quote: |
According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.612 m
|
|
Sorry. I was in a rush to go to the LIGO "all hands" meetings when I posted that elog entry, that I forgot a zero in the SRC length value. The correct values are:
dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m
The cavity absolute lengths are then:
L(PRC) = 0.5/2/f1*c - 0.0266 = 6.7466 m
L(SRC) = c/f2 + 0.0612 = 5.4798 m
where c is the speed of light; f1 = 11065399 Hz; f2 = 55326995 Hz |
4005
|
Thu Dec 2 00:34:32 2010 |
rana | HowTo | LSC | How Does Cavity Locking Work (answered by Nikon) |
https://nodus.ligo.caltech.edu:30889/gw.swf
Dr. Koji Arai and Nikon |
4131
|
Tue Jan 11 01:05:29 2011 |
kiwamu | Update | LSC | obtained Xarm PDH signal |
[Jenne, Zach, Kiwamu]
We made some efforts to lock the X arm cavity with the infrared beam.
We eventually obtained the PDH signal from a photo diode at AS port, we are still in the mid way of the lock.
The PDH signal now is going into c1lsc's ADC.
We have to make sure which digital channel corresponds to our PDH signal,
(what we did)
- split the LO signal, which comes from a Marconi, just before the EOM into two path.
One is going to the EOM and the other is going to the AP table for the demodulation, The driving frequency we are using is 11MHz.
- put RF amplifiers to make the RF signal bigger. The raw signal was small, it was about ~-50 dBm in the spectrum analyzer.
So we connected two ZLN amplifiers. Now the RF signal is at about 0 dBm
- connected the LO and RF signals to a mixer. Additionally we put a 9.5-11.5 MHz bandpass filter at the LO path since there was some amounts of 29.5MHz due to the RF reflection at the EOM resonant box.
After a low pass filter by SR560 the signal shows typical PDH behaviors.
- strung a BNC cable which connects the demodulated signal and c1lsc.
In order to connect the signal to the current working ADC, we disconnected AS166_I from a whitening board and plug our cable on it.
- tried checking the digital signal but we somehow couldn't configure DAQ setting, So actually we couldn't make sure which channel corresponds to our signal.
|
4141
|
Wed Jan 12 01:39:49 2011 |
kiwamu | Update | LSC | locked X arm |
[Suresh, Kiwamu]
We eventually succeeded in locking X arm with the infrared beam.
The PDH signal is taken at MCL's ADC instead of c1lsc's, and fedback to MC2_POS through the MCL path.
Right now the lock is not so stable for some reasons, so we need to investigate it more.
(what we did)
- strung a long BNC cable to connect the demodulated signal and the ADC of c1ioo.
We didn't touch anything on the demodulation system, so the setup for the demodulation is exactly the same as that of yesterday (see here).
- disconnected the actual MCL cable from the ADC breakout board at 1X2 rack. And put the demodulated signal onto it.
- checked the analog dewhitening filter state for the MC2 coil driver, found the analog filter are always off.
So we just made simDW and invDW always on.
- changed the gain of the MCL loop to have a stable lock for the X arm.
right now a reasonable setup in the MCL filters are:
FM1:ON, FM10:ON, G=0.1
- In fact the lock of the MC is not so stable compared to before, frequently an attempt of locking the X arm leads to the unlock of the MC. |
4153
|
Fri Jan 14 01:55:26 2011 |
kiwamu | Update | LSC | X arm locked with C1LSC digital control |
[Koji, Kiwamu]
We succeeded in locking the X arm with the C1LSC digital control.
As we did on the day before yesterday, the feedback signal goes to MCL (#4141), but this time the signal is transfered from C1LSC through the RFM.
(key points)
- checking the state of the analog whitening filters at C1LSC rack.
We took the transfer function of them and found that they were always on regardless of the clicking any buttons on medm.
To cancel the filter shape of the whitening, we put an unWhitening filter so that these transfer functions becomes flat in total.
The whitening filter approximately has : pole:150Hz, pole:150Hz, zero:15Hz, zero:15Hz (although these numbers came from by our eye ball fitting)
- demodulation phase adjustment
We performed the same measurement as that of Suresh and Koji did yesterday (#4143) to adjust the phase of the PDH demodulation.
By changing the cable length we roughly adjusted the I-phase to eventually ~10 deg, which is close enough to 0 deg.
(probably some more efforts should be made as a part of daytime tasks)
Note that we are currently using the REFL33 demodulation board for this purpose (#4144). The LO power we put is about 16dBm.
The angle between I and Q at 11MHz is actually almost 90 deg.
This fact has been confirmed by putting a sinusoidal signal with a slightly different frequency (~100Hz) from that of the LO onto the RF input.
- attenuation of RF signal
Since the PDH signal taken by C1LSC's ADC had been saturated somewhat, we introduced a ND filter of 10 on the photo diode to attenuate the RF signal.
As a result the amplitude of the PDH signal on dataviewer became more reasonable. No more saturations.
(some notes)
unWhitening filter pole:15Hz. pole:15Hz, zero:150Hz, zero:150Hz
C1LSC_MC_FM1 pole:1kHz, zero:10Hz
Gain in digital control G ~ -1
measured UGF ~ 200-300 Hz
measured RFM delay ~ 125 usec |
4154
|
Fri Jan 14 11:29:00 2011 |
kiwamu | Update | LSC | expected open loop TF of X arm locking |
Here shows a plot of the expected open loop transfer function (TF) for the X arm locking.

I assume that the delay time of the digital system associated with the ADC/DAC and the digital filtering process is ~100 usec independently from the RFM delay according to Yuta's measurement (#3961).
Also I assume the MC2 pendulum has a pole at 1Hz with Q of ~5, and the X arm has its cavity pole at ~3kHz.
When the lock acquisition takes place, we used the red curve shown above in order to avoid a big DC feedback onto MC2.
Once the X arm became resonant at TEM00, we manually switched FM3 on, which is a boost filter containing a pole at 1Hz and a zero at 50Hz in order to suppress the residual motion below 1Hz.
The expected curve for the boosted state is drawn by the blue curve in the plot.
With this open loop TF, the UGF can be realized only around 100-300 Hz due to the phase margin condition.
This expectation of the UGF is consistent with our measurement because we obtained the UGF around 200-300Hz.
In fact above 300Hz we observed that the control became unstable and started oscillating.
Quote:
|
(some notes)
unWhitening filter pole:15Hz. pole:15Hz, zero:150Hz, zero:150Hz
C1LSC_MC_FM1 pole:1kHz, zero:10Hz
Gain in digital control G ~ -1
measured UGF ~ 200-300 Hz
measured RFM delay ~ 125 usec
|
|
4156
|
Fri Jan 14 12:34:08 2011 |
Koji | Update | LSC | X arm locked with C1LSC digital control |
My feeling was that the saturation was caused by the LSC whitening filter which was always on.
Once the LSC whitening filter is controlled from C1LSC, we would be able to remove the attenuator.
Quote: |
- attenuation of RF signal
Since the PDH signal taken by C1LSC's ADC had been saturated somewhat, we introduced a ND filter of 10 on the photo diode to attenuate the RF signal.
As a result the amplitude of the PDH signal on dataviewer became more reasonable. No more saturations.
|
|
4180
|
Thu Jan 20 22:17:12 2011 |
rana | Summary | LSC | FPMI Displacement Noise |
I found this old plot in an old elog entry of Osamu's (original link).
It gives us the differential displacement noise of the arms. This was made several months after we discovered how the STACIS made the low frequency noise bad, so I believe it is useful to use this to estimate the displacement noise of the arm cavity today. There are no significant seismic changes. The change of the suspension and the damping electronics may produce some changes around 1 Hz, but these will be dwarfed by the non-stationarity of the seismic noise. |
Attachment 1: osamu-1140657006.pdf
|
|
4186
|
Fri Jan 21 23:55:25 2011 |
rana | Configuration | LSC | Phase Noise Measurement filter |
We've set up a beat note measurement between the VCO driver and the Marconi (see Suresh's elog).
Here's the 'unWhiten' filter for compensating the SR560 TF.
It has poles = 1 mHz, 5 kHz, 5 kHz
and zeros = 30 mHz, 1 kHz
The gain is set to be ~0.001 in the 1-100 Hz band to compensate the G=1000 of the SR560. |
Attachment 1: a.gif
|
|
4253
|
Fri Feb 4 23:39:56 2011 |
rana, koji | Update | LSC | mixer based FD set up for noise test |
We set up the mixer based FD to check out its noise performance.
It is being acquired as C1:GCV-XARM_FINE_OUT_DAQ.
We have calibrated it by driving the frequency of the RF signal generator and putting the value into the GAIN field. We got 100 kHz / 5450 counts; the _OUT_DAQ channel is now being recorded in units of Hz. The cable length has been adjusted so that the full mixer output can swing 16 MHz peak-peak before turning over.
Also, we did a lot of cable cleanup around the IO rack. Kiwamu and Suresh's setups were somewhat dismantled. The whole area was too messy and too hacky to be allowed to survive. Our "temporary" setups have a way of becoming permanent holding places for barrels, adapters, duct tape, etc. |
4493
|
Wed Apr 6 18:55:49 2011 |
Jamie, Larisa | Configuration | LSC | major AP table cleanup |
We ripped out all of the old AS, PLL, and REFL paths, green, orange, and cyan respectively on the old AP table layout photo:
- AS (green): had already been re-purposed by putting a ThorLabs diode right after the first steering mirror. Everything downstream of that has been removed.
- PLL (orange): everything removed.
- REFL (cyan): CCD was left in place, so everything upstream of that was not touched. Everything else was removed, including all of the REFL detectors.
- OMCT (purple): previously removed
- OMCR (blue): left in place, but the diode and CCD are not connected (found that way).
- MCT (magenta): previously removed.
- IMRC (red): untouched
All optics and components were moved to the very south end of the SP table.
We also removed all spurious cables from the table top, and from underneath, as well as pulled out no-longer-needed power supplies. |
4521
|
Wed Apr 13 23:32:07 2011 |
Aidan, Jamie | Configuration | LSC | AS PD and Camera installed |
I spent some time tracking down the AS beam which had vanished from the AP table. Eventually, by dramatically mis-aligning SRM, PRM and ITMY, returning BS to its Jan 1st PITCH and YAW values and tweaking the ITMX alignment [actual values to follow], I was able to get an AS beam out onto the AP table. I verified that it was the prompt reflection off ITMX by watching it move as I changed the YAW of that optic and watching it stay stationary as I changed the YAW of ITMY.
Jamie and I then steered the beam through a 2" PLCX-50.8-360.6 lens and placed the RF PD (AS55) at the focus. Additionally, we installed the AS camera to observe the leakage field through a Y1S steering mirror (as shown in the attached diagram).
Currently the PD has power but the RF and DC outputs are not connected to anything at the moment.
Atm 2 by Steve
|
Attachment 1: AS_beam.jpg
|
|
Attachment 2: P1070546.JPG
|
|
4523
|
Thu Apr 14 01:03:43 2011 |
Koji | Update | LSC | LSC Campaign ~ Status |
Target: To lock the Michelson with the new RF/LSC
Status
RF generation box: READY - already ready to go to the IOO rack. (Suresh)
RF distribution box: In Progress - the internal components are to be connected. (13th evening - Suresh)
Placing PD and CCD: Done - PD and CCD on the AP table (13th Afternoon - Aidan, Larisa with supervision of Kiwamu)
Cabling1: Done - PD signal AP table to the demodulator (13th Afternoon - Jamie with supervision of Suresh)
Cabling2: Done - RF generation box (IOO Rack) to the demodulator
Demodulator: In Progress - Test and install (13th night - Kiwamu with supervision of Suresh)
LSC model: Done - Run the new LSC model. (It is named as "C1LST" so far) (13th evening - Jamie)
LSC medm: Done on 14th - Modify the current LSC medm screens Update the EPICS database Adjust the matrices (- Jenne with supervision of Koji) |
4526
|
Thu Apr 14 19:05:17 2011 |
Koji | Update | LSC | New (temporary) LSC screen |
[Jenne Koji]
The PD signals are transmitted to the suspension now.
The trigger thresholds were set to -1. This means the triggers are always on. |
Attachment 1: temporary_LSC_screen.png
|
|
4527
|
Fri Apr 15 02:17:18 2011 |
kiwamu | Update | LSC | Michelson locked |
[Koji / Kiwamu]
The Michelson was locked with the new LSC realtime code.
(what we did)
-- Fine alignment of the Michelson, including PZTs, BS and ITMY.
Since the X arm has been nicely aligned we intentionally avoided touching ITMX. The IR beam now is hitting the center of both end mirrors.
At the end we lost X arm's resonance for IR. This probably means the PZTs need more careful alignments.
-- Signal acquisition
We replaced the RFPD (AS55) that Aidan and Jamie nicely installed by POY11 because we haven't yet installed a 55MHz RF source.
The maximum DC voltage from the PD went to about 50 mV after aligning steering mirrors on the AP table.
The RF signal from the PD is transferred by a heliax cable which has been labeled 'REFL33'.
Then the RF signal is demodulated at a demodulation board 'AS11', which is one of the demodulation boards that Suresh recently modified.
Although we haven't fully characterized the demod board the I and Q signal looked healthy.
Finally the demod signals go to ADC_0_3 and ADC_0_4 which are the third and fourth channel.
They finally show up in REFL33 path in the digital world.
-- Control
With the new LSC code we fedback the signal to BS. We put anti-whitening filters in the I and Q input filter banks.
We found that dataviewer didn't show correct channels, for example C1LSC_NREFL33I showed just ADC noise and C1LSC_NREFL33Q showed NREFL_33I.
Due to this fact we gave up adjusting the digital phase rotation and decided to use only the I-phase signal.
Applying a 1000:10 filter gave us a moderate lock of the Michelson. The gain was -100 in C1LSC_MICH_GAIN and this gave us the UGF of about 300 Hz.
Note that during the locking both ETMs were intentionally misaligned in order not to have Fabry-Perot fringes. |
4528
|
Fri Apr 15 02:18:50 2011 |
Koji | Update | LSC | Bunch of RF cables removed |
While Kiwamu was working on the RF cabling at the LSC rack, I removed 80% of SMA cables which were not connected anywhere.
The rack is cleaner now, but not perfect yet. We need patch panels/strain relieving for heliaxes, cleaning up of the RF/LO cables, etc. |
4530
|
Fri Apr 15 12:17:39 2011 |
kiwamu | Update | LSC | 11MHz demod board : funny I-Q phase |
During checking the 11MHz demod boards I found that the I-Q relative phase showed funny LO power dependence.
It is now under investigation.
In the plot above the green curve represents the I-Q phase of a 11MHz demod board (see here).
It showed a strong dependence on the LO power and it changes from -60 deg to -130 deg as the LO power changes.
This is not a good situation because any power modulation on the LO will cause a phase jitter.
For a comparison I also took I-Q relative phase of a 33MHz demod board, which hasn't been modified recently.
It shows a nice flat curve up to 5 dBm although it looks like my rough measurement adds a systematic error of about -5 deg.
- to do -
* check RF power in every point of LO path on the circuit
* check if there is saturation by looking at wave forms. |
4533
|
Fri Apr 15 15:15:08 2011 |
kiwamu | Update | LSC | 11MHz demod board : 90 degree splitter |
[Rana, Koji, Kiwamu]
Moreover the amplitude of the I and Q signals are highly unbalanced, depending on the LO power again.
This implies the coil for a 90 degree splitting won't work at 11 MHz since the coil is home made and used to be designed for a specific frequency (i.g. 24.5 MHz).
We decided to use a Mini circuit 90 deg splitter instead. Steve will order few of them soon and we will test it out.
Quote: |
During checking the 11MHz demod boards I found that the I-Q relative phase showed funny LO power dependence.
It is now under investigation.
|
|
4536
|
Fri Apr 15 22:57:38 2011 |
Aidan, Jamie | Configuration | LSC | AS PD and Camera installed |
AS port ITMX YAW range where AS beam was visible = [-1.505, -1.225] - these extrema put the beam just outside of some aperture in the system -> set ITMX YAW to -1.365
ITMX PITCH range = [-0.7707, -0.9707] -> set to ITMX PITCH to -0.8707
Quote: |
I spent some time tracking down the AS beam which had vanished from the AP table. Eventually, by dramatically mis-aligning SRM, PRM and ITMY, returning BS to its Jan 1st PITCH and YAW values and tweaking the ITMX alignment [actual values to follow], I was able to get an AS beam out onto the AP table. I verified that it was the prompt reflection off ITMX by watching it move as I changed the YAW of that optic and watching it stay stationary as I changed the YAW of ITMY.
Jamie and I then steered the beam through a 2" PLCX-50.8-360.6 lens and placed the RF PD (AS55) at the focus. Additionally, we installed the AS camera to observe the leakage field through a Y1S steering mirror (as shown in the attached diagram).
Currently the PD has power but the RF and DC outputs are not connected to anything at the moment.
Atm 2 by Steve
|
|
4537
|
Sat Apr 16 02:00:14 2011 |
rana | Update | LSC | 11MHz demod board : 90 degree splitter |
One way to avoid some of the bad stuff in there is to take the 1 dBm input and amplify it to ~21 dBm before splitting and sending in to the Level 17 mixers.
One way to do this is by using the A3CP6025 from Teledyne-Cougar. Its an SMA connectorized amp which can put out 25 dBm and has a gain of 24 dB. We can just glue it onto the demod boards. Then we can remove the ERA-5 amplifiers and just use the broadband splitter as Kiwamu mentioned. |
4538
|
Mon Apr 18 13:05:57 2011 |
kiwamu | Summary | LSC | demod board modification |
Here is the idea how we upgrade the demodulation boards.
Basically we go ahead with two steps as depicted in the cartoon diagram below.
Once we finish the first step of upgrade, the board will be ready to install although the circuit won't be awesome in terms of noise performance.

* * * (details) * * *
First of all we will replace the home-made 90 degree splitter (see this entry) by a commercial splitter, PSCQ-2-51-W+ from Mini circuit. This is the step 1 basically.
At this point the boards will be ready to use in principle. I asked Steve to get three 90 degree splitters so that we can have at least three demodulators for the dual-recycled Michelson locking.
If they work very fine we will buy some more 90 degree splitters for full locking.
While we try to lock the dual-recycled Michelson once we will get a Cougar amplifier, remove all ERA-5s and install it such that we don't have to gain up and down in the circuit. This is the last step. |
4539
|
Mon Apr 18 14:11:44 2011 |
kiwamu | Update | LSC | RF status |
We will make them all green !!

Again, all the files are available in the svn.
https://nodus.ligo.caltech.edu:30889/svn/trunk/suresh/40m_RF_upgrade/ |
4540
|
Mon Apr 18 17:47:41 2011 |
kiwamu | Configuration | LSC | LSC rack's ADC cabling |
To understand the situation of the ADC cabling at the LSC rack I looked around the rack and the cables.
The final goal of this investigation is to have nice and noise less cables for the ADCs (i.e. non-ribbon cable)
Here is just a report about the current cabling.
(current configuration)
At the moment there is only one ribbon-twisted cable going from 1Y2 to 1Y3. (We are supposed to have 4 cables).
At the 1Y2 rack the cable is connected to an AA board with a 40 pin female IDC connector.
At the 1Y3 rack the cable is connected to an ADC board with a 37 pin female D-sub connector.
The ribbon cable is 28AWG with 0.05" conductor spacing and has 25 twisted pairs (50 wires).

(things to be done)
- searching for a twisted-shielded cable which can nicely fits to the 40 pin IDC and 37 pin D-sub connectors.
- estimating how long cable we need and getting the quote from a vendor.
- designing a strain relief support |
4554
|
Thu Apr 21 21:24:41 2011 |
kiwamu | Update | LSC | demod board : new 90 deg splitter |
A new 90 degree splitter, PSCQ-2-51W, has arrived today and I installed it on a demod board called AS11.
Results of the I-Q phase measurement with the new splitter will be reported soon.
* Picture 1 = before removal of the handmade coil
* Picture 2 = after removal of the coil and the associated capacitors
* Picture 3 = after soldering PSCQ-2-51-W



Quote from #4358 |
First of all we will replace the home-made 90 degree splitter (see this entry) by a commercial splitter, PSCQ-2-51-W+ from Mini circuit. This is the step 1 basically.
|
|
4555
|
Thu Apr 21 21:46:22 2011 |
kiwamu | Update | LSC | demod board : new 90 deg splitter |
A less LO power dependence on the relative phase was found. The new 90 deg splitter works better.
From -3 dBm to 10 dBm in LO power, the relative phase is within 90 +/- 5 deg.
As a comparison I plot the phase that I measured when the handmade coil had been there (green curve in the plot).

I will also measure amplitude unbalances between I and Q.
Quote from #4554 |
A 90 degree splitter, PSCQ-2-51W, has arrived today and I installed it on a demod board called AS11.
Results of the I-Q phase measurement with the new splitter will be reported soon.
|
|
4560
|
Fri Apr 22 11:08:50 2011 |
kiwamu | Update | LSC | demod board AS11 : amplitude imbalance |
Amplitude imbalance between I and Q in a demod board, AS11, with the new 90 deg splitter was measured.
It shows roughly 10% amplitude imbalance when the LO power is in a range from 0 to 5 dBm. Not so bad.
With the handmade coil there used to be a huge imbalance (either I or Q goes to zero volt while the other keeps about 1 V rms) as the LO power decreases.
But with the new 90 deg splitter now there are no more such a huge imbalance.
The remaining 10 % imbalance possibly comes from the fact that we are using ERA-5 in each I and Q path. They may have such gain imbalance of 10%.
We should check the ERA-5 gains so that we can confidently say ERA-5 causes the amplitude imbalance.
Then our plan replacing the ERA-5s (see here) will sound more reasonable.

Quote from #4555 |
The new 90 deg splitter works better.
I will also measure amplitude unbalances between I and Q.
|
|
4567
|
Mon Apr 25 22:38:49 2011 |
kiwamu | Update | LSC | prepration for DRMI : Y arm flashing |
This week is going to be a recycled Michelson week.
As a preparation I did several things today :
1. Alignment of the Y arm
2. Alignment of PRM
3. Checking of all the pick-off ports
(Y arm alignment)
The idea to have the Y arm aligned is that : once we lock the Y arm we will be able to align the input PZTs using the Y arm as a reference.
I tried aligning the Y arm and successfully made the Y arm flashing with IR. I can see it flashing on ITMY camera but no flashing on ETMY camera.
(PRM alignment)
PRM has been intentionally misaligned for the single arm green locking test.
I just confirmed that we can bring PRM back to a good alignment. Now we can see the central part is flashing too.
(picked-off beams)
I went checking through all the picked off beams to see if they are available or not.
POX : lost
POY : fine
POP : very clipped
POSRM : fine |
4570
|
Tue Apr 26 22:56:01 2011 |
kiwamu | Update | LSC | c1iscaux2 and c1iscaux restrated |
While checking whitening filters on the LSC rack, I found some epics controls for the whitening looked not working.
So I powered two crates off : the top one and the bottom one on 1Y3 rack.
These crates contain c1iscaux and c1iscaux2. Then powered them on. But it didn't solve the issue. |
4574
|
Wed Apr 27 18:14:48 2011 |
kiwamu | Update | LSC | preparation for DRMI locking : RF status |

POX11 (see this entry) is now listed as REFL11 (on the very top row).
We will rename POY11 to POP11 for DRMI locking.
The files are on https://nodus.ligo.caltech.edu:30889/svn/trunk/suresh/40m_RF_upgrade/. |
4576
|
Wed Apr 27 21:08:08 2011 |
rana | Update | LSC | AS11 |
I worked on AS_11 today. Its ready for its noise / optical gain calibrations. I have left it on Suresh's desk.

This was one of the 24.5 MHz Black Box (Ben Abbott) style RFPDs rescued from LLO. The tunable inductor that was installed was too small to get the frequency down to 11 MHz and so I swapped in one of the shielded, ferrite core ones from our '7mm' CoilCraft kit. It had a range of 1.2 - 1.8 uH according to the datasheet.
I wasn't able to simulataneously get the peak at 11.06 MHz and the notch at 59.3 MHz and so I took Koji's advice and tuned the peak best. The plot above shows how the notch is slightly off. I think its not a problem; to get it better we would have to change out the inductor for the "2-omega" notch, but I was too lazy. The thinking is that its more important to have the gain be symmetric around the signal readout frequency so as to not imbalance the audio sidebands.
Since this one is going to be AS_11, we think that the 22 MHz signal will be tiny: the transmission of the 11 MHz sidebands to the dark port is small. If we later want to put in a 22 MHz notch anyway, there is space to do this via the 'active notch' pads around the MAX4107.
For the above plot, I used the Jenne laser. The DC output of the PD was ~30 mV (~0.6 mA). The RF drive to the laser was -10 dBm: no saturations. I have calibrated out the cable responses, but not using the 1811 setup, so the absolute calibration has yet to be done.
Also, it needs some new stickers. It would be handy if someone can figure out how to get some sheets of stickers that we can put into the printer. Then we can laser printer all of the data onto the stickers and stick them to the RFPD box. |
4577
|
Wed Apr 27 21:19:25 2011 |
kiwamu | Update | LSC | LSC whitening for PD1-4 |
On the back side of 1Y2 rack I found a cable, CAB-1X2-LSC_7, which is supposed to be connected to the whitening filter was disconnected.
I plugged it back and confirmed that the whitening filter is under control of EPICS.
Now all the gain sliders seem to be working because I can change the amplitude of signals with the sliders.
(method)
To check if the gain sliders are working or not, I intentionally disconnected all the inputs to the whitening filter.
Then I brought a gain slider of interest to the maximum. Due to the big gain I was easily able to see noise lying above ADC noise.
Also if the gain slider is 0 dB, which is the minimum value, the spectrum becomes just ADC noise.
In this way I checked all the gain sliders from PD1 to PD4. The picture below is just an example screenshot when I was doing this test.
Note that each filer is designed to have two poles at 150 Hz and two zeros at 15 Hz.

Quote from #4570 |
While checking whitening filters on the LSC rack, I found some epics controls for the whitening looked not working.
So I powered two crates off : the top one and the bottom one on 1Y3 rack.
These crates contain c1iscaux and c1iscaux2. Then powered them on. But it didn't solve the issue.
|
|
4585
|
Fri Apr 29 03:39:49 2011 |
Koji | Summary | LSC | Cavity lengths |
I tried the idea that the PRC can resonate f1 and f2 at the same time if the arm gives the reflection phase to f1 and f2 with the ratio of 1 vs 5.
The details are described on wiki. The point is this removes all of the PRC/SRC/asymmetry mumbo jumbo.
The calculated cavity lengths for f_mod of 11.065399MHz are:
Here is the actual values derived from the photos.
-
Arm Length: 37.54 [m] (0.26m too short)
-
PRC Length: 6.760 [m] (6mm too long)
-
SRC Length: 5.415 [m] (16mm too long)
-
Asymmetry (lx-ly): 0.0266 [m] (8mm too long)
|