40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 117 of 344  Not logged in ELOG logo
ID Date Author Type Categorydown Subject
  1650   Thu Jun 4 01:32:20 2009 robConfigurationLSCAS port mode scan

Here is a set of mode scans of the AS port, using the OMC as a mode scanner.  The plot overlays various configurations of the IFO.  

To remove PZT nonlinearity, each scan was individually flattened in fsr-space by polynomial (3rd order) fitting to some known peak locations (the carrier and RF sidebands).
 

Attachment 1: modes.png
modes.png
  1661   Mon Jun 8 18:22:27 2009 AlbertoDAQLSCAdded PD11 I amd Q slow channels

I just added two slow channels to C0EDCUEPICS to monitor the input of PD11. The names are:

[C1:LSC-PD11_I_INMON]
[C1:LSC-PD11_Q_INMON]

  1667   Thu Jun 11 03:15:15 2009 AlbertoUpdateLSCDD Handoff attempts

Pete, Alberto,

tonight we worked on the tuning of the double demod phases for the handoff of the short DOFs control signals.

Only MICH can now undergo the handoff. PRC can't make it.

Basically, we tuned the PD6 demod phase and reduced the offset in PD6_I. Then we tuned the relative gain of PD6_I and PD2_I so that the two open loop transfer function of the control loops would match. We tried that in several ways and several times but without success.

I guess we're missing to do/check something.

  1669   Thu Jun 11 22:14:10 2009 AlbertoUpdateLSCDD Handoff for the Short DOFs completed

This afternoon I tuned the handoff script for the SRC, after that Rob eralier during the day had already adjusted that for PRC. To do that, I followed the procedure in the Wiki.

  • I measured the OL transfer function of the single demod path and of the double demod path and tuned thier gains so that they matched
  • I tuned the double demod pahses of PD_7 and PD_8 in order to reduce the offset in the PD_x_I signals

After that the SRC could get locked with the double demod signals. the open loop transfer function emasurement on the PRC loop showed that it was nearly unstable. Rob reduced a little its gain to improve the stability.

The DD handoff is now working and we can get back to locking the interferometer.

  1685   Thu Jun 18 23:20:40 2009 robSummaryLSCI-Q ratio with RF detected DARM

This is a ratio of PD1_I to PD1_Q (so a ratio of the two quadratures of AS166), measured in an anti-spring state.  It's not flat because our set up has single sideband RF heterodyne detection, and using a single RF sideband as a local oscillator allows one to detect different quadratures by using different RF demodulation phases.   So the variation in frequency is actually a measure of how the frequency response of DARM changes when you vary the detection quadrature.  This measure is imperfect because it doesn't account for the effect of the DARM loop.

Even though you can choose your detection quadrature with this setup, you can't get squeezed quantum noise with a single RF sideband.  The quantum noise around the other (zero-amplitude) RF sideband still gets mixed in, and negates any squeezing benefits.

Attachment 1: IQratio.jpg
IQratio.jpg
  1878   Mon Aug 10 17:27:47 2009 robConfigurationLSCTRX, TRY gain

 

These are the settings which determine the transmon (eg, TRX) amplitude, and which are updated by the matchTransMon scripts.

For the X arm

 

op440m:AutoDither>tdsread C1:LSC-TRX_GAIN C1:LSC-LA_PARAM_FLT_01 C1:LSC-LA_PARAM_FLT_00
0.0023
0.155
119.775

 

For the Y arm

op440m:AutoDither>tdsread C1:LSC-TRY_GAIN C1:LSC-LA_PARAM_FLT_04 C1:LSC-LA_PARAM_FLT_03
0.00237196
-0.116
19.9809


  1929   Wed Aug 19 18:02:22 2009 JenneUpdateLSCRF PDs aligned

All of the LSC RF PDs have been aligned.  I didn't really change much of anything, since for all of them, the beam was already pretty close to center.  But they all got the treatment of attaching a Voltmeter to the DC out, and adjusting the steering mirror in both pitch and yaw, finding where you fall off the PD in each direction, and then leave the optic in the middle of the two 'edges'.

Before aligning each set (PO, Refl, AS), I followed the procedure in Rob's new RF photodiode Wiki Page

Also, for superstitious reasons, and in case I actually bumped them, I squished all of the ribbon cable connectors into the PDs, just in case.

  1966   Thu Sep 3 23:41:32 2009 AlbertoConfigurationLSCPOX (PD3) aligned

Today I aligned the beam to PD3 (POX) since Steve had moved it.

The DC power read 1.3mV when the beam was on the PD.

  1999   Thu Sep 24 20:17:05 2009 ranaSummaryLSCComparison of Material Properties for the new RFPD Mounts
  Steel Brass Aluminum Delrin
Density (kg/m^3) 7850 8500 2700 1420
CTE (ppm/C) 12 19 23 100

Young's

Modulus

(GPa)

200 110 69 2
Hardness        
Color grey gold light silver any

 

  2016   Tue Sep 29 01:50:10 2009 robConfigurationLSCnew modulation frequencies

Mode cleaner length measured tonight.

 

33196198

132784792

165980990

199177188

[Tag by KA: modulation frequency, MC length]

  2101   Fri Oct 16 03:16:50 2009 rana, robSummaryLSCfunny timing setup on the LSC

While measuring the Piezo Jena noise tonight we noticed that the LSC timing is setup strangely.

Instead of using the Fiber Optic Sander Liu Timing board, we are just using a long 4-pin LEMO cable which comes from somewhere in the cable tray. This is apparent in the rack pictures (1X3) that Kiwamu has recently posted in the Electronics Wiki. I think all of our front ends are supposed to use the fiber card for this. I will ask Jay and Alex what the deal is here - seems like to me that this can be a cause for timing noise on the LSC.

We should be able to diagnose timing noise between the OMC and the LSC by putting in a signal in the OMC and looking at the signal on the LSC side. Should be a matlab script that we can run whenever we are suspicious of this. This is an excellent task for a new visiting grad student to help learn how to debug the digital control system.

Attachment 1: 1X3_1.JPG
1X3_1.JPG
  2104   Fri Oct 16 13:25:18 2009 KojiSummaryLSCfunny timing setup on the LSC

Could be this.

http://ilog.ligo-la.caltech.edu/ilog/pub/ilog.cgi?group=detector&task=view&date_to_view=10/02/2009&anchor_to_scroll_to=2009:10:02:13:33:49-waldman

Quote:

We should be able to diagnose timing noise between the OMC and the LSC by putting in a signal in the OMC and looking at the signal on the LSC side. Should be a matlab script that we can run whenever we are suspicious of this. This is an excellent task for a new visiting grad student to help learn how to debug the digital control system.

 

  2111   Sun Oct 18 22:05:40 2009 kiwamuUpdateLSCLSC timing issue

Today I made a measurement to research the LSC timitng issue as mentioned on Oct.16th.

*method

I put the triangular-wave into the OMC side (OMC-LSC_DRIVER_EXT) by AWG,

then looked at the transferred same signal at the LSC side (LSC_DARM_IN1) by using tdsdata.

I have compared these two signals in time domain to check whether they are the same or not.

In the ideal case it is expected that they are exactly the same.

 

*preliminary result

The measured data are shown in attached fig.1 and 2.

In the fig.1 it looks like they are the same signal.

However in fig.2 which is just magnified plot of fig.1, it shows a time-delay apparently between them.

The delay time is roughly ~50 micro sec.

The surprising is that the LSC signal is going beyond the OMC signal, although the OMC signal drives the LSC !!

We can say it is "negative delay"...

Anyway we can guess that the time stamp or something is wrong.

 

*next plan

Tomorrow I'm going to measure the transfer-function between them to see the delay more clearly.

( And I would like to fix the delay. )

Attachment 1: rough.png
rough.png
Attachment 2: detail.png
detail.png
  2113   Sun Oct 18 23:02:03 2009 KojiUpdateLSCLSC timing issue

You yourself told me that tdsdata uses some downconversion from 32k to 16k!

So, how does the downconversion appears in the measurement?
How does the difference of the sampling rate appears in the measurement?
If you like to understand the delay, you have to dig into the downconversion
issue until you get the EXACT mechanism including the filter coefficients.

AND, is the transfer function the matter now?

As far as the LSC and OMC have some firm relationship, whichever this is phase delay or advance or any kind of filering,
this will not introduce any noise. If so, this is just OK.

In my understanding, the additional noise caused by the clock jitter is the essential problem.
So, did you observe any noise from the data?

Quote:

*preliminary result

The measured data are shown in attached fig.1 and 2.

In the fig.1 it looks like they are the same signal.

However in fig.2 which is just magnified plot of fig.1, it shows a time-delay apparently between them.

The delay time is roughly ~50 micro sec.

The surprising is that the LSC signal is going beyond the OMC signal, although the OMC signal drives the LSC !!

We can say it is "negative delay"...

Anyway we can guess that the time stamp or something is wrong.

 

*next plan

Tomorrow I'm going to measure the transfer-function between them to see the delay more clearly.

( And I would like to fix the delay. )

 

  2114   Mon Oct 19 10:00:52 2009 kiwamuUpdateLSCRE: LSC timing issue

Of course I know there is a downconversion in OMC signal from 32k to 16k.

But I was just wondering if the delay comes from only downconversion.

And I can not find any significant noise in both signals because I use the triangular, which cause the higer harmonics and can hide the timing noise in frequency domain.

So I'm going to make the same measurement by using sinusoidal instead of triangular, then can see the noise in frequency domain.

 

Quote:

You yourself told me that tdsdata uses some downconversion from 32k to 16k!

So, how does the downconversion appears in the measurement?
How does the difference of the sampling rate appears in the measurement?
If you like to understand the delay, you have to dig into the downconversion
issue until you get the EXACT mechanism including the filter coefficients.

AND, is the transfer function the matter now?

As far as the LSC and OMC have some firm relationship, whichever this is phase delay or advance or any kind of filering,
this will not introduce any noise. If so, this is just OK.

In my understanding, the additional noise caused by the clock jitter is the essential problem.
So, did you observe any noise from the data?

Quote:

*preliminary result

The measured data are shown in attached fig.1 and 2.

In the fig.1 it looks like they are the same signal.

However in fig.2 which is just magnified plot of fig.1, it shows a time-delay apparently between them.

The delay time is roughly ~50 micro sec.

The surprising is that the LSC signal is going beyond the OMC signal, although the OMC signal drives the LSC !!

We can say it is "negative delay"...

Anyway we can guess that the time stamp or something is wrong.

 

*next plan

Tomorrow I'm going to measure the transfer-function between them to see the delay more clearly.

( And I would like to fix the delay. )

 

 

  2122   Mon Oct 19 23:14:32 2009 kiwamuUpdateLSCLSC timing issue

I measured the noise spectrum of LSC_DARM_IN1 and OMC-LSC_DRIVE_EXC by using DTT,

while injecting the sin-wave into the OMC-LSC_DRIVE by AWG.

The attached are the results.

No significant differences appears between OMC and LSC in this measurement.

It means, in this measurement we can not figure out any timing noise which might be in LSC-clock.

In addition there are the noise floor, whose level does not change in each 3-figures. The level is about ~4*10^{-8} count/sqrt[Hz]

(The source of the noise floor is still under research.)

Attachment 1: SPE20Hz.png
SPE20Hz.png
Attachment 2: SPE200Hz.png
SPE200Hz.png
Attachment 3: SPE2kHz.png
SPE2kHz.png
  2126   Tue Oct 20 16:35:24 2009 robConfigurationLSC33MHz Mod depth

The 33MHz mod depth is now controlled by the OMC (C1:OMC-SPARE_DAC_CH_15).  The setting to give us the same modulation depth as before is 14000 (in the offset field).

  2145   Mon Oct 26 18:49:18 2009 kiwamuUpdateLSCOMC-LSC timing issue

According to my measurements I conclude that LSC-signal is retarded from OMC-signal with the constant retarded time of 92usec.
It means there are no timing jitter between them. Only a constant time-delay exists.

(Timing jitter)
Let's begin with basics.
If you measure the same signal at OMC-side and LSC-side, they can have some time delay between them. It can be described as followers.

exp1.png
where tau_0 is the time delay. If the tau_0 is not constant, it causes a noise of the timing jitter.

(method)
I have injected the sine-wave with 200.03Hz into the OMC-LSC_DRIVE_EXC. Then by using get_data, I measured the signal at 'OMC-LSC_DRIVE_OUT' and 'LSC-DARM_ERR' where the exciting signal comes out.
In the ideal case the two signals are completely identical.
In order to find the delay, I calculated the difference in these signals based on the method described by Waldman. The method uses the following expression.
exp2.png
Here the tau_s is the artificial delay, which can be adjusted in the off line data.
By shifting tau_s we can easily find the minimal point of the RMS, and at this point we can get tau_0=tau_s.
This is the principle of the method to measure the delay.  In my measurement I put T=1sec. and make the calculation every 1sec. in 1 min.


(results)
Attachment is the obtained results. The above shows the minimum RMS sampled every 1sec. and the below shows the delay in terms of number of shifts.
1 shift corresponds to Ts (=1/32kHz).  All of the data are matched with 3 times shift, and all of the minimum RMS are completely zero.
Therefore I can conclude that LSC-signal is retarded from OMC-signal with constant retarded times of 3*Ts exactly, and no timing jitter has been found.
 

Attachment 3: OMC_LSC60sec.png
OMC_LSC60sec.png
  2146   Mon Oct 26 19:12:50 2009 kiwamuUpdateLSCdiagnostic script for LSC timing

The diagnostic script I've written is available in the 'caltech/users/kiwamu/work/20091026_OMC-LSC-diag/src'.

To run the script, you can just execute 'run_OMC_LSC.sh' or just call the m-file ' OMC_LSC_timinig.m'  from matlab.

 

NOTES:

The script destructs the lock of DARM and OMC, be careful if you are working with IFO.

  2153   Tue Oct 27 19:37:03 2009 kiwamuUpdateLSCcron job to diagnose LSC-timing

I set a cron job on allegra.martian to run the diagnostic script every weekend.

I think this routine can be helpful to know how the trend of timing-shift goes

The cron runs the script on every Sunday 5:01AM and diagnostics will take about 5 min.

 

! Important:

During the running of the script, OMC and DARM can not be locked.

If you want to lock OMC and DARM in the early morning of weekend, just log in allegra and then comment out the command by using 'crontab -e'

 

 

  2167   Mon Nov 2 10:56:09 2009 kiwamuUpdateLSCcron job works succesfully & no timing jitter

As I wrote on Oct.27th, the cron job works every Sunday.

I found it worked well on the last Sunday (Nov.1st).

And I can not find any timing jitter in the data, its delay still stay 3*Ts.

  2174   Wed Nov 4 16:49:32 2009 AlbertoUpdateLSCArm Cavity Finesse Measurement

I'm going to work on the X arm to measure the arm cavity finesse.

The idea is to measure the cavity transfer function to estimate the frequency of its cavity pole. That should be a more accurate measurement than that based on the cavity decay time.

I'm starting now and I'm going to inject a swept sine excitation on the OMC_ISS_EXC input cable laying on the floor nearby the AP table (see pic).

DSC_0952.JPG

In orderf to do that I disconnected the cable from the OMC breakout box laying on the floor. I'm going to plug the cable back in as soon as I'm done.

  2175   Wed Nov 4 18:35:19 2009 AlbertoUpdateLSCArm Cavity Finesse Measurement

Quote:

I'm going to work on the X arm to measure the arm cavity finesse.

The idea is to measure the cavity transfer function to estimate the frequency of its cavity pole. That should be a more accurate measurement than that based on the cavity decay time.

I'm starting now and I'm going to inject a swept sine excitation on the OMC_ISS_EXC input cable laying on the floor nearby the AP table (see pic).

DSC_0952.JPG

In orderf to do that I disconnected the cable from the OMC breakout box laying on the floor. I'm going to plug the cable back in as soon as I'm done.

 Since I need to measure the transfer function between TRX and MC_TRANS_DC I picked off the beam going to RFAM PD to send it to a PDA255 photodiode (cannibalized from the AbsL's PLL) which I installed on the PSL table.

I centerd the beam on the PD and I was able to see the injected signal.

I think I'm ready to measure the transfer function.

Except for the RFAM PD everything is as before.

I'm gonna go grab dinner and I should be back to keep working on that in about one hour.

  2176   Wed Nov 4 21:46:18 2009 AlbertoUpdateLSCArm Cavity Finesse Measurement

Quote:

Quote:

I'm going to work on the X arm to measure the arm cavity finesse.

The idea is to measure the cavity transfer function to estimate the frequency of its cavity pole. That should be a more accurate measurement than that based on the cavity decay time.

I'm starting now and I'm going to inject a swept sine excitation on the OMC_ISS_EXC input cable laying on the floor nearby the AP table (see pic).

DSC_0952.JPG

In orderf to do that I disconnected the cable from the OMC breakout box laying on the floor. I'm going to plug the cable back in as soon as I'm done.

 Since I need to measure the transfer function between TRX and MC_TRANS_DC I picked off the beam going to RFAM PD to send it to a PDA255 photodiode (cannibalized from the AbsL's PLL) which I installed on the PSL table.

I centerd the beam on the PD and I was able to see the injected signal.

I think I'm ready to measure the transfer function.

Except for the RFAM PD everything is as before.

I'm gonna go grab dinner and I should be back to keep working on that in about one hour.

 Back from dinner. Taking measurements.

  2177   Wed Nov 4 23:17:51 2009 AlbertoUpdateLSCX Arm Cavity transfer Function

I measured the transfer function between MC_TRANS and TRX and I'm attaching the result.

ArmCavityTF02.png

That looks quite strange. Something's wrong. I'll repeat it tomorrow.

for the night I'm putting everything back. I'm also reconnecting the OMC_ISS_EXC and opening again the test switch on the ISS screen.

The RFAM monitor remains disable

  2178   Thu Nov 5 05:07:22 2009 ranaUpdateLSCX Arm Cavity transfer Function

I would have guessed that you have to calibrate the detectors relative to each other before trying this. Its also going to be tricky if you use 2 different kinds of ADC for this (c.f. today's delay discussion in the group meeting).

I think Osamu used to look at fast transmission signals by making sure the PD at the end had a 50 Ohm output impedance and just drive the 40m long cable and terminate the receiving end with 50 Ohms. Then both PDs go into the SR785.

 

  2184   Thu Nov 5 19:25:11 2009 AlbertoUpdateLSCX Arm Cavity transfer Function

Quote:

I would have guessed that you have to calibrate the detectors relative to each other before trying this. Its also going to be tricky if you use 2 different kinds of ADC for this (c.f. today's delay discussion in the group meeting).

I think Osamu used to look at fast transmission signals by making sure the PD at the end had a 50 Ohm output impedance and just drive the 40m long cable and terminate the receiving end with 50 Ohms. Then both PDs go into the SR785.

 

On Rana's suggestion I measured the trasfer function between the two photodiodes PDA255 that I'm using.

I took the one that I had on the end table and put it on the PSL table. I split the MC transmitted beam with a 50% beam splitter and sent the beams on the two diodes. (Rana's idea of picking off the beam and interposing the PDs before the ISS PDs was not doable: ISS PDs would be too close and there would be no room to install the PDA255 before them). See picture with the final setup.

DSC_0958.JPG


The transfer function also includes the 40m long cable that I was using for the Arm Cavity measurement.

Here's what I got. It looks rather flat. Yesterday the calibration was probably not the problem in that measurement.

PDA255CalibrationTF03.png
 I'm now going to install the PD back on the end table and measure the TFs between the excitation and several points of the loop.

(Trivia. At first, the PDs were saturating so Koji attached attenuation filters on to them. Suddenly the measurement got much nicer)

  2185   Thu Nov 5 22:30:09 2009 AlbertoUpdateLSCX Arm Cavity Transfer Function

It seems that just repeating the measurement was enough to get a good transfer function of the x arm cavity. Here's what I got.

XarmTF01.png

I'm going to fit the data on matlab, but at first sight, the pole seems to be at about 1.7KHz (that is where the phase is 45deg): as expected.

Probably it was useful to realign the beam on the Transmission PD. (btw, I'm using the PDA255 that was still on the X end table since the AbsL experiemtn that measured the arm length)

  2186   Thu Nov 5 23:09:34 2009 AlbertoUpdateLSCY Arm Cavity Transfer Function

As for the X Arm, this the transfer function I measured for the Y arm cavity.

YarmTF01.png

This time I'm using a different photodiode than the PDA255 on the Y end table.

The diode I'm using is the PDA520 from where TRY comes from.

I'm going to repeat the measurement with PDA255.

  2188   Fri Nov 6 00:24:06 2009 AlbertoUpdateLSCY Arm Cavity Transfer Function

Quote:

As for the X Arm, this the transfer function I measured for the Y arm cavity.

YarmTF01.png

This time I'm using a different photodiode than the PDA255 on the Y end table.

The diode I'm using is the PDA520 from where TRY comes from.

I'm going to repeat the measurement with PDA255.

 Measurement repeated with the PDA255 PD at the end but not big changes

YarmTF02.png

  2189   Fri Nov 6 00:40:29 2009 AlbertoUpdateLSCEverything put back as it was

I disconnected the setup for the arm cavity TF measurement. I opened the scitation switch on the ISS medm screen. I reconnected the OMC ISS EXC cable to the breakout box on the floor.

The photodiode on the Y end is stilll connected.

Also the RFAm (whish is not disbaled anymore) still has a 50% beam splitter before it.

I'm also running the Align Full IFO script.

  2208   Mon Nov 9 11:11:19 2009 AlbertoConfigurationLSCMC2 Watchdogs tripped

The MC2 watchdogs tripped. I just restored them.

I also had to relock the MZ and then the Mode Cleaner.

  2217   Mon Nov 9 15:11:02 2009 AlbertoUpdateLSCEverything put back as it was

Quote:

I disconnected the setup for the arm cavity TF measurement. I opened the scitation switch on the ISS medm screen. I reconnected the OMC ISS EXC cable to the breakout box on the floor.

The photodiode on the Y end is stilll connected.

Also the RFAm (whish is not disbaled anymore) still has a 50% beam splitter before it.

I'm also running the Align Full IFO script.

 

I removed the beam splitter and the PDA 255.

the beam path to the RFAM photodiode is clear again.

  2226   Tue Nov 10 13:02:36 2009 AlbertoUpdateLSCX and Y Arm Cavity Poles Measurement

From fitting the arm cavity transfer functions I got the following values for the cavity pole frequencies.

X ARM: fp_x = (1720 +/- 70) Hz

Y ARM: fp_y = (1650 +/- 70) Hz

Attached are the plots from the fitting.

Attachment 1: SummaryOfFits.pdf
SummaryOfFits.pdf SummaryOfFits.pdf
Attachment 2: CodeAndData.tar
  2247   Thu Nov 12 02:02:18 2009 ranaSummaryLSCArm Locking with no feedback to the ETM or ITM

Steps:

1) Turn off feedback to ETMY (the ETMY button on the LSC screen).

2) Put a 1 into the YARM->MC2 output matrix element on the LSC screen.

3) Turn off FM6 (comb), FM7 (0.1:10) on the MC2_MCL filter bank. This is to make the IOO-MCL loop more stable and to reduce the IOO-MCL low frequency gain.

4) Set the MC2-LSC gain to 0.5, turn the output ON, turn ON FM4 & FM5 & FM6 of the MC2-LSC filter bank.

5) Turn on the input of MC2-LSC and the arm should now lock.

6) After locking, set the MC2-MCL gain to zero. Hopefully with a few second ramp time.

Voila!

(A comment by KA - c.f. this entry )

Attachment 1: nohands-2.pdf
nohands-2.pdf
  2277   Mon Nov 16 17:35:59 2009 kiwamuUpdateLSCOMC-LSC timing get synchronized !

An interesting thing was happened in the OMC-LSC timing clock.

Right now the clock of the OMC and the LSC are completely synchronized.

 The trend data is shown below. At the first two measurements (Oct.27 and Nov.1),  LSC had constant retarded time of 3Ts (~92usec.).

The last measurement, on Nov.15, number of shifts goes to zero, this means there are no retarded time.

Also the variance between the two signal gets zero, so I conclude the OMC and the LSC are now completely synchronized.

The measurement on Nov.8 is somehow meaningless, I guess the measurement did not run correctly by an influence from megatron(?)

 

OMC-LSC.png

 

  2317   Mon Nov 23 21:30:29 2009 JenneUpdateLSCMeasured MC length

With Koji's help, I measured the length of the Mode Cleaner.

The new modulation frequencies (as quoted on the Marconi front panels) are: 

165.980580 MHz

 33.196116 MHz

132.784464 MHz

199.176696 MHz

The Frequency Counter readback is 165980584.101 Hz (a 4Hz difference).  All of the Marconi's front-panel frequencies read ###.##### MHz Ext, and the Frequency standard has it's "locked" light illuminated, and the 1pps input light blinking, so I think everything is still nicely locked to the frequency standard, and the frequency standard is locked to the GPS.

While changing the marconi's, I accidentally touched the MC's 29.5 MHz marconi.  It is set back to the nominal value (according to Kiwamu's rack photos) of 29.485MHz.  But the phase might be sketchy, although hopefully this doesn't matter since we don't do a double demodulation with it.

I also ran the scripts in the wiki page: How To/Diagonalize DRMI Length Control to set the DD Phases.

 

 

  2319   Tue Nov 24 08:00:16 2009 ranaUpdateLSCMeasured MC length

I propose that from now on, we indicate in the elog what frequencies we're referring to. In this case, I guess its the front panel readback and not the frequency counter -- what is the frequency counter readback? And is everything still locked to the 10 MHz from the GPS locked Rubidium clock?

Plus, what FSS Box? The TTFSS servo box? Or the VCO driver? As far as I know, the RC trans PD doesn't go through the FSS boxes, and so its a real change. I guess that a bad contact in the FSS could have made a huge locking offset.

 

  2320   Tue Nov 24 10:36:21 2009 KojiUpdateLSCMeasured MC length

What I meant was the VCO driver, not the FSS box.

As for the frequency, all written numbers were the Marconi displays.
The number on the frequency counter was also recorded, and so will be added to the previous entry shortly... 

Quote:

I propose that from now on, we indicate in the elog what frequencies we're referring to. In this case, I guess its the front panel readback and not the frequency counter -- what is the frequency counter readback? And is everything still locked to the 10 MHz from the GPS locked Rubidium clock?

Plus, what FSS Box? The TTFSS servo box? Or the VCO driver? As far as I know, the RC trans PD doesn't go through the FSS boxes, and so its a real change. I guess that a bad contact in the FSS could have made a huge locking offset.

 

  2350   Thu Dec 3 15:55:24 2009 AlbertoAoGLSCRF AM Stabilizer Output Power

Today I measured the max output power at the EOM output of one of the RF AM Stabilizers that we use to control the modulation depth. I needed to know that number for the designing of the new RF system.

When the EPICS slider of the 166 MHz modulation depth is at 0 the modulation depth is max (the slider's values are reversed : 0 is max, 5 is min; it is also 0 for any value above 5, sepite it range from 0 to 10).

I measured 9.5V from the EOM output, that is 32 dBm on a 50 Ohm impedance.

  2384   Thu Dec 10 13:10:25 2009 AlbertoConfigurationLSC166 LO Disconnected

I temporarily disconnected the Heliax cable that brings the 166MHz LO to the LSC rack.

I'm doing a couple of measurement and I'll put it back in as soon as I'm done.

  2389   Thu Dec 10 17:05:21 2009 AlbertoConfigurationLSC166 MHz LO SMA-to-Heliax connection repaired

I replaced the SMA end connector for the 166 MHZ Local Oscillator signal that goes to the back of the flange in the 1Y2 rack. The connector had got damaged after it twisted when I was tigheting the N connector of the Heliax cable on the front panel.

  2393   Thu Dec 10 18:31:44 2009 AlbertoConfigurationLSC166 LO Disconnected

Quote:

I temporarily disconnected the Heliax cable that brings the 166MHz LO to the LSC rack.

I'm doing a couple of measurement and I'll put it back in as soon as I'm done.

 These are the losses I measured on a RG-174 cable for the two frequencies that we're planning to use in the Upgrade:

@11MHz Loss=0.22dBm/meter

@55MHz Loss=0.41dBm/meter

(The cable was 2.07m long. The input signal was +10dBm and the output voltages at the oscilloscope where: Vpk-pk(11MHz)=1.90V, Vpk-pk(11MHz)=1.82V )

  2395   Fri Dec 11 09:30:09 2009 KojiConfigurationLSC166 LO Disconnected

They must not be dBm, must be dB

Quote:

Quote:

I temporarily disconnected the Heliax cable that brings the 166MHz LO to the LSC rack.

I'm doing a couple of measurement and I'll put it back in as soon as I'm done.

 These are the losses I measured on a RG-174 cable for the two frequencies that we're planning to use in the Upgrade:

@11MHz Loss=0.22dBm/meter

@55MHz Loss=0.41dBm/meter

(The cable was 2.07m long. The input signal was +10dBm and the output voltages at the oscilloscope where: Vpk-pk(11MHz)=1.90V, Vpk-pk(11MHz)=1.82V )

 

  2396   Fri Dec 11 11:42:26 2009 AlbertoConfigurationLSC166 LO Disconnected

Quote:

They must not be dBm, must be dB

Quote:

Quote:

I temporarily disconnected the Heliax cable that brings the 166MHz LO to the LSC rack.

I'm doing a couple of measurement and I'll put it back in as soon as I'm done.

 These are the losses I measured on a RG-174 cable for the two frequencies that we're planning to use in the Upgrade:

@11MHz Loss=0.22dBm/meter

@55MHz Loss=0.41dBm/meter

(The cable was 2.07m long. The input signal was +10dBm and the output voltages at the oscilloscope where: Vpk-pk(11MHz)=1.90V, Vpk-pk(11MHz)=1.82V )

 

I apologize for the lack of correctness on the units in yesterday's elog entry, but I wasn't very sharp last night.

I repeated the measurement today, this time also making sure that I had a 50ohm input impedance set in the scope. These the results for the losses.

RG-174 Cable 0.053 dB/m @ 11MHz  0.155 dB/m @ 55 MHz

 I also measured the losses in the Heliax cable going from the 166 MHz LO to the LSC rack:

166MHz LO Heliax 0.378 dB @ 11MHz  1.084 dB @ 55 MHz

 

  2398   Fri Dec 11 14:12:32 2009 ranaConfigurationLSC166 LO Disconnected

 

 Seems like very strange cable loss numbers. The Heliax is lossier than the RG-174? I wonder how these compare with the specs in the cable catalog?

  2402   Fri Dec 11 19:51:13 2009 AlbertoConfigurationLSC166 LO Disconnected

Quote:

 

 Seems like very strange cable loss numbers. The Heliax is lossier than the RG-174? I wonder how these compare with the specs in the cable catalog?

In my last entry there was a typo for the measurement of the Heliax at 55 MHz. I corrected it. It was 1.084 dB instead of 1.084 dB/m.
For the Heliax I don't have the measurement of the loss per meter since I don't know the cable actual length.
 
Except for that, I checked the values I found on the Internet.
My measurements for the RG-174 seem comparable to the loss specified in the catalog (here): 6.6dB in 100ft @ 55 MHz, that is 0.22 dB/m, that compare with 0.155 dB/m that I measured.

I did the measurement on a 4.33 meter long cable with SMA connectors at the ends.

  2485   Fri Jan 8 10:03:04 2010 AlbertoOmnistructureLSCSPOB shutter was closed

This morning I found that there was no light on the SPOB PD. I went looking at the photodetector and I found that the shutter in front of it was closed.

I switched the shutter driver from n.c. to n.o. which had the effect of opening it.

I guess we inadvertently closed the shutter with Rana when last week we were tinkering with the ITMY  camera.

  2491   Sat Jan 9 09:47:03 2010 AlbertoUpdateLSCProblems trying to lock the arms

This morning I've been having problems in trying to lock the X arm.

The X arm's filter FM6 in the LSC screen starts blinking as it was halfloaded. Then the transmitted power drops from 1 to ~0.5 and eventually the arm loses lock.
To me it looked like a computer related issue. So I decide to reboot C1ISCEX by powercycling it.

That doesn't seem to have solved the problem. The X arm can get locked but TRX slowly moves between 0.2 and 1.

  2492   Sat Jan 9 11:07:30 2010 AlbertoUpdateLSCProblems trying to lock the arms

Quote:

This morning I've been having problems in trying to lock the X arm.

The X arm's filter FM6 in the LSC screen starts blinking as it was halfloaded. Then the transmitted power drops from 1 to ~0.5 and eventually the arm loses lock.
To me it looked like a computer related issue. So I decide to reboot C1ISCEX by powercycling it.

That doesn't seem to have solved the problem. The X arm can get locked but TRX slowly moves between 0.2 and 1.

The X arm is now locked with TRX stable at ~1.

I think earlier on today I was having problems with running the alignment scripts from op540. Now I'm controlling the IFO from Rosalba and I can easily and stably lock all degrees of freedom.

I needed the X arm to be locked to align the auxiliary beam of the AbsL experiment to the IFO. To further stabilize TRX I increased the loop gain from 1 to 1.5.

Now the auxiliary beam is well aligned to the IFO and the beat is going through the PRC. I'm finally ready to scan the recycling cavity.

I also changed the gain of the PRC loop from -0.1 to -0.5.

ELOG V3.1.3-