40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 282 of 348  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  3217   Wed Jul 14 12:12:03 2010 RazibSummaryPhase CameraWeekly update

This week I was mainly interested in investigating the noise source at the phase camera. So having this issue in mind, my activities are the following:

1. I worked on producing multiple beat signal (1Hz and 5Hz). Elog entry.

2. I altered the setup so that instead of triggering the camera from the signal generator, we are now triggering it from the beat signal from the reference beam and sideband.

3. I made the nice little aluminium table for all the amplifiers, mixer and splitters to sit at one place instead of floating around.

4. I talked with Aidan and Joe and verified my calculation and extended it to further investigation of the noise source in the setup.


Plan for the upcoming week:

1. Measure and calibrate the camera w.r.t the power incident on it.

2. Investigate the noise source.

  3221   Wed Jul 14 18:09:50 2010 josephb, razibUpdatePhase CameraSome cleanup behind 1Y2 rack of phasecamera electronics

We made an attempt at cleaning up the phase camera setup electronics.

We have moved a portion of the electronics onto the SP table (specifically the mixer, splitters, amplifiers, and associated power).  We put away a large number of cables which were unneeded, both BNC and power cables. The Innolight Mephisto power supply and one signal generator are still behind 1Y2 on top of a non-functioning VME crate.  The second VME crate was put along the south arm where two other VME crates already were.  We placed a fair number of BNC cables and power cords back on their cable racks or approriate storage space, so the rats nests of cables has been reduced.

We moved one power strip from plugging in beyind 1Y1, to the far side of the SP table (closer to the 1Y3 rack), and also found and plugged in another power strip (also on the far side of the SP table) and placed this underneath the SP table to be able to power the signal generator and Innolight Mephisto laser (its not plugged in currently, but we'd like to do so next week).


  3258   Wed Jul 21 12:20:58 2010 RazibUpdatePhase CameraWeekly update

This past week I have worked on the following:

1. Setting up the infrastructure to do noise analysis: We added a temporary channel on the DAQ to connect to the PD 55 which we are using to take the power measurement. Before that, I connected the PD55 to an oscilloscope and recorded the power.


The power at PD55 as measured using the oscilloscope = 600 µV.

Then I tried to calibrate the channel by sending up a signal from the function generator and measuring up the offset.. However, the channels seems noisy enough, especially due to electronics noise as suggested by the measurements and FFT calculation.

2. I worked on trying to sync the data acquisition of the PD and the CAM. After sometime spent on fiddling with the software method such as taking images at stamped time and then lining them up with the daq timestamps, I found a hardware method as suggested by Aidan. It was putting up a shutter (Uniblitz shutter and driver VMMD1) in the setup. I synced the shutter with the camera for which I had to tear apart the previously made trigger box and add a sync output from the camera (took a while as I also had to make a new cable).

3. I worked (still working) on making a differential amplifier to blow up the signal from the PD.




  3309   Wed Jul 28 13:06:47 2010 RazibUpdatePhase Camera 

Attached are some calculation that I did previously for the phasecamera setup. This shows the nature of the beat signal that we are measuring.

I am also trying to characterize the noise source of the camera also. Following images shows the mean dark noise (with no light on the camera) and the standard deviation for 100 snaps at an exposure time of 500 µs.


My target now is to measure the response gain of each pixel and how they vary over intensity. I already have a simplified setup on the table and will work on it today. Details will follow at the end of the day.

Attachment 3: phase_cam_calc.pdf
phase_cam_calc.pdf phase_cam_calc.pdf phase_cam_calc.pdf
  3360   Wed Aug 4 16:52:59 2010 Razib, AidanUpdatePhase CameraSideband power measurement (updated)

Aidan and I made some attempt to measure the power of the sidebands so that we can calculate our expected signal strength.

Our setup looks like the following:



As light from the laser is split into two at BS1, the transmitted beam has higher power as our BS1 is only coated for 1064nm. We get two reflected beams from BS1, one reflected of the front surface and the other from the back surface. We took the stronger back reflected beam to the EOM driven at 40 MHz (also at 25 MHz at  a later time). The AOM produced a reference beam with 40 .000 005 MHz offset which we recombined with the sidebands obtained from the EOM. The beat produced is sent off to PDA 10CF connected to 4395A spectrum analyzer.

The plots for 40MHz sidebands and 25 MHz sidebands looks like this:


From the above spectra, at 40 MHz sideband regime:

Power of the carrier @ 40 MHz = -39.72 dBm

Power of the sideband @ 80 MHz = -60.39 dBm




At 25 MHz sideband regime,

Power of the carrier @ 40 MHz = -40.22 dBm

Power of the upper sideband @ 65 MHz = -61.72 dBm

Power of the lower sideband @ 15 MHz = -60.99 dBm


Power Measurement:

We made some necessary power measurement using a PD connected to a voltmeter after the EOM and the AOM when the EOM is driven at 40 MHz:


Dark :  0.025 V

AOM on: 4.10 V    (EOM blocked)

EOM : 2.425 V      (AOM blocked)


 From the earlier calculation (ref: Elog entry July 28) the power that we expect to see at the PD is,

P= A_c ^2 + A_r^2 + A_(-sb)^2+ A_sb ^2 +2* A_r* A_sb * cos ( w_(r,sb) t ) ,                         where A_c= carrier;   A_r= reference beam;     A_sb=Upper sideband;    A_(-sb)= Lower sideband,     w_(r,sb) = w_r - w_sb

P = A_c ^2 + A_r^2 + A_(-sb)^2+ A_sb ^2 +2* A_r* A_sb  , letting cos (w_(r,sb) go to 1) is order to approximate the maximum signal

So the signal that we expect to see relative to the DC ( i.e    A_c ^2 + A_r^2 + A_(-sb)^2+ A_sb ^2,    the first four terms of the power equation) is,

Sig = 2* A_r* A_sb    / { A_c ^2 + A_r^2 + A_(-sb)^2+ A_sb ^2 },

Since the modulation index is small, the power in the sideband is very small compared to carrier and the reference beam. So we can ignore the sideband power for the signal expression.


Sig = 2* A_r* A_sb  /  ( A_c ^2 + A_r^2 )

So if we want to maximize this signal w.r.t the reference then,

d (sig)/ d(A_r) = 2 { ( A_c ^2  - A_r^2) *A_sb } / {( A_c^2 + A_r^2)} ^2

Thus, the signal is maximized when,

A_r^2 = A_c^2


We adjusted the AOM to be driven at + 7.7 dBM so that the new power at the AOM matched the EOM power, which is 2.397 in the voltmeter.

So the power at both the AOM and the EOM are:

P_AOM = ( V_AOM - V_dark) / (PD responsitivity * Transimpedance gain)

               = ( 2.397 - 0.025 ) / ( 0.45  * 1.5 x 10 ^5 )

               = 3.51 x 10 ^ - 5  W

P_EOM = (V_EOM - V _dark) / (PD responsitivity * Transimpedance gain)

               = ( 2. 425 - .0.025) / ( 0.45 * 1.5 x 10 ^5 )

               = 3.55 x 10^ - 5  W


From the spectra of the 40 MHz sideband above, the ratio of the carrier and the sideband amplitude is:  A_c / A_sb = 10.8 .

P_EOM = A_c ^2 + 2 A_sb ^2

Therefore, A_sb = sqrt ( P_EOM / 118.64) = 5.47 x 10^ - 4   V/m

Thus,     A_c = 5.908 x 10^ -3   V/m

and    A_r = sqrt ( P_AOM) = 5.92 x 10 -3    V/m.


This measurement can be used to calculate the signal to contrast ratio (SCR) that we expect to see:

SCR = 2 A_r * A_sb  / ( A_c^2  + A_r^2 )  = 0.09


Our next step is to measure the actual signal to constrast ratio as seen by the camera. Details of that will be posted soon.

  3411   Thu Aug 12 16:52:02 2010 RazibUpdatePhase CameraSideband power measurement (updated)

I made some measurement of the SCR (signal to contrast ratio) from the signal from the EOM and the AOM.

The recipe for that was:

1. Trigger the camera at 20 Hz (from function generator).

2. Take a series of 20 images.

3. Do FFT to take out the DC component.

4. Extract the beat signal out of the FFT'd data.

5. Block the EOM.

6. Take another set of images of the AOM beam.

7. Take more(!) images, but this time of the background (blocking both EOM and AOM).


So the SCR is calculated by the ratio of the FFT'd DC and the 5 Hz signal. Using the CCD, I obtained the SCR to be 0.075 ± 0.01. Previously, we expected our SCR to be 0.09 as in the previous e-log entry.

The plot for that is:


 After measuring the SCR, I also measured the amplitude of the sideband and made an amplitude profile of the 40 MHz sideband.

The amplitude measurement is done as follows:

We know that the our 5 Hz signal consists of,

Sig = A_r * A_sb    where A_r = amplitude of the reference beam, A_sb= amplitude of the sideband

So, A_sb = Sig / A_r .

But,  A_r = sqrt ( P_AOM - Background),

Thus  A_sb = Sig / sqrt( P_AOM - Background) .

So the amplitude profile is done by taking the 5 Hz beat signal and dividing by the square root of the AOM beam minus the background light.

The plots looks like this:


The solo sideband profile looks like this:


Next we plan to trigger the camera with a 1 KHz signal and take snaps at n* T/4 (where n=0,1,2,3) of the period of the beat signal. So the plan is to trigger the camera at the point where the red dots appear in following cartoon.


Some more details of this setup will be posted later.




Attachment 4: sine_trig.jpg
  3412   Thu Aug 12 17:10:07 2010 KojiUpdatePhase CameraSideband power measurement (updated)

This sounds very relieving although this could be a lower bound of the number.
Why didn't you use the output on the PD which just give us the direct observation of your so-called SCR.

Ed: I meant time series of the PD output


So the SCR is calculated by the ratio of the FFT'd DC and the 5 Hz signal. Using the CCD, I obtained the SCR to be 0.075 ± 0.01. Previously, we expected our SCR to be 0.09 as in the previous e-log entry. 


  3413   Thu Aug 12 17:28:28 2010 RazibUpdatePhase CameraSideband power measurement (updated)


This sounds very relieving although this could be a lower bound of the number.
Why didn't you use the output on the PD which just give us the direct observation of your so-called SCR.


So the SCR is calculated by the ratio of the FFT'd DC and the 5 Hz signal. Using the CCD, I obtained the SCR to be 0.075 ± 0.01. Previously, we expected our SCR to be 0.09 as in the previous e-log entry. 


 The SCR was at first measured using the output of the PD. That was exactly from where we got our 0.09 (previous elog entry). The second measurement was from the CCD.

  50   Thu Nov 1 19:53:02 2007 Andrey RodionovBureaucracyPhotosTobin's picture
Attachment 1: DSC_0053.JPG
  51   Thu Nov 1 19:53:34 2007 Andrey RodionovBureaucracyPhotosRobert's photo
Attachment 1: DSC_0068.JPG
  52   Thu Nov 1 19:54:22 2007 Andrey RodionovBureaucracyPhotosRana's photo
Attachment 1: DSC_0120.JPG
  53   Thu Nov 1 19:55:03 2007 Andrey RodionovBureaucracyPhotosAndrey's photo
Attachment 1: DSC_0055.JPG
  54   Thu Nov 1 19:55:59 2007 Andrey RodionovBureaucracyPhotosAndrey, Tobin, Robert - photo
Attachment 1: DSC_0092.JPG
  55   Thu Nov 1 19:58:07 2007 Andrey RodionovBureaucracyPhotosSteve and Tobin's picture
Attachment 1: DSC_0023.JPG
  56   Thu Nov 1 20:03:00 2007 Andrey RodionovSummaryPhotosProcedure "Drop and Drag" in pictures
Attachment 1: DSC_0072.JPG
Attachment 2: DSC_0083.JPG
Attachment 3: DSC_0099.JPG
Attachment 4: DSC_0100.JPG
  210   Fri Dec 21 20:32:25 2007 tobinUpdatePhotosGigE camera
I couldn't resist any longer: I plugged in the Prosilica GC 750 GigE camera and took it for a spin. This is the little CMOS camera which sends out video over gigabit ethernet.

There were no difficulties at all in getting it running. I just plugged in the power, plugged in ethernet, and put on a lens from Steve's collection. I downloaded the "Sample Viewer" from the Prosilica website and it worked immediately.

It turns out that "Kirk's" computer has not only a gigabit ethernet card, but a little gigabit ethernet switch. I plugged the camera into this switch. The frame rate is amazing. With the camera under fluorescent lights I thought I saw some wacky automatic gain control, but I think this ~10Hz flicker is aliasing of the 60 Hz room lighting.

I put the camera on the PSL table briefly and tried viewing the image from a laptop over the (54mbs) wireless network. This didn't work so well: you could get a couple frames out of the camera, but then the client software would complain that it had lost communications. It appeared that scattered 1064nm light did show up brightly on the camera image. There is a green ethernet cable currently stashed on the roof of the PSL that appears unused. We can try mounting the gigE CMOS cable in place of one of the CCD video cameras.

I did not try the Linux software.

The camera is currently set up at Kirk's desk, using the cool little tripod Rana got from CyberGuys.

This camera looks very promising! Also, in the test image attached below, a very unusual condition has been documented.
Attachment 1: robs_desk.png
  243   Wed Jan 16 19:57:49 2008 tobinConfigurationPhotosISCT_EX
Here's a photo of the ISCT_EX table, for the purpose of planning our auxiliary laser arm locking scheme. Note the (undumped!) beam from the beamsplitter before QPDX (the leftmost gold-colored box); perhaps we could inject there.
Attachment 1: trx-annotated-small.jpg
  413   Thu Apr 3 19:27:50 2008 AndreySummaryPhotosTour for prospective grad students
Last Friday (March 28), there was a tour of 40-meter lab for prospective graduate students.

Rana showed to the prospective students the interferometer. See pdf-attachment with pictures (two pictures of Rana with undergraduates (I took them) and two old pictures which I discovered on the memory card of Nikon d-40, it was not me who took those two last pictures).
Attachment 1: Rana_Lecturing.pdf
Rana_Lecturing.pdf Rana_Lecturing.pdf Rana_Lecturing.pdf Rana_Lecturing.pdf
  505   Thu May 29 16:49:49 2008 steveBureaucracyPhotosYoichi has arrived
Yoichi had his first 40m meeting. We welcomed him and Tobin, who is visiting, by sugar napoleons that
Bob made.
Attachment 1: yoichi.png
Attachment 2: bobsn.png
  549   Fri Jun 20 08:30:27 2008 stivUpdatePhotos40m summer line up 2008
atm1: John, Alberto, Yoichi, Koji, Masha, and Sharon

atm2: surf students Max of CIT, Sharon of MIT, Masha of Harvard, Eric of CIT not shown
Attachment 1: P1020559.png
Attachment 2: P1020560.png
  652   Wed Jul 9 15:04:22 2008 steveMetaphysicsPhotosSURFs helping hands
Surf students are helping out with baffle cleaning.
Attachment 1: surfjob.png
  792   Mon Aug 4 16:20:20 2008 DmassConfigurationPhotosITMX magnet position relative to OSEMS
We have vented, and taken the following pics of the magnets to document their position before we ruin everything.
Attachment 1: DSC_0151.JPG
Attachment 2: DSC_0150.JPG
  819   Sun Aug 10 16:57:02 2008 ranaSummaryPhotosPhotos from Vent 8/4 - 8/8

I've added the D40 pictures from last week to this web page. I have done some cropping and
rotating to make things look better.

On page 3, there are some over head shots of the Michelson area so that one can use screw holes
to judge what the spacing between the suspensions is and also possibly the cavity lengths. Lets
also remember to measure the ITM-BS distance accurately using a tape measure or ruler while we
have the thing open.
  1094   Mon Oct 27 11:23:10 2008 steveUpdatePhotosnew Olympus camera with IR vision
The IR blocker was removed from our new Olympus camera
SP 570UZ camera.
It has image stabilization, zoom 26-520 mm (20x optical)
and 10.7 Mpixel
Attachment 1: IRisin.JPG
  1717   Tue Jul 7 15:08:49 2009 KojiSummaryPhotos40 high school students visited 40M

Alan and Alberto conducted a tour of 40 high-school students.
It may be the same tour that Rana found a spare PMC during the tour explanation as far as I remember...

Attachment 1: IMG_1848.jpg
  1931   Thu Aug 20 09:16:32 2009 steveHowToPhotosControl Room Workstation desks lowered to human height


There were no injuries...Now we need to get some new chairs.

 The control room desk tops heights on the east side were lowered by 127 mm


Attachment 1: P1040788.png
Attachment 2: P1040782.png
Attachment 3: P1040786.png
Attachment 4: P1040789.png
Attachment 5: P1040785.png
  1998   Thu Sep 24 19:35:20 2009 ranaHowToPhotos40m Google account

I've created a 40m Google account. Please post all the 40m related photos to this site. If you don't already have it, download Picasa to make this easier.

40m Installation Photos">

the password is in the usual password place.

  2242   Wed Nov 11 18:43:57 2009 rana, kojiHowToPhotosIlluminated Paintbrush Technique


1/4" exposure, standard room lights                                                                              3" exposure, slowly moving LED bar light from ~60 cm distance

Because of the light behind, the focus was attracted by the far objects...
Evenso the magnet ball looks better in the right picture.

The technique is as follows:
Use longer exposure time, move the LED bar illumination through the area like painting the light everywhere.
It is supposed to provide a picture with more uniform light and the diminished shadow.


  2465   Tue Dec 29 13:57:20 2009 Rana, Kiwamu, and HaixingUpdatePhotosPhotos of video switch box

Before we installed the video switch box, we also took some photos of it. We uploaded them onto the 40m Picasa.

Video Matrix

The first photo is the an entire view of the switch box. The following four photos are the details of the switch matrix.

 The slideshow below is a dump of the last several months of photos from the Olympus. The originals have been deleted.

  2956   Thu May 20 12:10:44 2010 kiwamuUpdatePhotosETMY end table

 I updated the photo of ETMY end table on the wiki.


Attachment 1: ETMY_s.png
  3093   Mon Jun 21 14:21:34 2010 Jenne, KiwamuUpdatePhotosInspection of Magnets for the TTs

Some pictures of "magnet inspection" from Picasa.

The coating of some magnets are chipped...

  3095   Mon Jun 21 20:11:21 2010 KojiUpdatePhotosInspection of Magnets for the TTs

Were these magnets chipped before the Ni plating?

RA: Yes, it looks like this is the case. We also smashed some of the magnets against a metal surface and saw that a black grime was left. We should hold the magnets with a clean teflon clamp to measure the Gauss. Then we have to wipe the magnets before installing. I share Jenne's concern about the press-fit damaging the plating and so we need to consider using using glue or the ole magnetic attachment method. We should not rely on the structural integrity of the magnets at all.

  3105   Wed Jun 23 12:52:35 2010 kiwamuUpdatePhotosBS chamber before cleaning up

  3421   Fri Aug 13 15:29:35 2010 AidanFrogsPhotosHere's the 40m team
Attachment 1: 40m_team.JPG
  3424   Mon Aug 16 13:33:06 2010 ZachFrogsPhotosHere's the 40m team

 One day I'll get to be part of the krew

  3682   Fri Oct 8 17:36:16 2010 steveFrogsPhotosvisiting undergrads

Prof Alan Weistein guided the 24 student through the 40m. His performance was rated as  an enthusiastic 9.5

Attachment 1: P1060916.JPG
Attachment 2: P1060921.JPG
Attachment 3: P1060922.JPG
Attachment 4: P1060915.JPG
  3683   Sun Oct 10 16:44:59 2010 KojiOmnistructurePhotosKepco Tube HV supply
Attachment 1: IMG_3637.jpg
Attachment 2: IMG_3640.jpg
  3987   Fri Nov 26 16:37:29 2010 kiwamuUpdatePhotospictures on PIcasa

 I uploaded some pictures taken in the last and this week. They are on the Picasa web albums.

 in vac work [Nov. 18 2010]

 in vac work [Nov 23 2010]

 CDS work [Nov 24 2010]


  4257   Mon Feb 7 19:21:32 2011 Beard PapaMetaphysicsPhotosThe Adventures of Dr Stochino and Beard Papa

  4430   Wed Mar 23 09:54:46 2011 steveOmnistructurePhotosLSC visitors

The 40m lab was visited by  ~ 30 LSC members  the end of last week.

Attachment 1: P1070467.JPG
Attachment 2: P1000414.jpg
  4447   Mon Mar 28 16:19:23 2011 steveFrogsPhotosvisithing 5th graders

Suresh is captivating his audience with gravity waves on last Friday, March 25

Attachment 1: P1070475.JPG
  4597   Mon May 2 13:43:05 2011 steveFrogsPhotosbirthday boys

.....Happy.... Birthday.... to.... Joseph... and... Jamie...Happy....Birthday..... to.... You............sing with us........Happy Birthday.....to you

Attachment 1: P1070622.JPG
  4615   Tue May 3 15:59:22 2011 steveFrogsPhotosX-mas comes early

The little red all terrain cargo wagon 40" x 18"  has just arrived on pneumatic wheels.

Model #29, 200 lbs max load at 26 PSI,  minimum age requirement 1.5 years

Attachment 1: P1070634.JPG
  4722   Sun May 15 19:55:15 2011 kiwamuUpdatePhotosETMY optical bench

Just for a record. This is the latest picture of the ETMY optical bench.

I will upload this picture on the wiki after the wiki gets up.


  4723   Sun May 15 21:27:51 2011 JenneUpdatePhotosETMY optical bench

I didn't notice it the other day when I was working on putting in the trans QPD, but do we need to switch the mirror mount for the first turning mirror of the IR trans beam, which the green transmits through to go into the cavity?  It seems like we've set ourselves up for potential clipping.


Just for a record. This is the latest picture of the ETMY optical bench.

I will upload this picture on the wiki after the wiki gets up.



  4724   Mon May 16 10:05:02 2011 kiwamuUpdatePhotosRe:ETMY optical bench

You are right. We should change or rotate the mirror mount.

Actually when Suresh and I were putting the mirror we rotated the mount  by 90 deg such that the fat side of the mount is at left had side.

It was because the fat side had been clipping the oplev beam when the fat side is at right.

At that moment we were blocking the green beam to only see the faint IR beam with a sensor card, so we haven't checked the green beam.

Anyway the mount is apparently not good for the green beam.

Quote from #4723

I didn't notice it the other day when I was working on putting in the trans QPD, but do we need to switch the mirror mount for the first turning mirror of the IR trans beam, which the green transmits through to go into the cavity?  It seems like we've set ourselves up for potential clipping.


  4814   Tue Jun 14 09:24:36 2011 steveConfigurationPhotosSUS binary IO chassis 2 and 3 moved from 1X5 to 1X4


While preping 1X4 for installation of c1lsc, we removed some old VME crates that were no longer in use.  This freed up lots of space in 1X4.  We then moved the SUS binary IO chassis 2 and 3, which plug into the 1X4 cross-connect, from 1X5 into the newly freed space in 1X4.  This makes the cable run from these modules to the cross connect much cleaner.

 Are we keeping these?

Attachment 1: P1070891.JPG
Attachment 2: P1070893.JPG
  4891   Mon Jun 27 16:57:06 2011 steveUpdatePhotosHaixing is back

He has moved the levitation stuff for his surf student to Jan's lab in W-Bridge.

Attachment 1: P1070914.JPG
  5329   Wed Aug 31 14:50:18 2011 kiwamuUpdatePhotospictures of OSEMs

The pictures that we took are now on the Picasa web site. Check it out.

Quote from #5280

Also, we took photos (to be posted on Picasa in a day or two) of all the main IFO magnet-in-OSEM centering, as best we could.  SRM, BS, PRM all caused trouble, due to their tight optical layouts.  We got what we could.

  5792   Wed Nov 2 22:02:39 2011 JenneUpdatePhotosNew screen snapshot script written!

After lots of trial and error, and a little inspiration from Koji, I have written a new script that will run when you select "update snapshot" in the yellow ! button on any MEDM screen. 

Right now, it's only live for the OAF_OVERVIEW screen.  View snapshot and view prev snapshot also work. 

Next on the list is to make a script that will create the yellow buttons for each screen, so I don't have to type millions of things in by hand.

The script lives in:  /cvs/cds/rtcds/caltech/c1/scripts/MEDMsnapshots, and it's called....wait for it....... "updatesnap".


ELOG V3.1.3-