ID |
Date |
Author |
Type |
Category |
Subject |
1148
|
Wed Nov 19 18:12:35 2008 |
rana | Configuration | IOO | new channel for MC drum modes |
I set up the lockin to take the MC Demod Board's Qmon signal, demodulate it at 27.5 kHz, and
put the output into a DAQ channel (I think its either MC_DRUM1 or MC1_TEMPS). However,
the MC_DRUM channel doesn't look like its getting anything in the DTT although it looked fine
on a scope. I used the 'sensitivity' setting of the lockin to make the demodulated signal
large enough but not so large that it would saturate the ADC (+/- 2V). |
1158
|
Sat Nov 22 10:55:51 2008 |
Caryn | Configuration | IOO | Drum modes Lock-In settings changed |
I unhooked the MC Demod Board's Qmon signal from the Lock-In. Set the demodulation frequency to 31.11Hz with 1V amplitude, and
put the output into MC_DRUM1. DTT showed a ~30Hz peak. Dataviewer showed signal with amplitude ~20,000.
Otherwise the settings were as Rana had them: Time Constant-100us,24dB/Sensitivity-200us/Low Noise
Want to check if Lock-In frequency drifts. |
1176
|
Thu Dec 4 17:42:23 2008 |
caryn | Update | IOO | drum modes observable without excitation |
So, the mode cleaner was evidently aligned better and now the drum modes are observable using DTT.
The Lock-In was set to 27.8kHz and the drum mode frequencies were previously observed to be 28.039kHz(MC2), 28.222kHz(MC3) and 28.221kHz(MC1). So, we might expect peaks at ~239Hz,421Hz,422Hz.
Peaks have been observed around the expected frequencies in channel IOO-MC-DRUM1.
Note that it is possible to resolve the separate MC1 and MC3 peaks which are so close together.
(sorry these are pdf's and not png's) |
Attachment 1: drum_modes.pdf
|
|
Attachment 2: drum_modes2.pdf
|
|
1179
|
Fri Dec 5 09:29:59 2008 |
rana | Update | IOO | drum modes observable without excitation |
Not sure what the y-scale is since there aren't any y axis labels in the plot, but it seems like we
now get an SNR of a ~few with a BW of 0.1 Hz. IN principle, the frequency noise out of the PSL ought
to be limited by the VCO phase noise at these frequencies (sort of) so the broadband MC_F level
is very roughly equal to 20-100 mHz/rHz.
Since dnu = dL*(c/lambda)/L_MC, the thermal peaks have a height of ~10^-15 m_RMS. We (Caryn) should check
that these numbers are true and then see if this is the correct amount of energy for thermally excited
mirror modes. |
1180
|
Fri Dec 5 14:13:41 2008 |
rana | Summary | IOO | MC trend for the last 4 days |
The MC has stayed locked for ~3 days! I just broke it to reset the MZ. |
Attachment 1: g.png
|
|
1182
|
Fri Dec 5 21:31:11 2008 |
Yoichi | Update | IOO | drum modes observable without excitation |
The calibration of the MC_F feedback is posted in elog:1032.
I'm not sure where Caryn took MC signal, but if you take the signal from the servo out BNC on the MC board, it
directly corresponds to the voltage sent to the FSS VCO.
The DC calibration of the VCO is 1.75MHz/V. Since the AOM is the double-pass, the PSL frequency
change is 3.5MHz/V. At frequencies above 40Hz, the VCO calibration drops by a factor of 39/1000,
because of the pole/zero at 1.6Hz/40Hz in the VCO box.
So at the frequencies of interest (around 30kHz), the servo out voltage can be converted to the PSL frequency
change by 0.137MHz/V.
Since 30kHz is still within the bandwidth of the MC servo, the feedback signal should correspond to the actual
length change of the MC. So the above calibration factor can be used to calibrate Caryn's measurement and check
what Rana suggested. |
1196
|
Fri Dec 19 14:35:58 2008 |
Yoichi Alberto | Update | IOO | MC WFS and IOO-POS QPD re-centering |
For the past two days, the MC alignment has kept drifting.
This morning, the MC alignment was so bad that it wouldn't lock to the TEM00 mode.
We aligned the MC mirrors manually until the reflection looks like a nice bull's-eye (the WFSs were off at this moment).
Then we un-locked the MC and centered the beams on the WFS QPDs.
Since the QPDs were saturated with the full laser power falling on them, I reduced the PSL power by turning the HWP after the MOPA.
After this, we turned on the WFSs and everything looks normal now.
We will see the trend of the MC related channels to monitor the drift.
Although unlikely, it might be caused by the drift of the input beam to the MC.
We found that the IOO-POS QPD was mis-centered and saturating.
We replaced the BS picking up the beam for the QPD from 33% reflection to 10% one. The QPD was still saturated.
So we put the 33% BS in the beam path to the QPD to further reduce the power. The beam kicked by the 33% BS
is dumped to a black aluminum plate. We should use a better beam dump later.
Now the IOO-POS QPD should tell us some information about the beam pointing of the PSL, though it has no sensitivity
to the relative motion of the PSL table to the vacuum chambers. |
1229
|
Thu Jan 15 09:19:32 2009 |
steve | Update | IOO | MC locking |
MC2 sus damping was found tripped at the morning the second time this week.
Damping was restored, ISS gain lowered to avoid saturation, MZ manually locked
and MC locking was back. |
1236
|
Fri Jan 16 18:45:20 2009 |
Yoichi | Configuration | IOO | MC_L gain increased by a factor of 2 |
Rana, Yoichi
Since we fixed the FSS AOM double-pass, which used to be a single-pass, the MC_L gain was too low for
making the cross-over at 100Hz.
Rana increased it by a factor of two. Now it seems that the cross over is ok (attachment 1).
We also noticed that the MC_F spectrum is noisier than before (attachment 2).
The reference is from 6/24/2008. |
Attachment 1: MC_F-MC_L-xover.pdf
|
|
Attachment 2: MC_F.pdf
|
|
1300
|
Fri Feb 13 08:38:03 2009 |
steve | Update | IOO | MC2 damping restored |
|
1312
|
Mon Feb 16 20:47:48 2009 |
rana | Configuration | IOO | Mode Cleaner WFS Loop Gain change |
I found the MCWFS gain slider down at 0.012. In this state the UGFs are probably around 10-30 mHz
and so there is no reduction of seismic noise. It is mainly a DC alignment tool in this state.
We often have reduced the loop gain thusly, to prevent the dreaded "MCWFS eating CM loop gain" disease.
That disease is where there are CM loop instabilities at ~5-30 Hz because of loop cross-couplings
who's exact nature has never been understood (TBI).
Today, I implemented a 4th order, 7 Hz low pass (RLP7) into the loops and turned up the gain by a factor
of 30 to 0.3. In this state, the damping time constants seem to be ~0.5-2 seconds as shown in the first
PDF. I didn't have enough patience to do the interminable swept sine measurements down to 0.1 Hz.
The second PDF shows the Bode plot of the RLP7 filter compared to the pre-existing but unused ELP10.
The third PDF shows my estimate of the OLG TF. This is made by just putting a "Pendulum" filter into the
MCWFS bank and then plotting all the filters together using FOTON. The BLUE curve shows the old TF but
with the new high gain and the RED curve shows the new TF with the new gain.
With this new filter, I bet that we can get away with the higher WFS gain, but if there's any problem during the
handoff, the gain should be reverted to the low value.
In the 4th PDF file, I plot the spectra of 4 of MC2's control signals so that you can see what is bigger than what.
ASCPIT is the one that has the feedback from the WFS's in it. These are all just in units of counts and so to compare
them in some sort of displacement units you have to take into account the pitch moment of inertia, the mirror mass,
and the mis-centering of the beam from the center of rotation of MC2... |
Attachment 1: pmc-pzt-cal.pdf
|
|
Attachment 2: a.pdf
|
|
Attachment 3: olg.pdf
|
|
Attachment 4: mc2.pdf
|
|
1313
|
Mon Feb 16 21:49:06 2009 |
Kakeru, Rana | Update | IOO | WFS |
We centerd the input of WFS QPD. |
1322
|
Wed Feb 18 21:10:21 2009 |
rana | Update | IOO | MC Drumhead mode lost again |
In early December, Caryn and I noticed that the MC Drumhead mode was visible at the Qmon point of
the MC demod board using a spectrum analyzer and no external excitation of the MC mirrors. We then
started tracking the MC Drumhead modes.
Today I found that it is gone again. It also wasn't there when I looked for it in 2007. 
I looked at the MC error point spectrum and it seemed reasonable. Changing the gains in the MZ, ISS, PMC, & FSS
had no good effect on the noise spectrum.
The voltage noise above 10 kHz in the MC error point is increasing like ~f. I think that this means that
the leftover is the noise from the FSS. Below 10 kHz it is the noise of the VCO (10 mHz/rHz).
One possibility is that the high frequency noise changes with the mood of the NPRO. There should be no
frequency noise induced by the decay of the PA diode power. We can do an NPRO SLOW scan to see if there
is some kind of mode hop noise happening. |
1358
|
Thu Mar 5 00:06:32 2009 |
Kakeru, Rana | Update | IOO | WFS centering |
We found that the MC REFL image was no longer round and that the MCWFS DC quadrant spots were mostly
in one quadrant. So we re-centered the MCWFS beams in the following way:
1) We unlocked the MZ and adjusted the PZT voltage to keep the beam on the WFS from saturating.
2) Re-aligned the black hole beam dump to center its beam in its aperture.
3) centered the beam on the MCWFS optics and MCWFS QPD displays.
4) Relocked MC.
Below is the image of the IOO Strip tool. You can see that the MC REFL DC is now more flat. The
MC pointing has also been changed (see the MC TRANS HOR & VERT channels). The MC transmitted
light is also now more stable and higher.
We tried to center the QPD, and we found that there were a few hundred mV of dark offset for each
quadrant of QPD. We adjusted them with this scripts:
/cvs/cds/caltech/scripts/MC/WFS/McWFS_dc_offsets |
Attachment 1: IOO_graph.jpg
|
|
1363
|
Fri Mar 6 01:04:49 2009 |
Kiwamu IZUMI | Configuration | IOO | !! lock-in amp disconnected !! |
The power supply of a lock-in amp, which is on the Y-arm side of PSL clean room, was pulled out by my mistake.
Then I reconnected it, but I don't know whether it is re-adjusted properly.
I'm sorry about this. If you are using that amp, it should be checked. |
1383
|
Wed Mar 11 01:16:40 2009 |
rana | Summary | IOO | rogue trianglewave in the MC Servo offset slider |
On Monday evening, I ran this command: trianglewave C1:IOO-MC_REFL_OFFSET 0 4 120 600;ezcawrite C1:IOO-MC_REFL_OFFSET 1.76
which I thought (from the syntax help) would move that offset slider with a period of 120 seconds for 600 seconds. In actuality, the last argument is the
run time in number of periods. So the offset slider has been changing by 8 Vpp for most of the last day. Oops. The attached image shows what effect
this had in the MC transmitted power (not negligible). This would also make the locking pretty difficult.
In the second plot you can see the zoom in view for ~30 minutes. During the first part, the MCWFS are on and there are large fluctuations
in the transmitted power as the WFS offset changes. This implies that the large TEM00 carrier offset we induce with the slider couples into
the WFS signals because of imbalances in the quadrant gains - we need someone to balance the RF gains in the WFS quadrants by injecting
an AM laser signal and adjusting the digital gains.
Since there is still a modulation of the MC RFPD DC with the WFS on, we can use this to optimize the REFL OFFSET slider. The third plot
shows a 8 minute second trend of this. Looks like the slider offset of zero would be pretty good. |
Attachment 1: Untitled.png
|
|
Attachment 2: Untitled.png
|
|
Attachment 3: a.png
|
|
1386
|
Wed Mar 11 14:51:01 2009 |
Kakeru, Joe, Rob | Update | IOO | MC alignment |
This morning, MC alignment was gone and MC wasn't lock.
We checked old value of pitch, yaw, and position offset of each MC mirror, and found they were jumped.
We don't know the reason of this jump, but we restore each offset value and MC backed to lock. |
1389
|
Wed Mar 11 21:03:51 2009 |
Kakeru and Kiwamu | Update | IOO | PSL angle QPD |
Kakeru and Kiwamu
We placed a QPD on the PSL bench for PSL angle monitor.
Quote: |
I checked a broken QPD, which was placed for PSL angle monitor, and finally I cocluded one segment of the quadrant diode was broken.
The broken segment has a offset voltage of -0.7V after 1st I-V amplifier. It means the diode segment has a current offset without any injection of light.
Tomorrow I will check a new QPD for replacement.
Kiwamu IZUMI
|
As we mentioned before, old QPD which used to be placed is broken.
And we put broken QPD into the "photodiodes" box under the soldering table.
|
1391
|
Wed Mar 11 23:41:33 2009 |
Kakeru, Yoichi | Update | IOO | WFS centering |
We found the MC reflection was distorted . And WFC beam went to upward of QPD
We recentered WFC beam and these problems were fixed |
1394
|
Thu Mar 12 15:57:53 2009 |
Yoichi | Update | IOO | MC drift is terrible |
Yoichi, Osamu,
Last night's locking work was totally interrupted by the sabotage by the MC.
First, after I measured the RF_AM, the MC alignment was somehow shifted largely and the MC did not lock to TEM00 mode.
I only mis-aligned MC2 to measure the RF_AM, but the MC reflection beam was also shifted (looking at the WFS QPD), that means MC1 was mis-aligned somehow.
Moreover, even when the MC is not locked, i.e. no feedback to the mirrors, the OSEM values of the MC mirrors (all of them) drift a lot in 10min scale.
I was totally puzzled. So I rebooted c1iovme and c1sosvme. Then this strange drift of the OSEM values stopped.
Even though, the MC tended to lose lock within ten minutes because the WFS QPDs were not centered.
We did several iterations of re-centering and finally the MC started to stay locked happily. The MC reflection beam was symmetric.
Then this morning when I came in (to be honest, afternoon), the MC reflection looked asymmetric again. The WFS QPDs were mis-centered again.
The attached files show an 8-hour trend of various MC related signals.
There was a half-degree temperature change starting from around 11AM. Corresponding to that, the IOO-QPD signals drifted indicating that the PSL beam pointing
was shifted. The MZ PZT signal shows a similar trend, so the beam pointing may have been shifted by the MZ (not sure).
The MC WFS, transmission QPD signals show the same trend.
This is too bad.
Right now, the PSL beam pointing is monitored by the QPDs detecting the transmitted beam through the first mirror of the periscope.
This means even if we can track the beam pointing drift with the QPDs, we can't correct the beam pointing using the periscope mirrors.
I don't want to touch the MZ mirrors for this purpose.
I propose to put a pick-off mirror after the second mirror of the periscope to send light to the IOO-QPDs. This way, we can use the periscope
mirrors to restore the beam pointing screwed up by the MZ.
|
Attachment 1: MC_Drift-1.pdf
|
|
Attachment 2: MC_Drift-2.pdf
|
|
1396
|
Thu Mar 12 18:48:37 2009 |
Yoichi | Update | IOO | MC aligned but ... |
After the MZ alignment, I aligned the MC with the periscope mirrors.
It looked like the MC mis-alignment was mainly caused by the input beam change.
So I left the MC mirrors as they were to keep the output beam pointing.
However, after I finished the alignment, the MC output beam was too low on the Faraday.
Also the X-arm did not lock to TEM00 mode. So the MC mirrors must have also shifted to a weird alignment state.
I should have restored the MC mirror alignment to a good state using the OSEM DC signals.
Rana came in and restored the MC mirror alignment using the SUS drift mon.
He and Kakeru is now working on the periscope to align the beam into the MC. |
1397
|
Thu Mar 12 19:11:27 2009 |
rana | Update | IOO | MC drift is terrible |
Kakeru, Rana, Yoichi
We used the SUS DRIFT MON screen to set the MC biases such that the mirrors were returned to the old OSEM values.
To do this, we set the nominals and tolerances using the appropriate scripts in the mDV/extra/C1/ directory.
We then used the MC_ALIGN screen to set the angle bias sliders.
Then Kakeru and I went to the PSL table to the periscope magic and maximize the MC transmission. Kakeru seems to
have the careful Japanese alignment touch and I am hungry, so I am leaving him to optimize the power. After he
finishes he is going to align the beam to the WFS and turn the MC autolocker back on. The x-arm is locked on a
TEM00 mode so the MC alignment is maybe OK. |
1398
|
Thu Mar 12 20:59:04 2009 |
Kakeru | Update | IOO | MC drift is terrible |
After Rana went for his dinner, I aligned periscope to make the MC output 3.2 (Attachment 1).
After that, to align WFS, I unlocked the MC, unlocked the MZ and decrease the beam power to WFS QPD, and re-centerd WFC beam.
I restored MZ and MC lock.
I enabled MC autolocker, and change C1:IOO-WFS_Gain_Slider from 0 to 0.02 to lock WFS.
Quote: | Kakeru, Rana, Yoichi
We used the SUS DRIFT MON screen to set the MC biases such that the mirrors were returned to the old OSEM values.
To do this, we set the nominals and tolerances using the appropriate scripts in the mDV/extra/C1/ directory.
We then used the MC_ALIGN screen to set the angle bias sliders.
Then Kakeru and I went to the PSL table to the periscope magic and maximize the MC transmission. Kakeru seems to
have the careful Japanese alignment touch and I am hungry, so I am leaving him to optimize the power. After he
finishes he is going to align the beam to the WFS and turn the MC autolocker back on. The x-arm is locked on a
TEM00 mode so the MC alignment is maybe OK. |
|
Attachment 1: MCtrans090312.png
|
|
1405
|
Mon Mar 16 01:20:40 2009 |
rana | Configuration | IOO | MCWFS noise filtered on the SUS-MC |
Recently, we noticed that the IOO-WFS system runs at 2048 Hz and sends its signals to the MC SUS
systems which run at 16 kHz. There is no upsampling filter or anti-imaging filter.
So, I've implemented an RLP666 filter as FM1 in the SUS-MCn_ASC(PIT/YAW) filter banks. This is like a 4th order
Cheby low pass with a low Q notch at 2048 Hz to catch the first image.
The attached PNG shows the ASCPIT_OUT signals before and after the filter is implemented. As you can see, the
big aliased spikes are gone. The reason that MC2 is different from MC1/3 is that they have a hardware 28Hz low pass
and MC2 doesn't. So MC2 had a 28 Hz low pass in software already to match the actuation phase between all the MC
mirrors. The apparent power law noise floor from 40-300 Hz in MC2 is not real - just the Hanning window tail.
And yes, it has been this way for several years and none of us noticed. It remains to be seen if this was causing
any noise in the MC coil drivers via slew rate limiting. |
Attachment 1: xarm.png
|
|
1406
|
Mon Mar 16 12:26:59 2009 |
Yoichi | Configuration | IOO | MC1 drift |
There seems to be a large drift of MC1 even when there is no WFS feedback.
The attached plot is an example a 20min trend. You can see that MC1 OSEM signals drift significantly larger than that of MC2/MC3.
You can also be sure that there is no drifting voltage applied to the coils on the MC1 during this period.
If no one is working on the IFO today during the LV meeting, I'd like to leave the MC unlocked and see the trend of the MC1 OSEM signals.
Please do not turn on the MC auto locker unless you want to use the IFO.
If you want to do some measurements, please go ahead and lock the MC, but please write it down in the elog.
Thanks. |
Attachment 1: MC1_Drift1.pdf
|
|
1408
|
Tue Mar 17 08:44:37 2009 |
Yoichi | Configuration | IOO | MC1 drift |
I'm done with the MC1 drift measurement.
The result is attached. It is clear that MC1 is in trouble. The small drifts in the MC2/MC3 are insignificant compared to the crazy MC1 behavior.
Since there is no drift in the coil feedback voltage monitors, it is probably not a problem of the DACs.
We may be able to fix this by pushing the cables for the MC1 satellite amplifier. But it may require replacement of the coil driver.
Quote: | There seems to be a large drift of MC1 even when there is no WFS feedback.
The attached plot is an example a 20min trend. You can see that MC1 OSEM signals drift significantly larger than that of MC2/MC3.
You can also be sure that there is no drifting voltage applied to the coils on the MC1 during this period.
If no one is working on the IFO today during the LV meeting, I'd like to leave the MC unlocked and see the trend of the MC1 OSEM signals.
Please do not turn on the MC auto locker unless you want to use the IFO.
If you want to do some measurements, please go ahead and lock the MC, but please write it down in the elog.
Thanks. |
|
Attachment 1: MC1_Drift3.pdf
|
|
1409
|
Thu Mar 19 02:45:36 2009 |
Yoichi | Configuration | IOO | A loose wire found for MC1 |
I found a loose connection of a wire in the cross-connect between an ADC and the MC1 coil driver's UL bias input.
I tightened it.
To see if this fixes the MC1 drift problem, I will do another round of MC1 drift measurement.
You can lock the MC if you need to use the IFO but please note it in the elog.
Thanks. |
1410
|
Thu Mar 19 10:45:43 2009 |
Yoichi | Configuration | IOO | A loose wire found for MC1 |
I attached a 6-hour trend of the MC mirror OSEM signals with the MC unlocked.
The drift of the MC1 is within 20 counts (0.6um in terms of each OSEM).
This is comparable to the other MC mirrors. |
Attachment 1: AfterWireFix-1.pdf
|
|
1425
|
Wed Mar 25 01:37:35 2009 |
rana, yoichi | Summary | IOO | No Reference Cavity Required |
We were wondering if we need to have a reference cavity. One possible reason to have one is to reduce the free running
frequency noise by some level so that the MC can handle it. According to my manifesto,
the free running noise of the laser is (10 kHz / f) Hz/rHz. The mode cleaner loop gain is sufficient to reduce this to
0.001 Hz/rHz everywhere below 1 kHz - radiation pressure noise and coating thermal noise limit the mode cleaner below
these levels.
So, since it seems like the reference cavity is superfluous (except for the 1 - 10 kHz band), we unlocked it and locked the
MC by feeding back directly to the laser.
In the old set up, the low frequency feedback is to MC2 and the high frequency to the VCO which actuates the FSS which
drives the NPRO PZT and the Pockel cell.
In this new way, we take the MC board's output to the VCO (the TNC monitor point) and send that to the TEST IN1 of the FSS
box. The FSS box then splits the drive to go to the PZT and the PC path. We also turned off the 40:4000 filter in the MC
board and inverted the sign of the MC FAST path.
Good settings for acquisition:
MC INPUT GAIN = 6 dB
40:4000 Disable
FAST polarity MINUS
VCO Gain -3 dB
MC LIMITER Disable
FSS TEST1 TEST
FSS CG -3 dB
FSS FG 13 dB
After our initial locking success, we realized that the new MC-FSS loop is conditionally stable: the old loop relied on
the 40 kHz refcav pole to make it stable. The new loop has a 4 kHz pole and so the phase lag in the MC-PZT path is too
much. We need to build a passive lead filter (40 kHz : 4 kHz) in a Pomona box to compensate.
There are several more issues:
- I think this will make the whole CM servo handoff easier: there is no more handoff.
- This will make the lock acquisition fringe velocity higher by a factor of the arm/mc length (40 m / 13 m) since
the frequency will be slewing around along with MC2 now. However, Jenne's FF system ought to take care of that.
- Having the laser frequency stabilized to the MC during lock acquisition will make all of the error signals quieter
immediately. This can only be good.
- If we can make this work here, it should translate to the sites directly since they have exactly the same electronics. |
1427
|
Wed Mar 25 09:55:45 2009 |
steve | Update | IOO | glitching sensors of MC |
SUS-MC1_SENSOR_SIDE and SUS-MC2_SENSOR_UL are glitching
Yesterday's 4.8mag earthquake at Salton Sea is shown on Channel 1 |
Attachment 1: glitchesofMC.jpg
|
|
1428
|
Wed Mar 25 17:22:58 2009 |
Yoichi | Update | IOO | MC lock without FSS |
I made 40k:4k passive filter in a POMONA box and connected it to IN1 (not TEST IN1) of the FSS box.
With this modification and cut-and-tries with the gain sliders, I was able to lock the MC with 80kHz bandwidth by feeding back directory to the laser frequency.
The attached figure shows the open loop transfer function.
The phase margin is thin at 80kHz. Because of this, I could not turn on the MC super boost filters.
But I believe that we can increase the gain further by modifying the filter shape.
I used the following settings:
[MC Board]
C1:IOO-MC_REFL_GAIN 14
C1:IOO-MC_REFL_OFFSET -4.2381
C1:IOO-MC_BOOST1 0 (You can turn it on if you want, but turn it off for locking)
C1:IOO-MC_BOOST2 0
C1:IOO-MC_POL 1 (Minus)
C1:IOO-MC_VCO_GAIN 4
C1:IOO-MC_LIMITER 1 (Disable)
[FSS box]
C1:PSL-FSS_SW1 0 (Test1 ON)
C1:PSL-FSS_INOFFSET 0.1467
C1:PSL-FSS_MGAIN 30
C1:PSL-FSS_FASTGAIN 14 (Do not increase it, at least while locking. Otherwise the phase lag from the PZT loop gets significant and the MC loop will be conditionally stable).
I also turned down the FSS slow servo's RC transmission threshold to zero so that the slow servo works even without the RC locked. |
Attachment 1: MC-loop-gain.png
|
|
1429
|
Wed Mar 25 20:41:43 2009 |
Jenne | Update | IOO | Mode Cleaner Servo Board Transfer Functions (to be updated) |
When all things fail (netgpibdata.py is giving me weird data. When I plot the data it has saved from the 4395A, it's some wierd other universe's version of my transfer function. I don't really know what's up. I'm pretty sure I'm getting the 'correct' data, since each TF looks vaguely like it should, but with some crazy humps. I'll talk to Yoichi in the morning about it maybe.) (also, we're low on emergeny floppy discs), you can always take a picture of the Agilent 4395's screen, as shown below.
* Mode cleaner and PMC are both relocked after my shenanigans, and I'll try again in the morning (I assume locking is going on tonight) to get real TF's with real data, as opposed to the photo method.
Note to self: post the data of the TFs in the elog along with the plots, for posterity.
These TFs are of the Mode Cleaner servo board, exciting IN1 (or the 3.7MHz notch pomona box which is connected to IN1), and measuring at the SERVO out of the board.
One with the box, one without the box, and one of just the box for good measure. |
Attachment 1: MCwithBoxsmall.JPG
|
|
Attachment 2: MCnoBoxsmall.JPG
|
|
Attachment 3: PomonaBoxforMCsmall.JPG
|
|
1430
|
Thu Mar 26 00:45:24 2009 |
Jenne | Update | IOO | Mode Cleaner Servo Board Transfer Functions (to be updated) |
Quote: |
netgpibdata.py is giving me weird data. When I plot the data it has saved from the 4395A, it's some wierd other universe's version of my transfer function. I don't really know what's up.
|
Yoichi, in all his infinite wisdom, reminded me that the netgpibdata script saves the data as the REAL and IMAGINARY parts, not the Mag and Phase. Brilliant. Using that nugget of information, here are the TFs that I measured earlier:
The last attachment is the .dat and .par files which contain the data and measurement parameters for the 3 TFs in the plots. |
Attachment 1: MCwithandwithoutfilter25Mar2009.png
|
|
Attachment 2: PomonaBoxMCfilter25Mar2009.png
|
|
Attachment 3: MCServoData25Mar2009.tar.gz
|
1432
|
Thu Mar 26 04:09:38 2009 |
Yoichi | Update | IOO | Single X arm lock spectra with different MC lock schemes |
The attached plots show MC_F, FSS_FAST_F and XARM IN/OUT spectra with different MC locking modes.
The conventional locking means the FSS is used. The direct frequency lock is the new way.
You can see that at low frequencies, the frequency actuator is working hard to suppress the MC pendulum motions.
The X-arm also sees a lot of frequency noise at low frequencies because of this.
The transmitted power of the X-arm fluctuates a lot making it difficult to align the mirrors.
The zoomed plots show that the structures in the kHz band are also present in the case of the direct frequency lock, although the frequencies are somewhat different. |
Attachment 1: XarmSpectra.pdf
|
|
Attachment 2: XarmSpectraZoom.pdf
|
|
1435
|
Fri Mar 27 02:40:06 2009 |
pete | Summary | IOO | MC glitch investigation |
Yoichi, Pete
The MC loses lock due to glitches in the MC1 coils.
We do not know which coil for sure, and we do not know if it is a problem going into the board, or a problem on the board.
We suspect either the UL or LR coil bias circuits (Pete would bet on UL). If you look at the bottom 4 plots in the attached file, you can see a relatively large 3 minute dip in the UL OSEM output, with a corresponding bump in the LR (and smaller dips in the other diagonal).
These bumps do not show up in the VMONS which is why we are suspicious of the bias.
To test we are monitoring 4 points in test channels, for UL and UR, both going into the bias driver circuit, and coming out of the current buffer before going into the coils.
We ran cable from the suspension rack to the IOO rack to record the signals with DAQ channels.
The test channels:
UL coil C1:IOO-MC_DRUM1 (Caryn was using, we will replace when we are done)
UL input C1:IOO-MC_TMP1 (Caryn was using, we will replace when we are done)
LR coil C1:PEM-OSA_SPTEMP
LR input C1:PEM-OSA_APTEMP
We will leave these overnight; we intend to remove them tomorrow or Monday.
We closed the PSL shutter and killed the MC autolocker. |
Attachment 1: MC1_Drift.png
|
|
1437
|
Fri Mar 27 15:05:42 2009 |
Yoichi | Update | IOO | MC glitch investigation |
Attached plots are the result of the MC1 trend measurement.
See the attachment #1. The first two plots show the drift of the MC1 alignment as seen by the OSEMs. It is terrible. Other MC mirrors also drifted but the scale is smaller than the MC1.
From the VMon channels, you can see that the control voltages were quiet.
The monitor channels we added were:
MC_TMP1 = UL coil bias. Input to the coil driver board.
MC_DRUM1 = UL coil bias. Output of the current buffer.
OSA_APTEMP = LR coil bias. Input to the coil driver board.
OSA_SPTEMP = LR coil bias. Output of the current buffer.
The bias voltages show no drift except for a glitch around 7AM. This glitch did not show up in the SPTEMP channel (LR coil bias output). This was because the probe was connected to the coil side of the output resistor by mistake.
The second attachment shows a zoomed plot of MC1 OSEM signals along with the bias monitor channels (signals were appropriately scaled so that they all fit in +/-1).
There is no correlation between the OSEM signals and the bias voltages.
Since we were only monitoring UL and LR coils, I changed the monitor points as follows.
MC_TMP1 = LL coil bias. Output of the current buffer.
MC_DRUM1 = UL coil bias. Output of the current buffer.
OSA_APTEMP = UR coil bias. Output of the current buffer.
OSA_SPTEMP = LR coil bias. Output of the current buffer.
I will leave the MC unlocked for a while.
Quote:
|
Yoichi, Pete
The MC loses lock due to glitches in the MC1 coils.
We do not know which coil for sure, and we do not know if it is a problem going into the board, or a problem on the board.
We suspect either the UL or LR coil bias circuits (Pete would bet on UL). If you look at the bottom 4 plots in the attached file, you can see a relatively large 3 minute dip in the UL OSEM output, with a corresponding bump in the LR (and smaller dips in the other diagonal).
These bumps do not show up in the VMONS which is why we are suspicious of the bias.
To test we are monitoring 4 points in test channels, for UL and UR, both going into the bias driver circuit, and coming out of the current buffer before going into the coils.
We ran cable from the suspension rack to the IOO rack to record the signals with DAQ channels.
The test channels:
UL coil C1:IOO-MC_DRUM1 (Caryn was using, we will replace when we are done)
UL input C1:IOO-MC_TMP1 (Caryn was using, we will replace when we are done)
LR coil C1:PEM-OSA_SPTEMP
LR input C1:PEM-OSA_APTEMP
We will leave these overnight; we intend to remove them tomorrow or Monday.
We closed the PSL shutter and killed the MC autolocker.
|
|
Attachment 1: MC1_Drift.pdf
|
|
Attachment 2: MC2_Drift.pdf
|
|
1438
|
Fri Mar 27 17:52:16 2009 |
Yoichi | Update | IOO | MC glitch investigation |
Per Rob's suggestion, I put the probes across the output resistors of the bias current buffers instead of measuring the output voltage with respect to the ground.
This way, we can measure the current flowing the resistor. The change was made around 17:30.
Quote: |
Attached plots are the result of the MC1 trend measurement.
See the attachment #1. The first two plots show the drift of the MC1 alignment as seen by the OSEMs. It is terrible. Other MC mirrors also drifted but the scale is smaller than the MC1.
From the VMon channels, you can see that the control voltages were quiet.
The monitor channels we added were:
MC_TMP1 = UL coil bias. Input to the coil driver board.
MC_DRUM1 = UL coil bias. Output of the current buffer.
OSA_APTEMP = LR coil bias. Input to the coil driver board.
OSA_SPTEMP = LR coil bias. Output of the current buffer.
The bias voltages show no drift except for a glitch around 7AM. This glitch did not show up in the SPTEMP channel (LR coil bias output). This was because the probe was connected to the coil side of the output resistor by mistake.
The second attachment shows a zoomed plot of MC1 OSEM signals along with the bias monitor channels (signals were appropriately scaled so that they all fit in +/-1).
There is no correlation between the OSEM signals and the bias voltages.
Since we were only monitoring UL and LR coils, I changed the monitor points as follows.
MC_TMP1 = LL coil bias. Output of the current buffer.
MC_DRUM1 = UL coil bias. Output of the current buffer.
OSA_APTEMP = UR coil bias. Output of the current buffer.
OSA_SPTEMP = LR coil bias. Output of the current buffer.
I will leave the MC unlocked for a while.
|
|
1443
|
Mon Mar 30 12:46:36 2009 |
Yoichi | Configuration | IOO | IOO QPDs were missing the beam |
When I re-locked the MC, I wanted to check the trend of the IOO QPDs to see if the input beam pointing has changed.
Then I found that the QPDs were not receiving light.
The attached trend plots show that the QPDs missed the beam on March 23rd.
The IOO-QPD_ANG was installed on Mar 11th by Kiwamu and Kakeru. Since then, they were serving as a reference of the PSL beam pointing.
But there is no record of the past week. This is very bad because then I cannot tell if I should relieve the MC WFS to make the mirrors follow the input beam or not.
I found that someone has moved the beam splitter which picks up the beam going to those QPDs. But there is no elog entry on this around March 23rd.
I re-centered the beam on the QPDs.
Since the X-arm locked to TEM00 with the MC WFS on (i.e. the MC beam axis is following the input beam axis), I guessed that the input beam has not drifted that much. So I relieved the WFS and centered the WFS QPDs. |
Attachment 1: IOO-QPDs.pdf
|
|
1451
|
Wed Apr 1 23:18:07 2009 |
rana, koji | Summary | IOO | No Reference Cavity Required |
Koji sent us a note about our "No Reference Cavity Required" entry. I thought that it nicely summarizes the
whole shebang and so I post it here for its pedagogical value.
Generally, frequency stabilization is a comparison of the two
frequency references.
1. In the conventional case you are comparing the NPRO stability with
the RC stability. The NPRO cavity is short and probably placed in a
less stable environment than that of the RC. Therefore, the PDH
signal only feels the frequency fluctuation of the NPRO, resulting
in the laser PZT fast feedback dominated by the NPRO stability. As
the MC length at low frequency is controlled by the mass feedback,
the resulting laser stability through the MC is virtually limited
by the RC stability.
2. On the other hand, you are comparing the stabilities of the NPRO
crystal and the MC cavity in the direct control configuration. The
stability of the MC at high frequency is better than that of the
NPRO. It is opposite at low frequency, of course, because of the
pendulum motion. The resulting laser stability through the MC is
limited by the MC stability.
3. In the CM servo, the length of the MC is stabilized such that the
arm stability is duplicated to the MC. As a result, your MC servo
compares the stability between the NPRO and the arm cavity. Again
at around 1Hz, the arm cavity is noisier than the NPRO. (This is
true at least TAMA case. I am quite unsure about it in the LIGO
long arm cases.)
One useful consequence is that in those configurations, the laser PZT
feedback at around 1Hz represents the stability of the NPRO, the MC,
and (possibly) the arm cavity, respectively. It was clearly seen
Yoichi's e-log entry 1432. At TAMA we call this signal as "MCPZTfb"
and use this for the diagnostic purposes of the suspended cavities. As
the laser fast PZT is rarely replaced and considered as a stable
actuator, this signal is considered as a good reference at low
frequency which is consistent across various configurations
(e.g. before/after replacement of the suspensions etc). Once the
response and the coefficient are calibrated you can easily convert
this signal to the length displacement.
Another remark: In the direct configuration, the frequency stability
of the beam goes through the MC is determined by the MC stablity. It
means that the beam to the arm has essentially worse stability than
the arm stability by factor of L_arm/L_MC. In the 40m case this factor
is just 3 or so. This is ok. However, for the LIGO 4km arm, the factor
becomes something like 300. This means that if you have 1um_rms of the
MC length fluctuation, the arm PDH feels 300um_rms. (Maybe some extent
less because of the common mode rejection of the MC suspensions.)
Yes, the actuator to the MC length is very strong this time, and
should be able to stop this amount of fluctuation easily... if the
things are all linear. I am not certain whether you can acquire the
lock even by this strong actuator when the arm is crazily swinging,
the PDH signals are ringing all the way, etc, etc...Particularly in
the recycling case!
One possible remedy is a technique developed by the German
necromancers, as always. They used the NPRO cavity as a reference
cavity. They actuate the MC length at low frequency. But I don't know
the exact configuration and how they accomplished the CM hand-off. We
have to ask Hartmut.
The other possibility is your adaptive stabilization of the MC by the
FIR technique. So far I don't know how much stability you can improve
in the LIGO 4km case.
There would be many possibilities like feedforward injection from the
green arm locking signal to the MC length, etc, etc. |
1503
|
Mon Apr 20 20:00:44 2009 |
rana | Configuration | IOO | McWFS gains re-allocated |
Since it looks like the night time people have been running with a WFS gain of 0.05 and I like the slider
to be at 1.0, I lowered all of the WFS1/2_P/Y gains by 10 and increased the overall slider from 0.05 to 1.0.
So the loop gains are now 2x higher; with it like this I guess the UGFs are in the ~0.2-0.5 Hz range. |
1607
|
Tue May 19 15:57:07 2009 |
steve | Update | IOO | MC2 damping restored after EQ |
Earthquake mag 4.0 at Lennox, Ca trips MC2 watchdogs http://quake.usgs.gov/recenteqs/Quakes/ci10411545.html
See 40m accelerometers as they see it. |
Attachment 1: acc.jpg
|
|
1768
|
Tue Jul 21 15:32:47 2009 |
Jenne | Update | IOO | MC_L flatlined |
[Clara, Jenne]
While Clara was working on her Wiener filtering and optimizing the locations of the accelerometers, she discovered that MC_L and MC_L_256 are totally flatlined. I looked at them, and it looks like they've been dead since ~9:30pm-ish on Sunday night. Bootfest-type activities shall commence shortly. |
1770
|
Tue Jul 21 17:52:12 2009 |
Jenne | Update | IOO | MC_L flatlined |
Quote: |
[Clara, Jenne]
While Clara was working on her Wiener filtering and optimizing the locations of the accelerometers, she discovered that MC_L and MC_L_256 are totally flatlined. I looked at them, and it looks like they've been dead since ~9:30pm-ish on Sunday night. Bootfest-type activities shall commence shortly.
|
Under Alberto's tutalage, I rebooted the whole vme set (iovme, sosvme, susvme1, susvme2), and after that MC_L was all good again. |
1795
|
Mon Jul 27 09:34:07 2009 |
steve | Summary | IOO | Aligning the mode cleaner |
Quote: |
I set the MC back to its good alignment (June 21st) using this procedure. The trend of the OSEM values over the last 40 days and 40 nights is attached.
Then I aligned the periscope to that beam. This took some serious periscope knob action. Without WFS, the transmission went to 2.7 V and the reflection down to 0.6V.
Then I re-aligned the MC_REFL path as usual. The beam was far enough off that I had to also re-align onto the MC LSC PD as well as the MC REFL camera (~2 beam radii).
Beams are now close to their historical positions on Faraday and MC2. I then restored the PZT sliders to their April snapshot and the X-arm locked.
Steve - please recenter the iris which is on the periscope. It has been way off for a long time.
So it looks OK now. The main point here is that we can trust the MC OSEMs.
Afterwards I rebooted c1susvme1 and c1susvme2 because they were skewed.
|
I'm impressed by Rana's simple way to align the MC. IFO arms are locked or flashing. 20 days trend attached.
|
Attachment 1: 20dtrend.jpg
|
|
1799
|
Mon Jul 27 19:55:19 2009 |
Koji | HowTo | IOO | Lens selection: plano-convex? or bi-convex? |
Q. When should we use plano-convex lenses, and when should we use bi-convex?
As I had the same question from Jenne and Dmass in a month,
I just like to introduce a good summary about it.
Lens selection guide (Newport)
http://www.newport.com/Lens-Selection-Guide/140908/1033/catalog.aspx
At a first order, they have the same function.
Abberation (= non-ideal behavior of the lens) is the matter.
|
1812
|
Thu Jul 30 03:10:18 2009 |
rob | Update | IOO | MC tweaked further |
I tilted the periscope beam and aligned the MC. Now the spot at the Faraday entrance is near the center of the aperture in up/down space. The arm powers are only going up to ~0.8, though. Maybe we should try a little bit of left/right.
I looked at the IP POS spot with a viewer card, and it looked round, so no obvious egregious clipping in the Faraday. Someone might take a picture with one of the GigE camera and get us a beam profile there.
We no longer have an MC1 and MC3 camera view.
I can see a bright scatterer that can be seen from the east viewport of the BSC, but I can't tell what it is. It could be a ghost beam.
It would be nice to get an image looking into the north viewport of the IOO chamber. I can't see in there because the BS oplev table is in the way. |
1814
|
Thu Jul 30 21:26:16 2009 |
rana | Update | IOO | MC Drumhead mode |
I used COMSOL 3.5a to do a FEA of one of the MC flat mirrors. Should be close to the same for all the mirrors.
The model is very simple- it includes just the cylindrical shape (no magnets, curvature, or coating or bevels).
This is good enough, since we don't really know all of the material properties at the 1% level.
The attached plot shows the MC drumhead mode. The color scale shows the displacement along the optic axis.
The model predicts 28.855 kHz and the measured value was 28.2 kHz.
I used COMSOL in the multiphysics mode which includes the Structural Mechanics and Heat Transfer modules at the
same time. For the material I used the built in properties of Corning 7940 (fused silica). In reality we have
7980 (I don't know all of the material differences). In any case, this model includes the temperature dependence
of the Young's modulus, so it should be possible to use this to predict the absorption numbers.
The model file (mc2.mph) has been added to our COMSOL SVN directory. |
Attachment 1: mc2drum.png
|
|
1820
|
Mon Aug 3 14:15:50 2009 |
Jenne | Update | IOO | WFS recentered |
I am (was) able to get the mode cleaner mostly locked, but because WFS2 wasn't centered, the MC would drift, then lose lock. I recentered both the WFS (after unlocking the MC and the MZ), and am now about to commence relocking both of those.
/end{quick update}
Note to self: WFS get centered based on the direct reflection from MC1. Once the MC is close enough, the WFS are enabled, and they twiddle all 3 MC mirrors to minimize their error signal. Moral of the story: make sure the WFS are centered. |
1821
|
Mon Aug 3 14:47:53 2009 |
Jenne | Update | IOO | MC locks again |
The mode cleaner seems to be locking again. I've manually unlocked it a few times in the past 20min, and most of the time it catches lock again (maybe about 80% of the time). Other times, it starts to lock in a bad mode, and can't fix itself, so I unlock it, and let it restart and it usually does fine the second time around.
I'd like it to be a little more robust, but I'm having a bit of trouble zeroing in on the optimal alignment for quickest, most durable lock aquisition of the MC. Right now I'm going to leave it for a little while to make sure it doesn't fall apart. |
1823
|
Mon Aug 3 22:54:53 2009 |
Jenne, Koji, rana | Update | IOO | MC_trans is now better, but not best |
Jenne, Koji, Rana
After fixing up the Mode Cleaner a bit more (fiddling more with the MC_align sliders to get the alignment before locking, making sure that it is able to lock), we noticed that the MC Trans path could use some help. To align the MC, we put MC1 and MC3 back into the position where Rob left it on Thursday and then maximized the transmission with MC2. Then we went back and maximized with MC1/3 keeping in mind the Faraday. We got a good transmission and the X-arm had a transmission of 0.8 without us touching its alignment.
Upon looking at the AP table portion of the MC_trans path, we decided that it was all pretty bad. The light travels around the edge of the AP table, then out the corner of the table toward the PSL table. A periscope brings it down to the level of the PSL table, and then it travels through a few optics to the MC_trans QPD.
The light was clipping on the way through the periscope, and so the MC_trans QPD was totally unreliable as a method of fine-tuning the alignment of the Mode Cleaner. Ideally we'd like to be able to maximize MC_trans, and say that that's a good MC alignment, but that doesn't work when the beam is clipped.
Things done:
1. The first turning mirror on the AP table after the beam comes out of the vacuum was changed from a 1" optic to a 2" optic, because the spot size is ~4-6mm. We were careful to avoid clipping the OMCT beam, by using a nifty U200 mount (C-shaped instead of ring-shaped).
2. We placed a lens with a RoC of 1m (focal length for 1064nm is ~2m), a 2" optic, between the first two mirrors, to help keep the beam small-ish when it gets to the periscope, to help avoid clipping.
3. Rana adjusted the angle of the upper periscope mirror, because even when the beam was centered on the steering mirror directly in front of the periscope and the spot was centered on the first periscope mirror, the beam wouldn't hit the bottom periscope mirror.
4. We noticed that the bottom periscope mirror was mounted much too low. It was mounted as if the optics after it were 3" high, which is true for all of the input optics on the PSL table. However, for the MC_trans stuff, all the optics are 4". We moved the periscope up one hole, which made it the correct height.
5. We removed the skinny beam tube which guided/protected the beam coming off the periscope after a steering mirror since it (a) wasn't necessary and (b) was clipping the beam. We cannot use such skinny tubes anymore Steve.
6. There was a lens just before the 2nd steering mirror on the PSL table portion, which we removed since we had placed the other lens earlier in the path. 2 lenses made the beam too skinny at the QPD.
7. After this 2nd steering mirror, there had been a pickoff, to send a bit of beam at a crazy angle over to the RFAM mon, which we removed. This results in a much brighter beam at the MC_trans QPD, and at the camera. The QPDs readouts are now a factor of ~3.5 higher than they used to be. These (especially the camera) could use some ND-filtering action.
8. The steering optic directly in front of the MC_trans QPD is a beamsplitter, and instead of dumping the light which doesn't go to the MC_trans QPD, we used this to go over to the RFAM mon (instead of the pickoff which we had removed).
9. Koji fixed up the optics directly in front of the RFAM mon, accomodating the new position of the input light (now at a much more reasonable angle, and about 15cm farther back from the PD). Note the beam dump which is preventing the cables from the FSS board from entering the beam path. This included removing an ND filter wheel, so the RFAM mon values will all be higher now. Koji also has the beam going to the PD going at a slight angle, so that the beam isn't directly reflected on itself, so that it can be dumped.
10. We aligned the beam onto the MC_trans QPD using the first steering mirror on the PSL table.
11. We also removed the giant wall of beam dumps separating the squeezing section of the table from the rest of the table.
Alberto will elog things about the RFAM mon, including different values of the PD output, etc.
Still on the to-do list:
A. Replace the second steering mirror on the AP table after the MC_trans light leaves the vacuum with a 2" optic, since the lens we placed isn't tight enough to make the spot small there yet. Us a U200A mount if possible, because they are really nice mounts.
B. Put an ND filter in front of the MC_trans camera, because the image is too bright.
C. Normalize the MC_trans QPD - the horz and vert are pretty much direct voltage readouts, with no normalization. They should be divided by the DC value. This lack of normalization results in higher sensitivity to input pointing.
D. Long term, next time someone wants to optimize the MC_trans path, move all the optics, including the MC_trans QPD and the camera closer to the periscope on the PSL table. There's no reason for the beam to be traveling nearly the full width of the PSL table when we're not manuvering around squeezing stuff.
E. Never, ever purchase these horrible U100 or U200 mounts with the full ring and the little plastic clips. They are the "AC28" version. Bad, bad, bad.
Image 1: The new setup of the AP table, Mc_trans portion.
Image 2: New setup of the MC_trans part of the PSL table. |
Attachment 1: P8030099_copy.JPG
|
|
Attachment 2: P8030102_copy.JPG
|
|