40m QIL Cryo_Lab CTN SUS_Lab CAML OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m elog, Page 276 of 357  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  1629   Thu May 28 14:34:25 2009 robUpdatePSLchiller diagnosis

Quote:

steve, alberto, rob

After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working.  Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far).

 The repair man thinks it's a bad start capacitor, which is 240uF at 120V.  Steve has ordered a new one which should be here tomorrow, and with luck we'll have lasing by tomorrow afternoon.

  1630   Thu May 28 18:41:26 2009 steveUpdatePSLthe saga of the chiller is ending

I drained the water and removed side covers from the Neslab RTE 140 refrigerated water cooler unit this morning. The hoses to the laser were disconnected.

This abled you to see the little window of refregerant  R404A was free of bubles, meaning: no recharge was needed.

The circulator bath was refilled with 7 liters of Arrowhead distilled water and the unit was turned on.

The water temp was kept 20.00+- .05C without any load. Finally the AC-repair man Paul showed up.

He measured the R404A level to be as specified: 23-24 PSI on the suction side and 310 PSI on the discharge side.

The unit was working fine. Paul found an intermittently functioning starting capacitor on the compressor  that was removed.

The 240 micro Farad 120VAC cap will arrive tomorrow

  1631   Fri May 29 18:57:09 2009 steveUpdatePSLthe laser is back

Steve, Rob and Alberto

 

Starting capacitor 216 miroFarad was installed on the compressor. Water lines were connected to the MOPA as corrected, so the flow meter readings are logical.

Now IN means flowing water in the direction of black arrow on the hose.

We struggled with the Neslab presetting:  temp, bauds rate  and other  unknowns  till Rob found the M6000 manual on Peter king's website.

Alberto realized that the chiller temp had to be reset to 20C on water chiller.

I put 1mg of Chloramin T into the water to restrict the growth of algae in the bath.

The NPRO heat sink  was around ~20C without flow meter wheel rotation  and the PA body ~25C by touch of a finger

I just opened up the needle valve a litle bit so the flow meter wheel would started rotating slowly.

That small glitch at the end of this 3 hrs plot shows this adjustment.

Attachment 1: laserisback.jpg
laserisback.jpg
  1632   Sat May 30 11:24:56 2009 robConfigurationPSLNPRO slow scan

I'm setting SLOWDC to about -5.

I had to edit FSSSlowServo because it had hard limits on SLOWDC at (-5 and 5).  It now goes from -10 to 10.

 

 

Attachment 1: slowSCAN.png
slowSCAN.png
  1633   Sat May 30 12:03:34 2009 robUpdatePSLMC locked

I locked to PSL loops, then tweaked the alignment of the MC to get it to lock. 

I first steering MC1 until all the McWFS quads were saturated.  This got the MC locking in a 01 mode.  So I steered MC1 a little more till it was 00.  Then I steered MC2 to increase the power a little bit.  After that, I just enabled the MC autolocker.

  1636   Mon Jun 1 13:56:52 2009 AlbertoUpdatePSLLaser Power after fixing the laser chiller

The laser power seems to have become more stable after fixing the laser chiller. The power is lower than it used to be (MOPA amplitude 2.5 versus 2.7) but, as shown in the attchement, it became more steady.

Attachment 1: MOPAtrend.jpg
MOPAtrend.jpg
  1638   Mon Jun 1 14:49:07 2009 robSummaryPSLpsl thoughts

Some thoughts on what happened with the MOPA cooling. 

Some unknown thing happened to precipitate the initial needle valve jiggle, which unleashed a torrent of flow through the NPRO.  This flow was made possible by the fact that the cooling lines are labeled confusingly, and so flow was going backwards through the needle valve, which was thus powerless to restrict it.  The NPRO got extremely cold, and most of the chiller's cooling power was being used to unnecessarily cool the NPRO.  So, the PA was not getting cooled enough.  At this, point, reversing the flow probably would have solved everything.  Instead, we turned off the chiller and thus discovered the flaky start-motor capacitor. 

Now we have much more information, flow meters in the NPRO and main cooling lines, a brand-new, functioning needle valve, a better understanding of the chiller/MOPA settings necessary for operation, and the knowledge of what happens when you install a needle valve backwards.

 

  1639   Mon Jun 1 15:01:31 2009 ranaUpdatePSLLaser Power after fixing the laser chiller: more traces
If you look at the correlation between RMTEMP and HTEMP, you see what we knew: namely that there
was a 1:1 correlation before. After the chiller fix, I can see no correlation between the room and
amplifier temperature at the resolution of 10:1. So the chiller loop has a gain > 10 at 24 hour time
scales.

I don't understand why the PMC looks more stable.
Attachment 1: Picture_7.png
Picture_7.png
  1640   Mon Jun 1 19:19:26 2009 ranaUpdatePSL1000 days of hour-trend
Attachment 1: u.png
u.png
  1651   Thu Jun 4 15:53:15 2009 steveUpdatePSLNPRO cooling flowrate adjusted

The Neslab chiller is working well. It's temp display shows 20.0 C rock solid. Flow meter rotating at 13.5Hz at the out put of the chiller.

The MOPA temp was measured with a hand held thermocouple . The  PA was  34 C and 29 C at NPRO heat sink.

The NPRO flow meter was not rotating at this time. There was just trickeling water flow though the meter.

I closed the needle valve this point. It needed 8 turns clockwise. This drives head temp to 19.9 C

Than I opened the needle valve 9 turns and the flow meter wheel was  rotaing at ~ 1 Hz

We gained a little power. Can you explain this?

 

Attachment 1: needlevalve.jpg
needlevalve.jpg
  1666   Wed Jun 10 09:28:14 2009 steveUpdatePSLPMC

The PMC alarm was on this morning. It was relocked at lower HV

The FSS_RMTEMP jumped 0.5 C so The PZT was compensating for it.

 

Attachment 1: pmctemphv.jpg
pmctemphv.jpg
  1725   Wed Jul 8 19:13:19 2009 AlbertoUpdatePSLPSL beam aligned to the Mode Cleaner

Today I tuned the periscope on the PSL table to align the beam to the Mode Cleaner. With the Wave Front Sensor control off, I minimized the reflection from the MC and maximized the transmission. While doing that I also checked that the transmitted beam after the MC didn't lose the alignment with the interferometer's main Faraday isolator.

In this way, I've got a reflection, as read from the MC_REFLPD_MC, of about 0.6. Then I centered the WFS on the AS table. After that the WFS alignment control brought the reflection to 0.25 and a nice centered bull-eye spot showed on the monitor.

  1774   Wed Jul 22 10:49:40 2009 AlbertoUpdatePSLMC Alignment Trend

Trying to track the MC positions back for a few days, it seems that the data hasn't been recorded properly for a while. Something happened yesterday after my boot fest and then the record got restored. Attached here are the readbacks showing the event for MC1.

Is anything wrong with the data record?

Attachment 1: 2009-07-21_MC-align-trend.pdf
2009-07-21_MC-align-trend.pdf
Attachment 2: 2009-07-22_mc-align-trend.pdf
2009-07-22_mc-align-trend.pdf
  1783   Thu Jul 23 10:05:38 2009 AlbertoUpdatePSLSummary of the latest adventures with the alignment of the mode cleaner

Alberto, Koji,

Summary of the latest adventures with the alignment of the mode cleaner

Prior events.

  • Last week, on July 12th the RFM network crashed (elog entry 1736). I don't know for sure which one was the cause and which one the effect, but also C1DAQADW was down and it didn't want to restart. Alex fixed it the day after.
  • On the evening of Sunday July 20th I noticed that the mode cleaner was unlocked. A closer inspection showed me that MCL was frozen at -32768 counts. To fix that I rebooted C1DCUEPICS and burtrestored to snapshots from the day before.
  • On Tuesday July 21st another failure of the RFM Network made necessary a reboot of the frame builder and of all front end computers (entry 1772). As a consequence, the mode cleaner couldn't get locked anymore, even if the mirror's sliders in the MC-Align MEDM screen were in the proper positions. At that time I missed to check the MC suspension positions as a way to ensure that the MC hadn't really changed. Although later, as it turned out, that would have been useless anyway since all the data record prior to the computers crash of that day somehow had been corrupted (entry 1774). Neither the MC2 LSC control or MC ASC control could engage so I (erroneously) thought that some tune of the periscope might help. So I did but, since the Mode Cleaner was misaligned, that had the effect of spoiling the good matching of the periscope to the MC cavity.
  • Yesterday, Wednesday July 22nd, I found out about the sticky slider effect (entry 1776). At that point we didn't have anymore a way to know that the MC optics were actually in their proper original alignment state because of the lack of a reference for those in the data record (as I wrote above). I had to go back to the periscope and fix the alignment.


Chronicles of periscope and MC alignment

Yesterday morning I started aligning the periscope but it turned out to be trickier than usual. With the ASC (Alignment Sensing Control) off and only the length controls on, the Mode Cleaner didn't lock easily, although I knew I wasn't very far from the sweet spot.

In the afternoon the struggle continued and the matching of the the beam to the MC cavity became just worse. At some point I noticed that the ASC inputs somehow had got on - although the ASC still looked disabled from the MClock MEDM main screen. So I was actually working against the Wave Front Sensors and further worsening the periscope alignment.

That hurled me to the weeds. After hours of rowing across the stormy waters of a four-dimensional universe I got to have occasional TEM00 flashes at the transmission but still, surprisingly, no MC locking. Confused, I kept tuning the periscope but that just kicked me off road again.

Then at about 7pm Koji came to my rescue and suggested a more clever and systematic way to solve the problems. He suggested to keep record of the MC mirrors alignment state and re-align the cavity to the periscope. Then we would gradually bring the cavity back to the original good position changing the periscope alignment
at the same time.

 

That would have worked straight away, if we hadn't been fighting against a subtle and cruel enemy: the 40m computer network. But I (as John Connor), and Koji (as the Terminator) didn't pull back.

Here's a short list of the kinds of weapons that the computers threw to us:

  1. After a while the FSS entered a funny state. It showed transmission: we had light at the MC (and even flashes) but the MEDM readout of the FSS transmitted power after the cavity was low (~0.019). Also the spot on the monitor showed a slightly different pattern from how I remembered it. On the other side the transmission camera didn't show that typical halo as usual.
  2. MCL was frozen at 32768. I ran the MCDown and MCUp script a couple of times and that unstuck it.
  3. On op340m we found that the MC autolocker script wasn't running. So I restarted it. Still nothing changed: bright and sharp flashes appeared on the monitor (sign of a not too bad alignment) but no lock.
  4. I rebooted C1IOO. No change.
  5. I rebooted C1DCUEPICS and burtrestored the EPICS computers to Jul 19th. No change.
  6. Then I burtrestored the c1psl.snapshot and that finally did something. The FSS reflected spot changed and the halo appeared again at its transmission camera. Soon after the MC got locked.


We then proceeded with Koji's plan. In an iterative process, we aligned the MC cavity maximizing the transmission and tuned the periscope in order to match the Faraday input of the interferometer. The last thing we did it by looking at the camera pointing at the Faraday isolator.

We found that we didn't have to tune the periscope much. That means that all afternoon I didn't really go too far, but the autolocker wasn't working properly, or it wasn't working at all.

Then we ran the alignment script for the X arm but it didn't work before we aligned the steering mirrors.

Then we ran it three times but could not get more than 0.87 at TRX. That means that there we still have to work on the alignment to the Faraday. That's job for today in the trenches of the lab.

 

  1784   Thu Jul 23 20:30:23 2009 AlbertoUpdatePSLBeam aligned to the Farady

After yesterday's changes in the MC cavity state today it was necessary to optimize the alignment to the Faraday.

The way I did it was by tuning the PSL periscope in pitch and yaw trying to maximize TRX with the arm locked. After a small change in either one of the two directions I first maximized the MC transmitted power and then I ran the alignment script for the X arm.

I explored the space for both pitch and yaw and the max that I could get from TRX was 0.91. I'm not sure whether the increase in TRX is entirely due to a better alignment to the Farady rather than to a higher MC transmitted power.

Also I'm not sure I'm well interpreting the image from the camera pointing at the Farady. I guess I need someone more familiar with it to tell me if it shows any sign of clipping.

Anyway, last week, even before the MC got misaligned, TRX didn't go above 0.90. So now I wonder whether it's the MC's fault or something else's if we have that value..

  1788   Fri Jul 24 21:02:46 2009 AlbertoUpdatePSLAligning the beam to the Faraday

This afternoon I kept working on the alignment of the beam so that it matches at the same the PSL periscope, the Mode Cleaner and the Faraday isolator at the input of the IFO.

The camera looking at the Farady showed a beam quite low from the center of the Faraday's entrance. I wanted to move it up.

After working on the periscope alignment and on the MC mirrors, I think I managed to moved it up a bit. To know whether that was enough or not I wanted to evaluate the alignment to the X arm by checking the value of TRX.

In order for the MC to be finely matched to the input beam from the periscope, the WFS controls have to be on. Before turning them on, I centered the beam on their QPDs and run the WFS_zero_offset script.

When I turned them on, the control signal in Pitch from WFS2 started going up with no stop. It was like the integrator in the loop was fed with a DC bias. The effect of that was to misalign the MC cavity from the good state in which it was with the only length control on (that is, transmission ~2.7, reflection ~ 0.4).

I don't know why that is happening. To exclude that it was due to a computer problem I first burtrestored C1IOO to July the 18th, but since that did not help, I even restarted it. Also that didn't solve the problem.

 

Flashes at ETMX show at least that the beam is going through the Farady. How well, I can't tell untill the MC is under full control.

 

I have to leave the lab now, but I can be back tomorrow to keep working on that.

  1791   Sat Jul 25 16:04:32 2009 robUpdatePSLAligning the beam to the Faraday

Quote:

When I turned them on, the control signal in Pitch from WFS2 started going up with no stop. It was like the integrator in the loop was fed with a DC bias. The effect of that was to misalign the MC cavity from the good state in which it was with the only length control on (that is, transmission ~2.7, reflection ~ 0.4).

I don't know why that is happening. To exclude that it was due to a computer problem I first burtrestored C1IOO to July the 18th, but since that did not help, I even restarted it. Also that didn't solve the problem.

 

 

At least one problem is the mis-centering of the resonant spot on MC2, which can be viewed with the video monitors.  It's very far from the center of the optic, which causes length-to-angle coupling that makes the mulitple servos which actuate on MC2 (MCL, WFS, local damping) fight each other and go unstable.

  1792   Sat Jul 25 19:04:01 2009 KojiUpdatePSLAligning the beam to the Faraday

Quote:

Quote:

When I turned them on, the control signal in Pitch from WFS2 started going up with no stop. It was like the integrator in the loop was fed with a DC bias. The effect of that was to misalign the MC cavity from the good state in which it was with the only length control on (that is, transmission ~2.7, reflection ~ 0.4).

I don't know why that is happening. To exclude that it was due to a computer problem I first burtrestored C1IOO to July the 18th, but since that did not help, I even restarted it. Also that didn't solve the problem.

 

 

At least one problem is the mis-centering of the resonant spot on MC2, which can be viewed with the video monitors.  It's very far from the center of the optic, which causes length-to-angle coupling that makes the mulitple servos which actuate on MC2 (MCL, WFS, local damping) fight each other and go unstable.

I played with the MC alignment for the beam centering. After that, I restored the alignment values.



In principle, one can select the MC2 spot as one likes, while the transmitted beam axis to the IFO is not changed
as far as you are at the best alignment. This principle is almost trivial because the beam axis matches
to the input beam axis at the best alignment.
The alignment solution is not unique for a triangle cavity if we don't fix the end spot position.

In practice, this cruising of the MC2 spot is accomplished by the following procedure:
0) Assume that you are initially at the best alignment (=max transmission).
1) Slightly tilt the MC2.
2) Adjust MC1/MC3 so that the best transmission is restored.

I started from the following initial state of the alignment sliders:

BEFORE TRIAL

MC1 Pitch  +3.6242
MC1 Yaw  -0.8640
MC2 Pitch  3.6565
MC2 Yaw -1.1216
MC3 Pitch -0.6188
MC3 Yaw -3.1910
MC Trans 2.70

After many iterations, the spot was centered in some extent. (See the picture)
RESULT

    adj.
MC1 Pitch  +3.363 (-0.26)
MC1 Yaw  -1.164 (-0.3)
MC2 Pitch  3.7565 (+0.1)
MC2 Yaw -1.2800 (~ -0.16)
MC3 Pitch -0.841 (~ -0.22)
MC3 Yaw -3.482 (~ -0.29)
MC Trans 2.75  

The instability looked cured somewhat.
Further adjustment caused a high freq (10Hz at the camera) instability and the IMCR shift issue.
So I returned to the last stable setting.

Side effect:
Of course, if you move MC1, the reflected spot got shifted.
The spot has been apparently off-centered from the IMCR camera. (up and right)
At this stage, I could not determine what is the good state.
So, I restored the alignment of the MC as it was.
But now Alberto can see which mirror do we have to move in which direction and how much.

Attachment 1: MC2_Cam.jpg
MC2_Cam.jpg
  1793   Sun Jul 26 13:19:54 2009 ranaUpdatePSLAligning the mode cleaner

I set the MC back to its good alignment (June 21st) using this procedure. The trend of the OSEM values over the last 40 days and 40 nights is attached.

Then I aligned the periscope to that beam. This took some serious periscope knob action. Without WFS, the transmission went to 2.7 V and the reflection down to 0.6V.

Then I re-aligned the MC_REFL path as usual. The beam was far enough off that I had to also re-align onto the MC LSC PD as well as the MC REFL camera (~2 beam radii).

Beams are now close to their historical positions on Faraday and MC2. I then restored the PZT sliders to their April snapshot and the X-arm locked.

Steve - please recenter the iris which is on the periscope. It has been way off for a long time.

So it looks OK now. The main point here is that we can trust the MC OSEMs.

Afterwards I rebooted c1susvme1 and c1susvme2 because they were skewed.

 

Attachment 1: Untitled.png
Untitled.png
  1794   Sun Jul 26 16:05:17 2009 AlbertoUpdatePSLAligning the mode cleaner

Quote:

I set the MC back to its good alignment (June 21st) using this procedure. The trend of the OSEM values over the last 40 days and 40 nights is attached.

Then I aligned the periscope to that beam. This took some serious periscope knob action. Without WFS, the transmission went to 2.7 V and the reflection down to 0.6V.

Then I re-aligned the MC_REFL path as usual. The beam was far enough off that I had to also re-align onto the MC LSC PD as well as the MC REFL camera (~2 beam radii).

Beams are now close to their historical positions on Faraday and MC2. I then restored the PZT sliders to their April snapshot and the X-arm locked.

Steve - please recenter the iris which is on the periscope. It has been way off for a long time.

So it looks OK now. The main point here is that we can trust the MC OSEMs.

Afterwards I rebooted c1susvme1 and c1susvme2 because they were skewed.

 

 It is really surprising that we now have again the data from the MC OSEMs since up to two days ago the record looked corrupted (see the attachments in my entry 1774).

The reason I ended up severely misaligning the the MC is exactly that there wasn't anymore a reference position that I could go back to and I had to use the camera looking a the Faraday.

  1803   Wed Jul 29 11:58:57 2009 AlbertoUpdatePSLMC not locking

This morning I found the Mode Cleaner unlocked.

I check the sliders for the mirrors bias and they have not changed. Also the OSEMs readbacks show no change in the optics positions.

I don't understand what's wrong because in the previous days, in this state of alignmanet, it could lock.

I tried to tweak a little bit the periscope to check whether it was a problem of beam matching but that didn't help the cavity to lock.

I don't want to change the periscpe alignment to much becasue I believe it is still good and I suspect that there is something else going on.

  1817   Mon Aug 3 01:08:20 2009 AlbertoUpdatePSLMC unlocked

Friday afternoon the mode cleaner got unlocked. Then some adjustment of the MC1 bias sliders locked it again. The driftmon showed the excursion for pitch and yaw of MC1 becasue it wasn't updated after the change.

Tonight Rana found the MC unlocked and simply touched the sliders to bring the OSEMs back to the driftmon values.

MC1 Yaw remains different from the driftmon. If brught back to htat value, the MC would get unlocked.

More investigation is needed to understand why the MC lock hasn't been stable for the last few days.

 

  1818   Mon Aug 3 12:57:09 2009 AlbertoUpdatePSLMC unlocked

Quote:

Friday afternoon the mode cleaner got unlocked. Then some adjustment of the MC1 bias sliders locked it again. The driftmon showed the excursion for pitch and yaw of MC1 becasue it wasn't updated after the change.

Tonight Rana found the MC unlocked and simply touched the sliders to bring the OSEMs back to the driftmon values.

MC1 Yaw remains different from the driftmon. If brught back to htat value, the MC would get unlocked.

More investigation is needed to understand why the MC lock hasn't been stable for the last few days.

 

 The mode cleaner is still unlocked. I played with the cable at the MC2 satellite to enusre they were all plugged in.

Then I tweaked the the mirrors alignment by the sliders and eventually I could get it locked stably with 1.3 reflection. Then I rebooted C1IOO because the WFS wouldn't engage. After that the cavity wasn't locked anymore. Trying to adjust the mirrors around their position didn't restore the lock.

More work is necessary.

I'll be back on it in a while.

  1838   Wed Aug 5 16:33:50 2009 steveConfigurationPSLnew PSL output iris

I installed an improvised version of PSL output beam iris at the output periscope last week.

Attachment 1: psliris.png
psliris.png
  1844   Thu Aug 6 17:45:37 2009 JenneUpdatePSLHEPAs on high

Stephanie has needed the doors to the PSL open all day, and still has them open, so I just turned the HEPAs on high. 

  1847   Thu Aug 6 18:26:26 2009 JenneUpdatePSLRef Cav and PMC aligned

[Alberto, Jenne]

We aligned both the reference cavity and the PMC, each by looking at their Trans PD on Davaviewer, and adjusting the two steering mirrors to maximize the transmission power.  We got a pretty good amount of improvement for the ref cav, but since the PMC hasn't decayed a whole lot, we got a much smaller amount of improvement.

  1848   Thu Aug 6 19:54:04 2009 StephanieUpdatePSLHEPAs back to normal

Quote:

Stephanie has needed the doors to the PSL open all day, and still has them open, so I just turned the HEPAs on high. 

 

 

I turned the HEPAs back down to ~50.

  1850   Thu Aug 6 23:29:47 2009 JenneUpdatePSLRef cav reflection PD is funky

After Alberto and I worked on aligning the reference cavity, Rob asked the important and useful question: what is the visibility of the reference cavity.  This helps tell us if we're optimally aligned or not even close.

I did a scan of the ref cav temperature, using /scripts/PSL/FSS/SLOWscan, but there seems to be no real signal is C1:PSL-FSS_RFPDDC.  As shown in Alberto's 200-day plot, it does change sometimes, but if you zoom in on the flat parts, it seems like it's not really reading anything meaningful.  I did a cursory check-out of it, but I'm not 100% sure where to go from here:  There are (as with all of these gold-box PDs) 3 outputs:  a ribbon cable (for ADC purposes I think), an SMA for the RF signal, and a BNC for the DC signal.  The photodiode is clearly working, since if you stick the Lollypop in front of the PD, the cavity unlocks.  I plugged a 'scope into the DC BNC, and it also behaves as expected: block the beam and the signal goes down; unblock the beam and the signal goes up.  Something of note is that this readout gives a positive voltage, which decreases when the beam is blocked.  However, looking at the dataviewer channel, nothing at all seems to happen when the beam is blocked/unblocked.  So the problem lies somewhere in the get-signal-to-DAQ path.  I unplugged and replugged in the ribbon cable, and the value at which the channel has been stuck changed.  Many days ago, the value was -0.5, for the last few days it's been -1.5, and after my unplug/replug, it's now back to ~ -0.5 . The other day Alberto mentioned, and made the point again today that it's a little weird that the PD reads out a negative voltage.  Hmm.

 

Do we have a tester-cable, so that instead of the ribbon cable, I can plug that connector (or pins thereof) into a 'scope?

  1851   Fri Aug 7 00:10:14 2009 ranaUpdatePSLRef cav reflection PD is funky

we have a tester cable, but you don't want it. Instead the problem is probably at the cross-connect. The D-cable goes to a cross-connect and you can probe there with a voltmeter. If the signal is good there, trace it to the ADC. Also trend for several years to see when this happened - Yoichi may know the history better.

Also, we still need to complete the FSS RFPD task list from last year.

 

  1853   Fri Aug 7 11:39:13 2009 AlbertoUpdatePSLMZ Alignment
For the last couple of days we've been trying to find the cause that is preventing us to get more than 0.85 for the arm power.
After re-aligning the reference caivity yesterdau, today I went for the MZ. I slightly changed the alignment of the mirror in pitch. I was able to inrease the MZ-TRANPD to 4.8 (from about 3).
Unfortunately the same increase didn't show up at the MC transmission (that is IFO input) becasue changing the MZ also changed alignment to the MC cavity changed. A little tune of the MZ periscope was necessary to adjust the beam to the MC.
 
After all this MC-TRANS read 7.2 vs 7.0 before: no big of an improvement.
 
The arm power is still below 0.85.
 
Next step: measuring the MC length. Maybe changed a lot after the MC satellite was recently it by the people that were installing sesimometers and accelerometers on it.

 

  1855   Fri Aug 7 14:31:39 2009 AlbertoUpdatePSLDAQ REstarted

For some reason a few minutes ago the FB DAQ crashed and I had to restarted.

  1860   Fri Aug 7 17:05:34 2009 JenneUpdatePSLRef cav reflection PD is funky

Quote:

we have a tester cable, but you don't want it. Instead the problem is probably at the cross-connect. The D-cable goes to a cross-connect and you can probe there with a voltmeter. If the signal is good there, trace it to the ADC. Also trend for several years to see when this happened - Yoichi may know the history better.

Also, we still need to complete the FSS RFPD task list from last year.

 

 [Jenne, Ben]

I called in the reinforcements today.  Ben came over and we looked all around at all of the cross-connects and cables relating to the FSS.  Everything looks pretty much okey-dokey, except that we still weren't getting signal in the DataViewer channels.  Finally we looked at the psl.db file, which indicates that the C1:PSL-FSS_RFPDDC channel looks at channel 21 of the ADC cross connect thing.  We followed the cable which was plugged into this, and it led to a cable which was disconnected, but laying right next to the Ref Cav refl PD.  We plugged this into the DC out SMA connection of the photodiode (which had not been connected to anything), and suddenly everything was mostly golden again in dataviewer land.  RFPDDC_F now has a signal, but RFPDDC is still flat. 

 

Even though this seems to be working now, it's still not perfect.  Rob suggested that instead of having this SMA cable going from the photodiode's DC out, we should take the signal from the ribbon cable.  So I'm going to figure out which pin of the D-connector is the DC out, and take that from the cross connect to the ADC cross connect.  This will help avoid some persnickity ground loops. 

  1867   Sat Aug 8 15:08:14 2009 ranaConfigurationPSLSMOO settings updated in psl.db and SVN updated

I have added/modified SMOO settings to all of the records in psl.db appropriately. Changes checked in to SVN.

As a reminder, you should check in to the SVN all changes you make to any of the .db files or any of the .ini files in chans.

  1871   Mon Aug 10 11:33:58 2009 JenneUpdatePSLNon-Elogged Beam dump on the PSL table - BadBadBad

Big thumbs down to whoever put a beam dump on the PSL table in front of the PMC yesterday afternoon without noting it in the elog

The offending beam dump has been removed, and the PMC relocked.

Attachment 1: commodusthumbsdown.jpg
commodusthumbsdown.jpg
  1873   Mon Aug 10 15:21:15 2009 JenneUpdatePSLNon-Elogged Beam dump on the PSL table - BadBadBad

Quote:

Big thumbs down to whoever put a beam dump on the PSL table in front of the PMC yesterday afternoon without noting it in the elog

The offending beam dump has been removed, and the PMC relocked.

 Maybe it was Russell Crowe

  1874   Mon Aug 10 15:24:17 2009 robSummaryPSLMZ bad

I think the MZ pzt is broken/failing.  I'm not sure how else to explain this behavior.

The first bit of the time series is a triangle wave into the DC offset (output) field, over approximately the whole range (0-250V).   You can see the fringe visbility is quite small.  The triangle wave is stopped, and I then maxed out the offset slider to get to the "high" power point from the triangle wave sweep. Then for a little while with the PZT is held still, and the power still increases.  The MZ is then locked, and you can see the PZT voltage stay about the same but the power continues to rise over the next ~10 minutes or so.

Attachment 1: brokenMZpzt.png
brokenMZpzt.png
  1875   Mon Aug 10 15:56:12 2009 robSummaryPSLMZ bad redux

Quote:

I think the MZ pzt is broken/failing.  I'm not sure how else to explain this behavior.

 

The first bit of the time series is a triangle wave into the DC offset (output) field, over approximately the whole range (0-250V).   You can see the fringe visbility is quite small.  The triangle wave is stopped, and I then maxed out the offset slider to get to the "high" power point from the triangle wave sweep. Then for a little while with the PZT is held still, and the power still increases.  The MZ is then locked, and you can see the PZT voltage stay about the same but the power continues to rise over the next ~10 minutes or so.

 

 

 

This plot answers the previous question, and raises a new one--what the heck is MZTRANSPD?  I'd guess the pins are unconnected--it's just floating, and somehow picking up the MZ_PZT signal.

 

 

Attachment 1: badMZtrans.png
badMZtrans.png
  1876   Mon Aug 10 16:37:27 2009 robUpdatePSLMZ alignment touched

I aligned the MZ.  The reflection went from .86 to .374

  1877   Mon Aug 10 16:41:31 2009 AlbertoConfigurationPSLPMC Visibility

Alberto, Rana

lately we've been trying to better understand what's preventing the arm power to get high again. Last week I tuned the MZ and the PMC but we didn't gain much, if nothing at all.
Yesterday I measured the transmissivity, the reflectivity and the visibility of the PMC.
 
From the voltages at the PMC-REFL PD when the PMC was locked and when it was out of lock I estimated the cavity visibility:
V_locked = 0.42V
V_unlocked = 1.64V -> V = (V_unlocked - V_locked) / V_unlocked = 75%

With the high power meter I measured the reflected power when the PMC was unlocked and used that to obtain the calibration of the PMC-REFL PD: 1.12V/W.

Since the locked-cavity reflected power can't be directly measured with a power meter (since that would use the cavity control signal), I estimated the reflected power by the calibration of the PMC-REFL PD. Then I measured the input and the transmitted power with a high-power meter.
Result:

P_in = 1.98W ; P_trans = 1.28W ; P_refl = 0.45W

From that I estimated that the losses account to 13% of the input power.

I checked both the new and the old elogs to see if such a measurement had ever been done but it doesn't seems so. I don't know if such a value for the visibility is "normal". It seems a little low. For instance, as a comparison, the MC visibility, is equal to a few percents.

Also Rana measured the transmitted power after locking the PMC on the TEM20-02: the photodiode on the MEDM screen read 0.325V. That means that a lot of power is going to that mode.

That makes us think that we're dealing with a mode matching problem with the PMC.

  1883   Mon Aug 10 20:49:13 2009 Alberto, RanaUpdatePSLPMC Mode Matching Lenses Tuning

Rana, Alberto

This afternoon we tried to improve the mode matching of the beam to the PMC. To do that we tuned the positions of the two lenses on the PSL table that come before the PMC.

We moved the first lens back an forth the without noticing any improvement on the PMC transmitted and reflected power. Then we moved the first backwards by about one cm (the order is set according to how the beam propagates). That made the things worse so we moved also the second lens in the same direction so that the distance in between the two didn't change significantly. After that, and some more adjustments on the steering mirrors all we could gain was about 0.2V on the PMC transmission.

We suspect that after the problems with the laser chiller of two months ago, the beam size changed and so the mode matching optics is not adequate anymore.

We have to replace the mode matching lenses with other ones.

 

  1884   Tue Aug 11 01:21:55 2009 robUpdatePSLMZ needs some attention

the servo needs some work. 

 

2 day trend

 

Attachment 1: badMZservo.png
badMZservo.png
  1899   Thu Aug 13 22:53:48 2009 YoichiConfigurationPSLFSS nominal common gain changed, MC WFS centered

Koji, Yoichi

We found that the FSS PC feedback easily goes crazy (saturated).
It was because the common gain was too low. Probably the recent decrease of the
laser power is responsible for this.
We increased the nominal value of the common gain from 12 to 16.5.
The value was chosen just to make the PC path quiet. We should check
the FSS UGF later.
 
The MC WFS QPDs seemed off centered. So we unlocked the MC and lowered
the input power by the usual MZ half fringe technique.
Actually, the direct reflection beam was not much off the center. In anyway, we adjusted
the beam to the exact center of the QPDs.
The MC now locks fine.

 

  1915   Mon Aug 17 02:05:49 2009 Yoichi,ranaUpdatePSLReference cavity reflection looks bad
Rana, Yoichi

It has been a well known fact that the reference cavity reflection beam looks ugly.

We measured the visibility of the RC by locking and unlocking it.
Comparing the reflected beam powers, we got the visibility of 0.46,
which is pretty bad.

The beam going into the RC looks fine (circular on a sensor card).
However, the beam reflected back from the RC is distorted into a
horizontal ellipse, even when the RC is not locked.

We took a picture of the reflected beam hitting a white paper with the
infrared camera (see the attachment). It looks like two overlapping
circles horizontally separated. Could it be a badly coated optics
producing a secondary reflection ?

We looked into the RC's front mirror with an inspection mirror, but we
could not identify any obstructing object.

Rana is now touching the RC alignment.

We plan to remove the periscope before the RC to have a better look
into the cavity for inspection.


Late breaking update:
- We also moved the Refcav reflection camera to look at the leakage through a reflection steering mirror so that there's less chance of distortion. There was previously a W1 window in there as a pickofff. Also changed the camera to autogain so that we can see something.

- Re-aligned onto the refl pd.

- Tweaked alignment into RC. Mainly in yaw. Transmission went from 5V to 7V. In your face, Aso!
Attachment 1: P8170113.JPG
P8170113.JPG
Attachment 2: Untitled.png
Untitled.png
  1917   Mon Aug 17 04:16:13 2009 YoichiUpdatePSLReference cavity reflection looks bad

Quote:
Rana, Yoichi
- We also moved the Refcav reflection camera to look at the leakage through a reflection steering mirror so that there's less chance of distortion. There was previously a W1 window in there as a pickofff. Also changed the camera to autogain so that we can see something.

- Re-aligned onto the refl pd.

- Tweaked alignment into RC. Mainly in yaw. Transmission went from 5V to 7V. In your face, Aso!


After our removal of the pick off window and Rana's re-alignment of the beam into the RC, the RC optical gain increased.
FSS was complaining about it by driving the PC feedback crazy.
I reduced the nominal common gain from 12.5dB to 11dB.
  1922   Tue Aug 18 01:16:01 2009 JenneUpdatePSLMach Zehnder is realigned

The Mach Zehnder and I got to know each other today.  The reason for redoing the alignment was to improve pointing from the PSL table into the MC/IFO in hopes that this would solve the MC unlocking problems that we've been having lately.  Since Rana had aligned the IOO QPDs a few weeks ago when all of the alignments and things were good, I used them as a reference for my Mach Zehnder alignment activities. 

 
The order of operations were approximately as follows:

1. Block the secondary (west) arm of the Mach Zehnder using either an aluminum or razor dump.

2. Use SM1 in the MZ to align the beam to the IOO_QPDs (Pos and Ang).  I unfortunately also touched BS2 at this juncture, which made the refl path no longer a reference.

3.  Make sure that the QPD Sum on both Pos and Ang was sensible.  Since there are 2 beamsplitters in a Mach Zehnder, the power on the QPDs should be a quarter when only one beam is on them.  Be careful not to allow the beam no clip on anything.  The biggest problem was the bottom periscope mirror - if you hit it too high or too low, since it is a very thick optic, you end up coming out its side!  This is the frosty part on the edges, totally inappropriate for beams to go through!  Since the side of the periscope mirror isn't HR coated, when going through it like this, I was able to saturate the QPDs.  Not so good. 

4. Also, make sure that this first beam is on the MZ Refl PD.  Do this using the steering optics after the beam has left the MZ.  Use a viewer to look at the PD, and see the small spot of the beam on the diode.  We closed the iris which is present and was standing fully open to remove a spurious beam which was a parallel split-off of the main beam.  Since it was very weak, it is fine.

5.  Unblock the west arm, and block the east arm of the MZ.

6. Align this arm to both the IOO QPDs and the MZ refl diode using the adjustments on BS1, the PZT mirror and if necessary, BS2.  Note that the adjust knobs on the PZT mirror have lock screws.  Make sure to unlock them before adjusting, and relock afterward, to avoid slipping while the PZT is moving.

7.  Unblock all the beams, and make sure there is only one spot both on the transmission side and the reflection side, i.e. the 2 spots from the 2 arms are completely overlapping.  For the Trans side, make sure to look both in the near field and the far field (even after the periscope) to ensure that you really have one spot, instead of just the 2 spots crossing at a single location.

8.  Look at the MZ refl DC out and the PD out from the ISS box (which is essentially MZ trans, looking at Morag and Siobhan) on a 'scope.

9.  Touch / gently wiggle BS1 or another optic, and watch the 'scope.  At the same time, adjust BS1, the PZT mirror and BS2 to maximize the contrast between light and dark fringes.  Ideally, the refl PD should go almost to zero at the dark fringes.

10.  Check that you still have only one overlapping beam everywhere, and that you're actually hitting the MZ refl PD.

11. Because I was concerned about clipping while still figuring out the status of the lower periscope mirror, I removed the beam pipe holders between the last optic before the periscope, and the lower periscope mirror.  The beam pipe had already been removed, this was just the pedestals and the snap-in clamps.

All done for now!  Still to be done:  Optimize the position of the EOMs.  There is a waveplate out front and the EOMs are mounted in such a way that they can be moved in several directions, so that we can optimize the alignment into them.  They ideally only should see a single polarization, in order to apply solely a phase modulation on the beam.  If the input polarization isn't correct, then we'll get a bit of amplitude modulation as well, which on PDs looks like a cavity length change.  Also, the little blue pomona-type box which has the RF signals for the EOMs needs to be clamped to the table with a dog clamp, or better yet needs to be moved underneath the PSL table, with just the cables coming up to the EOMs.  The SMA connections and the SMA cable kept interfering with the MZ refl beam...it's a wonder anyone ever made the beam snake around those cables the way they were in the first place. Right now, the box is sitting just off the side of the table, just inside the doors.

 
Something else that Rana and I did while on the table:  We moved the PMC trans optics just a teensy bit toward the PSL door (to the east) to avoid coming so unbelievably close to the MZ refl optics.  The PMC trans beam shown in the lowest part of my sketch was very nearly clipping on the MZ refl steering optic just near it.  This situation isn't totally ideal, since (as it has been in the past), the first optic which is dedicated to the PMC trans isn't fully sitting on the PSL table.  The pedestal needs to hang off the edge of the table a bit to keep this beam from clipping.  Unfortunately there really isn't space to make a better beam path.  Since we're planning on getting rid of the MZ when the upgrade happens, and this isn't causing us noticeable trouble right now, we're going to let it stay the way it is.

Also, we dumped the reflection from the PMC RFPD onto a razor blade dump. And we noticed that the PZT mirror and BS2 in the MZ are badly vibrationally sensitive. BS2 has a ~400 Hz resonance (which is OK) but a ~150 ms ringdown time!! PZT mirror is similar.

Q = pi * f * tau = 200!  Needs some damping.

Attachment 1: MachZehnderOptics2.pdf
MachZehnderOptics2.pdf
  1923   Tue Aug 18 14:24:43 2009 YoichiSummaryPSLReference Cavity Inspection
Rana, Koji, Yoichi

To see why the reflected beam from the RC is distorted, we took out
the periscope and the iris in front of the RC. The periscope mirrors
had some gunk and dusts on them. We blew nitrogen air onto them to
remove the dust. Since the gunk did not come off with the air, we
wrapped a Q-tip with lens cleaning paper soaked in Methanol, and wiped
the surface of the mirrors. We did this because it was hard to remove
the mirrors from the periscope (they were in a spring loaded mirror
holders. The springs were too strong to safely remove them without
damaging the mirrors).

Looking into the RC from the front mirror revealed nothing obstructing
in the path.

After the cleaning, we put the periscope back and observed the direct
reflection from the cavity (not locked). It was still distorted
exactly like before.

So we did some tests.
First we injected He-Ne to the RC. It turned out that multiple
reflections from the optical window (not AR coated for He-Ne) made it
almost impossible to investigate anything with He-Ne. But this
observation made us to suspect maybe one side of the window is not AR
coated.

We placed the periscope about 50cm away from the RC and injected the
beam from an angle, so that we can observe the direct reflection.

First, we checked the shape of the beam leaving the periscope. It was good.
We then observed the reflected beam from the RC. It was also good, no distortion.
We made sure that it was really the reflection from the mirror, not from the window
as follows.
We measured the separation between the in coming beam to the cavity and the reflected beam
at two locations. From this, we can guess where the two beams intersect (the reflection point).
The estimated reflection point was far inside the RC enclosure, indicating that it was really
reflection from the front mirror of the RC.
Since we did not see any other reflection beam, we concluded that the AR coating of the window
is good.

We checked the direct reflection beam shape with several different incident angles, but the
beam shape was always good.

We put back the periscope to the original position. This time, we put a high reflectivity mirror
after the output mirror of the periscope. The beam coming out of the circulator (PBS) had a good
circular shape. But still if we let the beam reflected by the cavity, the beam shape is distorted.
Something must be happening in the RC. Unfortunately, we could not figure out what it is.

We put everything back to the original configuration, except for the iris, and the RC alignment
was already good (surprise). After Koji's final tweak, the FSS is now doing fine, but still
the reflected beam is ugly.
  1925   Tue Aug 18 15:52:27 2009 JenneUpdatePSLMZ
I tweaked up the MZ alignment.  The reflection had been around 0.550, which kept the MEDM indicator green, but was still too high.  I fiddled with BS1, and a little bit with BS2.  When I had the doors of the PSL table open, I got as low as 0.320.  When I closed up and came back to the control room, the MZ refl had drifted up to 0.354.  But it's good again now.

In the future, mirrors shouldn't be so close together that you can't get at their knobs to adjust them No good.  I ended up blocking the beam coming out of the PMC to prevent sticking my hand in some beam, making the adjustment, then removing the dump.  It worked in a safe way, but it was obnoxious. 

  1926   Tue Aug 18 19:57:47 2009 rana, JenneUpdatePSLMZ

- we finished the MZ alignment; the contrast is good.

- we did the RFAM tuning using a new technique: a bubble balanced analyzer cube and the StochMon RFPD. This techniques worked well and there's basically no 33 or 166 RFAM. The 133 and 199 are as expected.

- the MC locked right up and then we used the periscope to align to it; the transmission was ~75% of max before periscope tuning. So the beam pointing after the MC should be fine now.

- the Xarm locked up with TRX = 0.97 (no xarm alignment).

 

If Rob/Yoichi say the alignment is now good, the we absolutely must center the IOO QPDs and IP POS and IP ANG and MC TRANS  today so that we have good references.

 

-----------------------------------

The first photo is of our nifty new setup to get the beam to the StochMon PD.  The MZ transmitted beam enters the photo from the bottom right corner, and hits the PBS (which we leveled using a bubble level).  The P-polarization light is transmitted through the cube, and the S-polarization is reflected to the left.  The pure S-polarized light hits a Beam Splitter, which we are using as a pickoff to reduce the amount of light which gets to the PD.  Most of the light is dumped on an aluminum dump.  The remaining light hits a steering mirror (Y1 45-S), goes through a lens, and then hits the StochMon PD.  While aligning the MZ to maximize visibility, we look at the small amount of P-polarized light which passes through the PBS on an IR card, and minimize it (since we want to be sending purely S-polarized light through the EOMs and into the MC).

The second photo is of a spectrum analyzer which is directly connected to the RF out of the StochMon PD.  To minimize the 33MHz and 166MHz peaks, we adjust the waveplates before each of the EOMs, and also adjusted the tilt of the EOM holders.

The final photo is of the EOMs themselves with the Olympus camera.

Once we finished all of our MZ aligning, we noticed that the beam input to the MC wasn't perfect, so Rana adjusted the lower periscope mirror to get the pointing a little better.  

The MZ refl is now at 0.300 when locked.  When Rana reduced the modulation depth, the MZ refl was about 0.050 .  Awesome!

 

Attachment 1: MZ_RFAMmon_setup_small.jpg
MZ_RFAMmon_setup_small.jpg
Attachment 2: MZ_RFAMmon_SpecAnalyzer_small.jpg
MZ_RFAMmon_SpecAnalyzer_small.jpg
Attachment 3: MZ_EOM_IRrefl2_small.jpg
MZ_EOM_IRrefl2_small.jpg
  1942   Tue Aug 25 11:02:39 2009 ranaSummaryPSLTemperature Box

The PSL Temperature Box (D980400-B-C, what kind of numbering scheme is that?) modified at LHO/LLO ~8 years ago to have better resolution on the in-loop temperature sensors.

I haven't been able to find a DCN / ECN on this, but there's an elog entry from Hugh Radkins here.  I'm also attaching the PDF of the latest drawing (circa 2000) from the DCC.

The schematic doesn't show it, but I am guessing that the T_SENSE inputs are connected to the AD590 chips, and that 4 of these are attached somehow to the RefCav can. IF this is true, I don't understand why there are input resistors on the LT1125 of U1; the AD590 is supposed to be a current source ?

Peter King is supposed to be coming over to work on this today so whoever spots him should force/cajole/entice him to elog what he's done. Film him if necessary.

 

I also think R1-8 should be swapped into metal film resistors for stability. The datasheet says that it puts out 1 uA/K, so the opamps put out 10 mV/K.

J8 and JP1 should be shorted to disable both the tidal and VME control input. Both are unused and a potential source of drift.

Attachment 1: D980400-B.pdf
D980400-B.pdf
  1943   Tue Aug 25 18:42:42 2009 steveUpdatePSLreference cavity temp box temporarly out of order

Quote:

The PSL Temperature Box (D980400-B-C, what kind of numbering scheme is that?) modified at LHO/LLO ~8 years ago to have better resolution on the in-loop temperature sensors.

I haven't been able to find a DCN / ECN on this, but there's an elog entry from Hugh Radkins here.  I'm also attaching the PDF of the latest drawing (circa 2000) from the DCC.

The schematic doesn't show it, but I am guessing that the T_SENSE inputs are connected to the AD590 chips, and that 4 of these are attached somehow to the RefCav can. IF this is true, I don't understand why there are input resistors on the LT1125 of U1; the AD590 is supposed to be a current source ?

Peter King is supposed to be coming over to work on this today so whoever spots him should force/cajole/entice him to elog what he's done. Film him if necessary.

 

I also think R1-8 should be swapped into metal film resistors for stability. The datasheet says that it puts out 1 uA/K, so the opamps put out 10 mV/K.

J8 and JP1 should be shorted to disable both the tidal and VME control input. Both are unused and a potential source of drift.

 Peter King is updating our temp box as Hugh did at Hanford Oct.22 of 2001 I still have not seen an updated drawing of this.

The LT 1021-7 reference chip will arrive tomorrow morning. This modification should be completed by noon.

 ** The link to the DCN from Hugh is here in the DCC.

ELOG V3.1.3-