40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 173 of 339  Not logged in ELOG logo
ID Date Author Type Category Subjectup
  15861   Thu Mar 4 10:54:12 2021 Paco, AnchalSummaryLSCPOY11 measurement, tried to lock Green Yend laser

[Paco, Anchal]

- First ran burtgooey as last time.

- Installed pyepics on base environment of donatella

ASS XARM:
- Clicked on ON in the drop down of "! More Scripts" below "! Scripts XARM" in C1ASS.adl
- Clicked on "Freeze Outputs" in the same menu after some time.
- Noticed that the sensing and output matrix of ASS on XARM and YARM look very different. The reason probably is because the YARM outputs have 4 TT1/2 P/Y dof instead of BS P/Y on the XARM. What are these TT1/2?

(Probably, unrelated but MC Unlocked and kept on trying to lock for about 10 minutes attaining the lock eventually.)

Locking XARM:
- From scripts/XARM we ran lockXarm.py from outside any conda environment using python command.
- Weirdly, we see that YARM is locked??? But XARM is not. Maybe this script is old.
- C1:LSC-TRY-OUTPUT went to around 0.75 (units unknown) while C1:LSC-TRX-OUTPUT is fluctuating around 0 only.

POY11 Spectrum measurement when YARM is locked:
- Created our own template as we couldn't find an existing one in users/Templates.
- Template file and data in Attachment 2.
- It is interesting to see most of the noise is in I quadrature with most noise in 10 to 100 Hz.
- Given the ARM is supposed to be much calmer than MC, this noise should be mostly due to the mode cleaner noise.
- We are not sure what units C1:LSC-POY11_I_ERR_DQ have, so Y scale is shown with out units.


Trying to lock Green YEND laser to YARM:
- We opened the Green Y shutter.
- We ensured that when temperature slider og green Y is moved up, the beatnote goes up.
- ARM was POY locked from previous step.
- Ran script scripts/YARM/Lock_ALS_YARM.py from outside any conda environment using python command.
- This locked green laser but unlocked the YARM POY.

Things moving around:
- Last step must have made all the suspension controls unstable.
- We see PRM and SRM QPDs moving a lot.
- Then we did burt restore to /opt/rtcds/caltech/c1/burt/autoburt/today/08:19/*.snap to go back to the state before we started changing things today.

[Paco left for vaccine appointment]

- However the unstable state didn't change from restore. I see a lot of movement in ITMX/Y. PRM and BS also now. Movement in WFS1 and MC2T as well.
 - I closed PSL shutter as well to hopefully disengage any loops that are still running unstably.
 - But at this point, it seems that the optics are just oscillating and need time to come back to rest. Hopefully we din't cause too much harm today :(.
 


My guess on what happened:

  • Us using the Lock_ALS_YARM.py probably created an unstable configuration in LSC matrix and was the start of the issue.
  • On seeing PRM fluctuate so much, we thought we should just burst restore everything. But that was a hammer to the problem.
  • This hammer probably changed the suspension position values suddenly causing an impulse to all the optics. So everything started oscillating.
  • Now MC WFS is waiting for MC to lock before it stablizes the mode cleaner. But MC autolocker is unable to lock because the optics are oscillating. Chicken-egg issue.
  • I'm not aware of how manually one can restore the state now. My only known guess is that if we wait for few hours, everything should calm back enough that MC can be locked and WFS servo can be switched on.
Attachment 1: 20210304_POY11_Spectrum_YARMLocked.pdf
20210304_POY11_Spectrum_YARMLocked.pdf
Attachment 2: 20210304_POY11_Spectrum_YARMLocked.tar.gz
  4787   Mon Jun 6 16:44:34 2011 KojiUpdateElectronicsPOY11 tested

The full characterization of POY11 is found in the PDF.

Resonance at 11.03MHz
Q of 7.6, transimpedance 1.98kOhm
shotnoise intercept current = 0.17mA (i.e. current noise of 7pA/rtHz)

Notch at 21.99MHz
Q of 56.2, transimpedance 35.51 Ohm

Notch at 55.20MHz
Q of 48.5, transimpedance 37.5 Ohm

 

Attachment 1: POY11_test.pdf
POY11_test.pdf POY11_test.pdf POY11_test.pdf POY11_test.pdf
  4761   Mon May 23 14:28:23 2011 kiwamuConfigurationLSCPOY55 installed

Last Saturday the POY55 RFPD (see this entry) was installed on the ITMY optical bench for the trial of the DRMI locking.

Since the amount of the light coming into the diode is tiny, the DC monitor showed ~ 3 mV even when the PRC was locked to the carrier.

In order to amplify the tiny RF signal from the photo diode a ZHL amplifier was installed next to the RFPD. The RF amp is sitting on delrin posts for insulation from the table.

POY55.png

  4763   Mon May 23 18:16:42 2011 KojiConfigurationLSCPOY55 installed

The DC Transimpedance of POP55 was increased from 50 Ohm to 10010 Ohm. There is the offset of 46mV. This should be cancelled in the CDS.

Quote:

Last Saturday the POY55 RFPD (see this entry) was installed on the ITMY optical bench for the trial of the DRMI locking.

Since the amount of the light coming into the diode is tiny, the DC monitor showed ~ 3 mV even when the PRC was locked to the carrier.

In order to amplify the tiny RF signal from the photo diode a ZHL amplifier was installed next to the RFPD. The RF amp is sitting on delrin posts for insulation from the table.

 

  4708   Thu May 12 23:50:10 2011 SureshUpdateRF SystemPOY55_Demod board Hardware change completed

The Demod board with S. No. 022 (being used earlier as REFL11) has been modified.  It now has SCLF-65 as its input LP filter on the PD input line and a PQW-2-90 power splitter.  The unit functioning okay (I and Q signals are 90 deg apart.

The loss of Q output was traced to a possible loose solder joint and we now have both the I and Q signals after resoldering all components in the vicinity of U7 (Ref Schematic of D990511)

There is a strong oscillation around 350Hz present on I and Q signals of both REFL55_Demod and POY55_Demod.  Don't know the source. 

We have run out of power splitters to continue with the Demod board modification. We do not currently have an AS11_Demod board.  All the others are in place and ready for the I<->Q phase angle measurement.

In summary we now have the following Demod boards in place:

[ REFL11, POY11, REFL55, AS55, POY55, POY22, POY110]_Demod

 

  4737   Wed May 18 07:18:15 2011 SureshUpdateRF SystemPOY55_Demod board Hardware change completed

The ~350 Hz noted in the elog below was traced to an RF modulation of the 11 MHz sideband.  This modulation was set up in the Marconi which is currently supplying the 11 MHz local oscillator signal to the RF source.  lt was used during the MC length study completed last week by Valera and Ryan.  The frequency measured was 322 Hz.

As we do not require this any longer, I have switched off this modulation.

 

 

Quote:

The Demod board with S. No. 022 (being used earlier as REFL11) has been modified.  It now has SCLF-65 as its input LP filter on the PD input line and a PQW-2-90 power splitter.  The unit functioning okay (I and Q signals are 90 deg apart.

The loss of Q output was traced to a possible loose solder joint and we now have both the I and Q signals after resoldering all components in the vicinity of U7 (Ref Schematic of D990511)

There is a strong oscillation around 350Hz present on I and Q signals of both REFL55_Demod and POY55_Demod.  Don't know the source. 

We have run out of power splitters to continue with the Demod board modification. We do not currently have an AS11_Demod board.  All the others are in place and ready for the I<->Q phase angle measurement.

In summary we now have the following Demod boards in place:

[ REFL11, POY11, REFL55, AS55, POY55, POY22, POY110]_Demod

 

 

  12588   Fri Oct 28 19:13:57 2016 ranaUpdateGeneralPR gain

I don't think the loss of 25 ppm is outrageous. Its just surprisingly good. The SIS model predicted numbers more like 1 ppm / mirror taking into account just the phase map and not the coating defects.

However, we should take into account the lossed in the DRMI to be more accurate: AR coating reflectivities, scatter loss on those surfaces, as well as possible clipping around BS or some other optics.

https://chat.ligo.org/ligo/channels/40m

  8197   Thu Feb 28 03:25:27 2013 yutaUpdateLSCPR gain ~ 25 from PRMI carrier lock

[Manasa, Yuta]

We locked PRMI in carrier. Measured power recycling gain was ~25.

Plot:

  Here's some plot of PRC intra-cavity powers and MICH,PRCL error signals. As you can see from POPDC, cavity buildup was about 400, which means power recycling gain was ~25. Power recyling gain is fluctuating up to ~45 during lock. We need some gain normalization or something.
PRMIcarrier.png


Movie:

  Here's 30 sec movie of AS, POP, REFL when acquiring PRMI carrier lock. Although there's oscillation when acquiring lock, beam spot motion is less and stable compared with the past(before flipping PR2).



Locking details:
 == PRMI carrier ==
  MICH: AS55_Q_ERR, AS55_PHASE_R = -12 deg,  MICH_GAIN = -0.1, feedback to ITMX(-1),ITMY(+1)
  PRCL: REFL55_I_ERR, REFL55_PHASE_R = 70 deg, PRCL_GAIN = 5, feedback to PRM


Next:
  - Better filters and gains for stable lock
  - Kakeru method to measure g-factor (see elog around #1434)
  - OSA to measure g-factor

  8198   Thu Feb 28 03:41:31 2013 KojiUpdateLSCPR gain ~ 25 from PRMI carrier lock

VERY GOOD!
This is how the carrier lock PRMI should look like.

- There is more room to improve the differential ITM alignment to make the dark port more dark, then you will gain more PRG

- The AS spot is definitely clipped.

  7931   Wed Jan 23 19:05:16 2013 JenneUpdateLockingPR-flat cavity status - locks!

Status update

I (with help from Q) have redone the POP path on the ITMX table.  1" iris is a little too small, so I took it out.  2" lens moved to be centered on POP beam.  2" Y1 didn't need moving.  Straight refl from the 2" Y1 was aligned on to a PDA10CS (set to 70dB). This PD is blocking the usual POP55 diode.  BS which sends beam to camera was moved to allow room for the new temp DC PD.  Refl from this BS goes to the POP camera, which was moved so that the POP beam takes up most of the camera.  BS that would normally take half of the camera's beam and send it to POP22 (Thorlabs PD) is removed, so no beam to POP22.

Also, I have taken the output of the PDA10CS and hijacked the "POP110" heliax cable.  This was connected to this Thorlabs PD which is used as POP22.  (Kiwamu and I had long-term borrowed the 110 demod board for an AS 110 diode, so the "POP110" heliax was really only serving POP22.) There are yellow labels on the new temp and old regular cables, so we can undo my hack.  Similarly, on the other end of the heliax at the LSC rack, I have taken the heliax's output and sent it to the POPDC input on the whitening board.  Thus, the regular POPDC SMA cable is unplugged, but labeled again with big yellow labels.

In other news - the PR-flat cavity locks!!! 

Koji and I coarsely rotated the REFL11 phase such that the signal is predominantly in the I phase.  We set the LSC input matrix to use REFL11I for PRCL, and the output matrix is set to actuate on PRM.  Then we set the gain to -0.005, and it locked!!!!

 

EDIT:  I turned back on the PRM oplev (after Manasa aligned it and redid the out-of-vac oplev layout a bit), and the motion of the cavity is slightly reduced, although there's still a lot going on.  The cavity is vaguely well aligned, although it's time to go make sure that the beams are still on the REFL and TRANS PDs.  However, it's dinner time.

  7934   Wed Jan 23 20:46:46 2013 Zen MasterUpdateLockingPR-flat cavity status - locks!

Quote:

I (with help from Q)

 Two quadratures working in harmony.

yinYang.png

  7928   Tue Jan 22 19:53:01 2013 JenneUpdateLockingPR-flat cavity status - not locked

The PR-flat cavity is flashing, although not locked.  I am too hungry to continue right now.

I put the FI_Back camera on a tripod, looking at the back of the Faraday.  The beam that Jamie and I were working with on Friday was clipped going back through the Faraday.  I twiddled the TT2 and PRM pointing such that the beam is retroreflecting, and getting back through the Faraday, and the cavity is still flashing.  I then redid the REFL path on the AS table a little bit.  The beam is currently going to the REFL camera, as well as REFL11 and REFL55. 

Some notes about the AS table:  The Y1 separating the main REFL beam from the REFL camera beam was mounted 90 degrees (rotated about the beam's axis) from what it should be.  I fixed it, so that the straight-through beam that goes to the camera is not clipped by the edge of the mount.  The reason (I think) this mirror was mounted backwards is that when mounted correctly, the back of the mount and the knobs interfere with the AS beam path.  I solved this by rotating the first out-of-vac REFL mirror a small amount so that the REFL and AS beams are slightly more separated. 

I am not seeing any nice PDH signal on dataviewer, so I went to check the signal path for the PDs.  The 11MHz marconi is on and providing RF, the EOM is plugged in to 11, 55 and 29.5 signals (no aux cavity scan cables are plugged in).  Both of the RF Alberto boxes are on.  I measured the RF output of both REFL11 and REFL55, although after the fact I realized that I was BAD, and had not found a 'scope that lets me change the input impedance to 50 ohms.  BAD grad student.  However, since I have numbers, I will post them, despite their being not quite correct:

284mVpp at 11MHz out of REFL11.  This is -6.9dBm

2mVpp at 55MHz out of REFL55, measured by 'scope

So, I can clearly see the 11MHz on the 'scope, and can see a very noisy, small 55MHz signal on the 'scope.  I need to think over dinner about what level of signal we should be sending to the demod boards, and whether or not I need more power coming out of the RFPDs.  There is a wave plate and PBS before beam goes to any of the REFL PDs, presumably to ensure that none of them get fried when we're at high power.  If I need more signal, I suspect I can rotate the wave plate and let more light go to the diodes.

  16555   Fri Jan 7 17:54:13 2022 AnchalUpdateBHDPR2 Sat Amp has a bad channel

[Anchal, Paco]

Yesterday we noticed that one of the ADC channels was overflowing. I checked the signal chain and found that CH3 on PR2 Sat Amp was railing. After a lot of debugging, our conclusion is that possible the PD current input trace is shorted to the positive supply through a finite resistance on the PCB. This would mean this PCB has a manufacturing defect. The reason we come to this conclusion is that even after removing the opamp U3 (AD822ARZ), we still measure 12.5 V at the pins of R25 (100 Ohm input resistance)

Please see the schematic for reference. We also checked the resistance between input of R25 (marked PDA above) and positive voltage rail and it came out as 3 kOhms. While I all other channels, this value was 150 kOhms.

I would like it if someone else also takes a look at this. We probably would need to change the PCB in this chassis or use a spare chassis.

  16558   Fri Jan 7 18:28:13 2022 KojiUpdateBHDPR2 Sat Amp has a bad channel

Leave the unit to me. I can look it at on Mon. For a while, you can take a replacement unit from the electronics stack.

Also: Was this unit tested before? If so, what was the testing result at the time?

  16560   Mon Jan 10 13:35:52 2022 AnchalUpdateBHDPR2 Sat Amp has a bad channel

The unit was tested before by Tege. The test included testing the testpoint voltages only. He summarized his work in this doc. The board number is S2100737. Here are the two comments about it:
"This unit presented with an issue on the PD1 circuit of channel 1-4 PCB where the voltage reading on TP6, TP7 and TP8 are -15.1V,  -14.2V, and +14.7V respectively, instead of ~0V.  The unit also has an issue on the PD2 circuit of channel 1-4 PCB because the voltage reading on TP7 and TP8 are  -14.2V, and +14.25V respectively, instead of ~0V."

"Debugging showed that the opamp, AD822ARZ, for PD2 circuit was not working as expected so we replaced with a spare and this fixed the problem. Somehow, the PD1 circuit no longer presents any issues, so everything is now fine with the unit."

Note:  No issues were reported on PD3 circuit is is malfunctioning now.

Quote:

Also: Was this unit tested before? If so, what was the testing result at the time?

 

  16564   Mon Jan 10 15:59:46 2022 KojiUpdateBHDPR2 Sat Amp has a bad channel

The issue was present in the cable between the small adapter board and the rear panel. The cable and the Dsub 25 connectors were replaced. The removed parts were resoldered. Did the basic test of the channel.


Attachment 1: I cleaned up the area of the PD3 circuit of S2100556 and checked the voltage when the circuit was energized. The PD photocurrent line from the rear panel had S2100556 even with R25 removed. So the problem was between the rear panel to the outer side of R25. I've started to remove the cables to localize the issue and found that the issue disappeared when the ribbon cable was removed.

Attachment 2: I didn't investigate how the ribbon cable was bad. It was just trashed. The cable and the 25pin Dsub connectors were replaced and the line in question looked normal.

Attachment 3: All the components removed were stuffed again. The I/V-output of the circuit showed a 0.7mV offset but it seemed within the normal range. By touching R25 with a finger made it up to ~10mV as the other channels do. BTW: For 1000pF cap (C10) I used a stock 1000pF cap (KEMET, C330C102JDG5TA, 5%, 1kV, C0G) instead of nominal one (KEMET, C317C102G1G5TA,  2%, 100V, C0G).

Attachment 4: Noticed that the jumpers for shield grounding were missing. So they were installed (Attachment 5). This jumper is connected to Pin13. This line becomes Pin1 of the Dsub25 sat-amp cable because of the adapter board D2100148. The sat amp cable is D2100675. Hmm. In fact, this line does not touch the shield anywhere (unlike the aLIGO case). So only the chassis provides the cable shielding, no matter how the jumpers are connected or not connected.

Attachment 6: Final state of the circuit

Attachment 1: trouble_shoot1.jpg
trouble_shoot1.jpg
Attachment 2: trouble_shoot2.jpg
trouble_shoot2.jpg
Attachment 3: S2100556_PD3.jpg
S2100556_PD3.jpg
Attachment 4: shield_grounding_before.jpg
shield_grounding_before.jpg
Attachment 5: shield_grounding_after.jpg
shield_grounding_after.jpg
Attachment 6: S2100737.jpg
S2100737.jpg
  16617   Mon Jan 24 17:58:21 2022 YehonathanUpdateBHDPR2 Suspension

I picked up the PR2 mirrors (labeled M1, M2) from Anchel's table and took them to the cleanroom. By inspection, I spotted some dust particles on M1. I wasn't able to remove them with clean air so I decided to use M2 which looked much cleaner. I wasn't able to discern any wedge angle on the optic. I inserted the optic into a thin optic adapter. The optic is thicker than I expected so I use long screws for the mirror clamping. I expect that the pitch balance will shift towards the front of the mirror so I assembled only 1 counterweight for now. The side blocks with wires in them were installed.

I engraved the SOS and installed the winches on it. Paco came in and helped me to hang the optic. Looking at the wire hanging angle I realize that 1 counterweight at the front is not enough. I install a second counterweight at the back and observe that I can cross the balancing point.

I locked the EQ stops. Suspension work continues tomorrow...

  16624   Tue Jan 25 18:37:12 2022 TYehonathanUpdateBHDPR2 Suspension

PR2's side magnet height was adjusted and its roll was balanced (attachment 1,2). I verified that the OpLev beam is still aligned. The pitch was balanced: First, using an iris for rough adjustment. Then, with the QPD. I locked the counterweight setscrew.

I turned off the HEPAs, damped PR2, and measured the QPD spectra (attachment 3). Major peaks are at 690mHz, 953mHz, and 1.05Hz. I screwed back the lower OSEM plate. The wires were clamped to the suspension block and were cut. Winch adapter plate removed. I wanted to push OSEMs into the OSEM plates but the wiki is down so I can't tell what was the plan. This will have to wait for tomorrow. Also here like with AS1 we need to apply glue to the counterweights.

Attachment 1: PR2_magnet_height.png
PR2_magnet_height.png
Attachment 2: PR2_roll_balance.png
PR2_roll_balance.png
Attachment 3: FreeSwingingSpectra_div_50mV.pdf
FreeSwingingSpectra_div_50mV.pdf
  7632   Fri Oct 26 16:57:30 2012 JenneUpdateAlignmentPR2 aligned, PR3 mostly aligned

[Raji, Jenne]

After lunch we began where Raji and Jamie had left things.  PR2 was unfortunately pitched down so far that it was almost hitting the table just in front of PR3.  I loosened the 4 clamp screws that hold the wire clamp assembly to the mirror holder, and tapped it back and forth until I was within hysteresis range, re-tightened, then tapped the top and bottom until we were at the correct beam height just in front of PR3.  I also had to unclamp it from the table and twist the base a tiny bit, since the beam was closer to hitting the beam tube than the optic.  Finally, however, PR2 is adjusted such that the beam hits the center of PR3.

Moving on to PR3, the pitch looked good while we were looking at the aperture placed near the face of ITMY, so we left that alone.  The beam is off in yaw though.  Several times I unclamped the tip tilt from the table, and twisted it one way or another, but every time when I tighten the dog clamps, I'm too far off in yaw.  The beam points a little too far south of the center of ITMY, so we were putting the beam a little north of the center before I clamped it, but even tightening the screws in the same order, by the same amount each time, causes a different amount of slipping/twisting/something of the TT mount, so we never end up directly in the center of the ITM.  It seems a little like a stochastic process, and we just need to do it a few more times until we get it right. 

We left it clamped to the table, but not in it's final place, and left for JClub.  On Monday morning we need to go back to it.  As long as we're pretty close to centered, we should probably also have someone at ETMY checking the centering, because we need to be centered in both ITMY and ETMY.

We have not touched the SR tip tilts, so those will obviously need some attention when we get to that point.

  16636   Tue Feb 1 20:16:09 2022 TegaUpdateBHDPR2 candidate mirror analysis

git repo: git@git.ligo.org:tega-edo/charmirrormap.git

The analysis code takes in a set of raw images, 10 in our case,  for each mirror and calculates the zernike aberration coefficients for each image, then takes their average. This average value is used to reconstruct the mirror height map.  Finally, the residual error between the reconstructed image and the raw data is calculated.

We repeat the analysis for different field of views (FoV) namely 10mm, 20mm, 30mm, 40mm and 46.5mm and save the results in the output folder of the repo.

The analysis output for a 10mm FoV aperture at the mirror center is shown in the attachement. These three images show the input data, the reconstructed mirror surface map and the residual error.

Attachment 1: PR2_M2_data.png
PR2_M2_data.png
Attachment 2: PR2_M2_recon_FoV_10mm.png
PR2_M2_recon_FoV_10mm.png
Attachment 3: PR2_M2_residual_FoV_10mm.png
PR2_M2_residual_FoV_10mm.png
  8024   Thu Feb 7 15:46:42 2013 JenneUpdateLockingPR2 flipped

More correctly, a different G&H mirror (which we have a phase map for) was put into the PR2 TT, backwards.

Order of operations:

* Retrieve flat test G&H from BS chamber.  Put 4th dog clamp back on BS optic's base.

* Remove flat G&H from the DLC mount, put the original BS that was in that mount back.  Notes:  That BS had been stored in the G&H's clean optic box.  The DLC mount is engraved with the info for that BS, so it makes sense to put it back.  The DLC mount with BS is now back in a clean storage box.

* Remove PR2 TT from ITMX chamber.

* Remove suspension mounting block from TT frame, lay out flat, magnets up, on lint-free cloth on top of foil.

* Remove former PR2 G&H optic.

* Put what was the flat G&H test optic into the PR2 optic holder, with AR surface at the front.

* Put PR2 suspension block back onto TT frame.

* Put PR2 assembly back in the chamber, solidly against the placement reference blocks that Evan put in last Thursday.

* Close up, clean up, put labels on all the boxes so we know what optic is where.

 

Why the switcho-changeo?  We have a phase map for the G&H that is the new PR2, and a measured RoC of -706m, surface rms of 8.7nm.  Now, we can measure the former PR2 and see how it compares to our estimate of the RoC from the cavity measurements we've taken recently.

  8095   Sat Feb 16 19:23:17 2013 yutaUpdateLSCPR2 flipped PRMI locked

It is my pleasure to announce that the first lock of PR2 flipped PRMI was succeeded.



POP looks very nice. TEM00 and not wobbling.
We need more I/Q phase and gain/filter adjustment and characterization soon.

Some more details:
  MICH error signal: AS55_Q_ERR (using POP55 PD; phase rotation angle 70 deg)
  PRCL error signal: REFL11_I_ERR (phase rotation angle 80 deg)
  MICH feedback: BS (MICH_GAIN = -60)
  PRCL feedback: PRM (PRCL_GAIN = -0.5)

  8066   Tue Feb 12 00:50:08 2013 yutaUpdateLockingPR2 oplev spectra

I wanted to see if PR2 motion makes PRC beam motion or not, using temporary oplev to PR2.
I could not measure the coherence between beam motion and PR2 motion, because I couldn't lock half-PRC today.
But I took spectra of PR2 oplev anyway.

Result:

  Below are the spectra of PR2 oplev outputs (taken using C1:SUS-ITMX_OL(PIT|YAW)_IN1). Bottom plot is POP DC during half-PRC locked yesterday.
PR2oplev.png

Discussion:
  We see bump in PR2 oplev output at ~ 2-3 Hz. But we cannot say this is a evidence for PR2 motion making PRC beam motion because no coherence measurement was done. Also, oplev might be just seeing the ITMX stack motion.

  Resonant frequency of TTs measured were at ~ 1.8-1.9 Hz (elog #8054), but we cannot clearly see these peaks in oplev outputs. Did resonant frequency shifted because of different damping condition?

  16575   Tue Jan 11 15:21:16 2022 AnchalUpdateBHDPR2 transmission calculation

I did this simple calculation where I assumed 1W power from laser and 10% transmission past IMC. We would go ahead with V6-704/V6-705 ATFilms 3/8" optic. It would bring down the PRC gain to ~30 but will provide plenty of light for LO beam and alignment.

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PRS_Trans_Calc.ipynb.zip
  16583   Thu Jan 13 17:10:55 2022 AnchalUpdateBHDPR2 transmission calculation

I corrected the calculation by adding losses by the arm cavity ends times the arm cavity finesse and also taking into account the folding of the cavity mirror. I used exact formula for finesse calculation and divided it by pi to get the PRC gain from there. Attachment 3 is the notebook for referring to the calculations I made.

Note that using V6-704 would provide 35 mW of LO power when PRFPMI is locked and 113 uW for alignment, but will bring down the PRC Gain to 17.5.

pre-2010 ITM (if it is still an option) would provide 12 mW of LO power when PRFPMI is locked and 28 uW for alignment, but will keep the PRC Gain to 24.6.

I still have to do a curvature check on the V6-704 optic.

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PR2_Trans_Calc.ipynb.zip
  16584   Fri Jan 14 03:07:04 2022 KojiUpdateBHDPR2 transmission calculation

I opened the notebook but I was not sure where you have the loss per bounce for the arm cavity.

    PRC_RT_Loss = 2 * PR3_T + 2 * PR2_T + 2 * Arm_Cavity_Finesse * ETM_T + PRM_T

Do you count the arm reflection loss to be only 2 * 13ppm * 450 = 1.17%?

  16585   Fri Jan 14 11:00:29 2022 AnchalUpdateBHDPR2 transmission calculation

Yeah, I counted the loss from arm cavities as the transmission from ETMs on each bounce. I assumed Michelson to be perfectly aligned to get no light at the dark port.  Should I use some other number for the round-trip loss in the arm cavity?

  16587   Fri Jan 14 13:46:25 2022 AnchalUpdateBHDPR2 transmission calculation updated

I updated the arm cavity roundtrip losses due to scattering. Yehonathan told me that arm cavity looses 50ppm every roundtrip other than the transmission losses. With the updated arm cavity loss:

  PRFPMI LO Power (mW) Unlocked PRC LO Power (uW) PRC Gain
pre-2010 ITM 8 28 15.2
V6:704 24 113 12

 

Attachment 1: LO_power_vs_PR2_transmission.pdf
LO_power_vs_PR2_transmission.pdf
Attachment 2: PRC_Gain_vs_PR2_transmission.pdf
PRC_Gain_vs_PR2_transmission.pdf
Attachment 3: PR2_Trans_Calc.ipynb.zip
  16598   Wed Jan 19 16:22:48 2022 AnchalUpdateBHDPR2 transmission calculation updated

I have further updated my calculation. Please find the results in the attached pdf.

Following is the description of calculations done:


Arm cavity reflection:

Reflection fro arm cavity is calculated as simple FP cavity reflection formula while absorbing all round trip cavity scattering losses (between 50 ppm to 200 ppm) into the ETM transmission loss.

So effective reflection of ETM is calculated as

r_{\rm ETMeff} = \sqrt{1 - T_{\rm ETM} - L_{\rm RT}}

r_{\rm arm} = \frac{-r_{\rm ITM} + r_{\rm ETMeff}e^{2i \omega L/c}}{1 - r_{\rm ITM} r_{\rm ETMeff}e^{2 i \omega L/c}}

The magnitude and phase of this reflection is plotted in page 1 with respect to different round trip loss and deviation of cavity length from resonance. Note that the arm round trip loss does not affect the sign of the reflection from cavity, at least in the range of values taken here.


PRC Gain

The Michelson in PRFPMI is assumed to be perfectly aligned so that one end of PRC cavity is taken as the arm cavity reflection calculated above at resonance. The other end of the cavity is calculated as a single mirror of effective transmission that of PRM, 2 times PR2 and 2 times PR3. Then effective reflectivity of PRM is calculated as:

r_{\rm PRMeff} = \sqrt{1 - T_{\rm PRM} - 2T_{\rm PR2} - 2T_{\rm PR3}}

t_{\rm PRM} = \sqrt{T_{\rm PRM}}

Note, that field transmission of PRM is calculated with original PRM power transmission value, so that the PR2, PR3 transmission losses do not increase field transmission of PRM in our calculations. Then the field gain is calculated inside the PRC using the following:

g = \frac{t_{\rm PRM}}{1 - r_{\rm PRMeff} r_{\rm arm}e^{2 i \omega L/c}}

From this, the power recycling cavity gain is calculated as:
G_{\rm PRC} = |g|^2

The variation of PRC Gain is showed on page 2 wrt arm cavity round trip losses and PR2 transmission. Note that gain value of 40 is calculated for any PR2 transmission below 1000 ppm. The black verticle lines show the optics whose transmission was measured. If V6-704 is used, PRC Gain would vary between 15 and 10 depending on the arm cavity losses. With pre-2010 ITM, PRC Gain would vary between 30 and 15.


LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1). This power is then multiplied by PRC Gain and transmitted through the PR2 to calculate the LO power.

P_{\rm LO, PRFPMI} = P_{\rm in} L_{\rm IMC}G_{\rm PRC}T_{\rm PR2}

Page 3 shows the result of this calculation. Note for V6-704, LO power would be between 35mW and 15 mW, for pre-2010 ITM, it would be between 15 mW and 5 mW depending on the arm cavity losses.

The power available during alignment is simply given by:
P_{\rm LO, align, PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PRM} T_{\rm PR2}

P_{\rm LO, align, no PRM} = P_{\rm in} L_{\rm IMC} T_{\rm PR2}

If we remove PRM from the input path, we would have sufficient light to work with for both relevant optics.


I have attached the notebook used to do these calculations. Please let me know if you find any mistake in this calculation.

Attachment 1: PR2transmissionSelectionAnalysis.pdf
PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf PR2transmissionSelectionAnalysis.pdf
Attachment 2: PR2_Trans_Calc.ipynb.zip
  16602   Thu Jan 20 01:48:02 2022 KojiUpdateBHDPR2 transmission calculation updated

IMC is not such lossy. IMC output is supposed to be ~1W.

The critical coupling condition is G_PRC = 1/T_PRM = 17.7. If we really have L_arm = 50ppm, we will be very close to the critical coupling. Maybe we are OK if we have such condition as our testing time would be much longer in PRMI than PRFPMI at the first phase. If the arm loss turned out to be higher, we'll be saved by falling to undercoupling.
When the PRC is close to the critical coupling (like 50ppm case), we roughly have Tprc x 2 and Tarm to be almost equal. So each beam will have 1/3 of the input power i.e. ~300mW. That's probably too much even for the two OMCs (i.e. 4 DCPDs). That's OK. We can reduce the input power by 3~5.

Quote:

LO Power

LO power when PRFPMI is locked is calculated by assuming 1 W of input power to IMC. IMC is assumed to let pass 10% of the power (L_{\rm IMC}=0.1).

 

  8049   Fri Feb 8 23:59:42 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I did mode scan of PR2-flipped half-PRC to see if it behaves as we expect.
Measured finesse was 107 +/- 5 and g-factor is 0.98997 +/- 0.00006.
g-factor is 0.9800 +/- 0.0001.  (Edited by YM; see elog #8056)

 
Finesse tells you that we didn't get large loss from flipped PR2.
Since we have convex TM in front of BS, PRC will be more stable than this half-PRC.

Method:
 1. Aligned half-PRC using input TT1 and TT2 by maximizing POP DC during lock. It was not so easy because POP DC fluctuates much at ~ 3 Hz with amplitude of ~ 30 % of the maximum value because of the beam motion (movie on  elog #8039).

 2. Unlocked half-PRC and took POP DC and PRC error signal data;

> /opt/rtcds/caltech/c1/scripts/general/getdata -d 1 -o /users/yuta/scripts/PRCmodescan C1:LSC-POPDC_OUT C1:LSC-REFL11_I_ERR

  Ran again and again until I get sufficiently linear swing through upper/lower sidebands.

 3. Ran modescan analyzing scripts (elog #8012).

Result:
 Below is the plot of POP DC and PRCL error signal (REFL11_I).
halfPRCmodescan.png

 By averaging 5 sets of peaks around TEM00;

Time between TEM00 and sideband  0.0347989  pm  0.00292257322372  sec
Calibration factor is  317.995971137  pm  26.7067783894  MHz/sec
FSR is  34.5383016129  MHz
FWHM is  0.323979022488  pm  0.0145486106353  MHz
TMS is  1.55827297374  pm  0.00439737672808  MHz
Finesse is  106.606598624  pm  4.78727876459
Cavity g-factor is  0.989971692098  pm  5.65040851566e-05
Cavity g-factor is  0.980043951156  pm  0.000111874889586

Discussion:
 Measured finesse is similar to measured PRM-PR2 cavity finesse(108 +/- 3, see elog #8012). This means loss from flipped PR2 and beam path from PR2 to TM is small.

 I'm a little suspicious about measured g-factor because it is hard to tell which peak is which from the mode scan data. Since half-PRC was not aligned well, high HOMs may contribute to POP DC. Astigmatism also splits HOM peaks.

 PRC 3 Hz beam motion was there for long time (see, for example, elog #6954). BS is unlikely to be the cause because we see this motion in half-PRC, too.
 Also, beam spot motion was not obvious in the PRM-PR2 cavity. My hypothesis is; stack resonance at 3 Hz makes PR2/PR3 angular motion and folding by PR2/PR3 makes the beam spot motion.

Next things to do:
 * PRC g-factor
   - Calculate expected half-PRC g-factor with real measured curvatures, with error bar obtained from RoC error and length error (JAMIE)
   - Calculate expected PRC g-factor using measured half-PRC g-factor (JAMIE)
 * PRC 3 Hz beam motion
   - Do we have space to put oplevs for PR2/PR3?
   - Can we fix PR2/PR3 temporarily?
 * PRMI
   - Align incident beam, BS, REFL, AS, and MI using arms as reference
   - lock PRMI
   - PRC mode scan

  8050   Sat Feb 9 11:25:35 2013 KojiUpdateLockingPR2-flipped half-PRC mode scan

Don't  Shouldn't you apply a small misalignment to the input beam? Isn't that why the peak for the 1st-order is such small?

Quote:

Method
 1. Aligned half-PRC using input TT1 and TT2 by maximizing POP DC during lock. It was not so easy because POP DC fluctuates much at ~ 3 Hz with amplitude of ~ 30 % of the maximum value because of the beam motion (movie on  elog #8039).

 2. Unlocked half-PRC and took POP DC and PRC error signal data;

> /opt/rtcds/caltech/c1/scripts/general/getdata -d 1 -o /users/yuta/scripts/PRCmodescan C1:LSC-POPDC_OUT C1:LSC-REFL11_I_ERR

  Ran again and again until I get sufficiently linear swing through upper/lower sidebands.

 

  8052   Sun Feb 10 17:30:39 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I redid half-PRC mode scan by applying mislignment to PRM.
Half-PRC's sagittal g-factor is 0.9837 +/- 0.0006 and tangential g-factor is 0.9929 +/- 0.0005.
sagittal g-factor is 0.968 +/- 0.001 and tangential g-factor is 0.986 +/- 0.001. (Edited by YM; see elog #8056)

Method:
 1. Same as elog #8049, but with small misalignment to PRM.

 2. Algined half-PRC, and misaligned PRM in pitch to get sagittal g-factor.

 3. Restored pitch alignment and misaligned PRM in yaw to get tangential g-factor.

Result:
 Below left is the plot of POP DC and PRCL error signal (REFL11_I) when PRM is misaligned in pitch. Below left is the same plot when misaliged in yaw.
left:modescan_pitmisalign.png    right:modescan_yawmisalign.png

 By averaging 5 sets of peaks around TEM00, I get sagittal/tangential g-factors written above.

Discussion:
  The fact that tangential g-factor is larger than sagittal g-factor comes from astigmatism mainly from PR3. Effective PR3 curvature is

sagittal Re = R/cos(theta) = -930 m
tangential Re = R*cos(theta) = -530 m   (where R = -700 m , theta = 41 deg)

so, PR3 is more convex in tangential plane and this makes half-PRC close to unstable. This is opposite of Jamie's calculation(elog #8022). I'm confused.

  I first thought I don't need to misalign PRM because alignment was not so good - it was hard to align when beam motion is large. Also, this motion makes angular misalignment, so I thought free swinging is enough to make higher order modes. However, misaligning PRM intentionally made it easier to resolve higher order modes. I could even distinguish (10,01) and (20,11,02), as you can see from the plot.

Next:
  We have to compare with expected g-factor before moving on to PRMI.

  8056   Mon Feb 11 13:15:16 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

I found a mistake in my code (thanks Jamie!).
I forgot to square the g-factor.
I corrected the following elogs;

PRM-PR2 cavity
  elog #7994 : g-factor will be 0.9889 +/- 0.0004
  elog #8012 : g-factor is 0.988812630228 pm 0.000453751681357

half-PRC g-factor
  elog #8040 : g-factor is 0.9800 +/- 0.0001
  elog #8052 : sagittal g-factor is 0.968 +/- 0.001 and tangential g-factor is 0.986 +/- 0.001

I checked that I was correct in July 2012 (elog #6922)

Cavity g-factor formula:
  gm = ( cos(pi*nu_TMS/nu_FSR) )**2

  8064   Mon Feb 11 21:03:15 2013 yutaUpdateLockingPR2-flipped half-PRC mode scan

To estimate the systematic effects to the g-factor measurement, I changed how to analyze the data in multiple ways.
From the estimation, I get the following g-factors for half-PRC;
  tangential: 0.986 +/- 0.001(stat.) +/- 0.008(sys.)
    sagittal: 0.968 +/- 0.001(stat.) +/- 0.003(sys.)


The a la mode/arbcav calculation is not so far from the measurement(elog #8059). So, mirror curvatures and lengths are not far from what we expect.

Method:
  Method I used to analyze the mode scan data is as follows;

  1. Use the spacing between upper sideband and lower sideband to calibrate the data.
  2. Measure the position of 00, 1st, 2nd and 3rd mode.
  3. Used the following formula to get TMS

  nu_TMS = sum((n_i-n)*(nu_i-nu)) / sum((n_i-n)^2)

  where n_i is the order of transverse mode, n is average of n_i's, nu_i is the frequency if i-th order mode and nu is average of nu_i's. This is just a linear fitting.

  But since it is hard to resolve where the higher order mode is, it is maybe better to use only 00, 1st, and 2nd mode. Also, since cavity sweep is not linear enough, it is maybe better to use spacing between 00 and lower sideband (sideband closer to HOMs) to calibrate the data. Changing the analysis will give us information about the effect of peak choosing and linearity.

How the result differ:
  Below are the plots of order of tranverse mode vs measured relative frequency difference from 00 mode. 5 plots on left are when PRM is misaligned in pitch and right are same in yaw. From the plot, you can see using 3rd order mode tend to give larger TMS. Did I picked the wrong one??
left:modespacing_pit.png    right:modespacing_yaw.png

Results:
  Below table is the result when I changed the analyzing method;

PRM misaligned in pitch
  calibration    how many HOMs    measured g-factor
  upper-lower    up to 3rd    0.968
  upper-lower    up to 2nd    0.974
  upper-lower    up to 1st    0.975
  00-lower       up to 3rd    0.952
  00-lower       up to 2nd    0.962
  00-lower       up to 1st    0.963


PRM misaligned in yaw
  calibration    how many HOMs    measured g-factor
  upper-lower    up to 3rd    0.986
  upper-lower    up to 2nd    0.989
  upper-lower    up to 1st    0.991
  00-lower       up to 3rd    0.964
  00-lower       up to 2nd    0.988
  00-lower       up to 1st    0.991


  Using 00-lower calibration tend to give us smaller g-factor. Using less higer order-mode tend to give us higher g-factor.
  By taking standard deviation of these, I roughly estimated the systematic error as above.

Discussion:
  I think it is OK to move on to PRMI now.
  But I wonder how much astigmatism is needed to get this measurement data. If astigmatism is not so crazy, it's OK. But if it's not, I think it is better to do more measurement like PRM-PR2-TM cavity.

  8053   Sun Feb 10 18:00:13 2013 yutaSummaryLSCPR2-flipped half-PRC spectra/OLTF

To compare with future PRMI locking, I measured spectra of POPDC and feedback signal. I also measured openloop transfer function of half-PRC locking.
Beam spot motion was at ~ 2.4 Hz, not 3.3 Hz.

Results:
  Below is uncalibrated spectra of POPDC and LSC feedback signal (C1:LSC-PRM_OUT).
POPDCLSCPRM.png

  Below is openloop transfer function of the half-PRC locking loop. UGF is ~ 120 Hz and phase margin is ~ 45 deg. This agrees with the expected curve.
LSCPRCLOLTF.png

  Data was taken when half-PRC was locked using REFL11_I as error signal and actuating on PRM.


Discussion:

  For comparison, POPDC when PRMI was locked in July 2012: elog #6954 and PRCL openloop transfer function: elog #6950.

  Peak in the spectra of POPDC and feedback signal was at ~ 3.3 Hz in July 2012 PRMI, but it is now at ~ 2.4 Hz in half-PRC. The peak also got broader.
  Is it because of the change in the resonant frequency of the BS-PRM stack? How much the load on BS-PRM changed?
  Or is it because of the change in the resonant frequency of PR2/PR3?

  Phase margin is less now because of gain boost ~ 5 Hz and resonant gain at 24 Hz.
 

  8006   Tue Feb 5 19:32:47 2013 yutaSummaryGeneralPR2/PR3 flipping and PRC stability

We are considering of flipping PR2 and/or PR3 to make PRMI stable because PR2/PR3 seems to be convex.
I calculated dependency of the PRC stability on the PR2/PR3 curvature when PR2/PR3 flipped and not flipped.
Flipping looks OK, from the stability point of view.

Assumption:
 PRM-PR2 distance = 1.91 m
 PR2-PR3 distance = 2.33 m
 PR3-ITM distance = 2.54 m
 PRM RoC = +122.1 m
 ITM RoC = Inf

 theta_inc PRM = 0 deg
 theta_inc PR2 = 1.5 deg
 theta_inc PR3 = 41 deg 
          (all numbers from elog #7989)

 Here, RoC means RoC measured from HR side. RoC measured from AR side will be -n_sub*RoC, assuming flat AR surface.
 I also assumed mirror thickness to be negligible.

Method:
  1. I used Zach's arbcav and modified it so that it only tells you your cavity is stable or not.
   (It lives in /users/yuta/scripts/mode_density_PRC/stableornot.m)

  2. Swept PR2/PR3 RoC (1/RoC from -0.005 to 0.005 1/m) to see the stability condition.

Results:
  1. Stability condition of the PRMI when PR2 and PR3 is not flipped is depicted in the graph below. Black region is the unstable region. We all know that current PRMI is unstable, so we are in the black region.
PRMI_PR2HR_PR3HR.png

  2. Stability conditions of PRMI with one of the PR2/PR3 flipped are depicted in the graphs below. If we flip one of them, PRMI will likely to be stable, but if the flipped one is close to flat and the RoC of the other one is  >~ -250 m (more convex than -250 m), PRMI will remain unstable.
PRMI_PR2AR_PR3HR.pngPRMI_PR2HR_PR3AR.png


  3. Stability condition of PRMI with both PR2 and PR3 flipped is depicted in the graph below. If we flip both, PRMI will be stable.
PRMI_PR2AR_PR3AR.png


Discussion:
  1. Flipping one of PR2/PR3 seems OK, but I cannot guarantee. TMS measurement insists RoC of PR2 to be ~ -190 m, if we believe PRM RoC = +122.1 m (elog #7997). We need more precise measurement if we need to be sure before flipping. I prefer PR2 flipping because PR3 flipping gives us longer path in the substrate and larger astigmatism. Also, PR3 RoC is phase-map-measured to be ~ -600 m and PR2 RoC seems to be more convex than -600 m from the TMS measurement.

  2. Flipping both is good from stability point of view. We need calculation of the loss in the PRC (and mode-mismatch to the arms). Are there any requirements?

  3. If we are going to flip PR3, are there any possibilities of clipping the beam at PR3? We need to check.

  4. I need to calculate whether mirror thickness and AR surface curvature are negligible or not.

Conclusion:
  I want to flip only PR2 and lock PRMI.

By the way:
 I don't like matlab plots.

  7816   Wed Dec 12 16:52:12 2012 JenneUpdateAlignmentPR2_face, PR3_back cameras in place

I have setup cameras looking at the back of PR3 (through the north viewport on the MC chamber) and the face of PR2 (through the north viewport on the ITMX chamber). We would like a view of the face of PR3, but that isn't possible without placing another in-vac mirror.  The best we can do is the current PRM_BS camera setup, which sees a small portion of the PR3 face.  Most of the face is obscured by the PRM itself. 

I have taken images with the PRM misaligned.  The spot near the top of PR2 is the first reflection from the pitch-misaligned PRM, so it should be ignored for the purposes of trying to see the straight-shot, no PRM beam.

Images are taken with my videocapture50 script, in ..../scripts/general/videoscripts.  This takes 10 sets of 50 images and saves them.  Then ImageBkgndSubtractor.m located in the same folder takes the images (you must edit the beginning of the script to tell it where the images are), averages the noBeam images (PSL shutter closed), and averages the withBeam images, and subtracts them.  Results below:

PR2_face_12Dec2012_SpotImage.pngPR2_face_12Dec2012_SpotImage_pixelsTimes3.png

PR3_back_12Dec2012_SpotImage.pngPR3_back_12Dec2012_SpotImage_pixelsTimes3.png

  8923   Thu Jul 25 13:54:35 2013 manasaUpdateGeneralPR3 clamped and Y arm is back flashing

[Jenne, Annalisa, Manasa]

After yesterday's flipping of PR3, we lost our input pointing. Koji spent a few hours last night but couldn't restore the Y arm. I did my set of trials this morning which also didn't help.

So Jenne and I went ahead and requested Steve to get the ETMY door off.

We set the tiptilts TT1 and TT2 to the slider values from yesterday and started aligning the PR3 to hit the center of ITMY.
When we were hitting close to the center of ITMY, we decide to use the tip-tilts because the movement of PR3 was coarse at this point.
We used TT1 to get the beam to the center of ITMY and TT2 to get the beam at the center of ETMY. We did this iteratively until we were at the center of both the ITMY and ETMY.
We then went to fix IPANG.
The IPANG steering mirror on the BS table was steered to hit the center of the steering mirrors at the ETMY table. We aligned the beam to the IPANG QPD on the green endtable. The steering mirror on the BS table was then steered to misalign the beam in pitch by an inch at the last IPANG steering mirror. This should fix the IPANG clipping we have everytime we pump down.
We closed the chambers with light doors and saw IR flashing in the arm cavity. Koji is now trying to lock the cavity with IR.

  8960   Fri Aug 2 17:50:10 2013 JenneUpdateGeneralPR3 wedge angle adjusted

[Jenne, Manasa, Koji]

Earlier today, we locked and aligned both the X and Y arms. 

I then went into the BS chamber, put on the BS' aperture, and put an aperture along the AS path.  (We had Michelson fringes, so I centered the aperture around the fringes.  I used one of the brass ruler things that we use to center the beam on ITMs and ETMs, on a riser.  I put this aperture at the edge of the BS table, after the AS beam is launched toward the OMC chamber.  The idea was to replace PR3 such that I could get the beam back through the BS aperture, and the brass ruler aperture, in hopes that we would see arm flashes, and not have to open the ITMY and ETMY heavy doors.)

I set references on the table so that I could put PR3 back in its original position, then removed PR3 from the chamber.

Steve set up a HeNe for me, that we pointed through the optic.  The ghost beam was very high, indicating (as expected) that the wedge was not perfectly horizontal.

I took the suspension off of the cage and laid it down, as I have in the past. 

I removed the optic from the suspension, to try to figure out which was the fat vs. skinny side.  I noticed that there are very faint marks on the actual fat and skinny sides of the optic.  (Mpral - for the LaserOptik mirrors, look for the faint lines that are the full width of the barrel, not the placement of the arrow which marks the HR side).  I put the optic back in (HR side toward the back, fat side on the left (as you look at the face of the optic), which is consistent with the picture in the Optical Layout page of the Wiki, near the bottom.) the optic holder ring.

I put the suspension back on the cage, and saw that the HeNe's ghost beam was now nearly horizontal relative to the straight-through beam.  Excellent.  Also, the pitch balancing didn't seem to change noticably, which I determined was within "poking" distance of where we need it to be.

I put PR3 back onto the BS table, and adjusted it around until I got the beam through both the BS aperture, and the one on the AS path.  As usual, this took quite a while, but as soon as I got through both of those apertures (really at the same place, not close to being through them, but as close as I could tell by eye - this is what took forever), Koji and Manasa saw flashes in the Yarm!  Yay! 

Since I had to move PR3 in angle a tiny bit, I reset the references, then dogged down PR3.  We still had flashes, this time in both arms, so we closed up the light doors.

We have now locked and aligned both arms in IR after the adjustment of PR3, and see both arms' green at 01 or 02. We are about to start checking the green positioning on the periscopes.  We will also need to check the AS path, as well as IPPOS and IPANG before we close up.  We see REFL on the camera.

Separately - Manasa remembered that 2 clean things were dropped yesterday - a screw, and an allen key.  Since they're both Clean, we're not too worried, although she thinks a long-armed person may be able to reach the allen key.

  15368   Wed Jun 3 02:14:32 2020 gautamUpdateASCPRC ASC improves arm transmission RIN

Summary:

I implemented an ASC servo for the PRC, with the POP QPD as a sensor, and the PRM as the actuator. This has improved the stability of the lock (longer locks are possible), and also reduced the RIN of the arm transmission.

Details:

Attachment #1 shows the in-loop error signal suppression, and some out-of-loop monitors (POP22 and POPDC).

  • To practise and get some workable servo settings, I locked the PRMI with carrier resonant (no ETMs).
  • Then, I compare the beam motion witnessed by the POP QPD with and without the feedback loop enabled.
  • I also look at the spectra of the POPDC and POP22 signals, as out-of-loop proxies, to get an estimate of how much noise is being injected out of band.
  • In this toy study, both the in-loop and out of loop monitors show good performance.
  • However, when repeating the same diagnostics with the PRFPMI locked, I note that while the in-loop suppression looks good, POPDC and POP22 report elevated noise, relative to the PRMI carrier case.
  • I don't have a comparison to the PRFPMI locked with the feedback disabled, because of stability reasons. Plus, for the PRMI, the angular feedforward loops were engaged, but for the PRFPMI traces, they were disabled.
  • Nevertheless, the arm RIN goes down by ~2.5 in RMS, so this is doing something good.

Attachment #2 compares the arm transmission RIN with the PRFPMI locked, with and without PRC ASC. The 3 Hz bump is definitely squished, but I think we can do better yet. 

Attachments #3-5 are in the style of elog15361. No Oplev signals yet, I'll add them soon.

I guess what this means is that the stability of the lock could be improved by turning on some POP QPD based feedback control, I'll give it a shot

Attachment 1: PRC_ASCsignals.pdf
PRC_ASCsignals.pdf
Attachment 2: armRIN_PRC_ASC.pdf
armRIN_PRC_ASC.pdf
Attachment 3: PRFPMIcorner_ASC_PIT_1275190251_1275190551.pdf
PRFPMIcorner_ASC_PIT_1275190251_1275190551.pdf
Attachment 4: PRFPMIcorner_ASC_YAW_1275190251_1275190551.pdf
PRFPMIcorner_ASC_YAW_1275190251_1275190551.pdf
Attachment 5: PRFPMIcorner_ASC_coherence_1275190251_1275190551.pdf
PRFPMIcorner_ASC_coherence_1275190251_1275190551.pdf
  11489   Tue Aug 11 02:26:46 2015 ericqUpdateASCPRC Angular FF Lives!

PRC Angular FF is back in action!

Short and sweet of it:

  • Took witness (T240 channels) and target (POP QPD) with DC coupled oplevs on. About 25 minutes of nice stationary data.
  • Downsampled everything to 32Hz, since coherence suggests subtraction only really possible from 1-5Hz. 
  • Prefiltering done by detrending and ellip(3,3,40,5Hz)
  • 4 second FIR impulse time was enough
  • Filtered target by inverse actuator TF before sending to wiener code. The only difference between this and filtering the witnesses with the actuator TF directly is an effective RMS cost function, i.e. prefiltering. 
  • Spending time tweaking IIR fitting pays off. Divided out zpk(0, [p3, p3*],1), where p3 is some well fit stack/suspension resonance, so that vectfit fits remaining portion with equal numbers of poles and zeros, guaranteeing AC coupling and 1/f rolloff to prevent noise injection
  • Quack->foton->OAF all worked fine
  • All in all, seems to work well. POPDC RMS goes down by a factor of 2 yes

  • Code used lives in /users/ericq/2015-08-PRCFF and the NoiseCancellation github repo

Fit example:


Subtraction spectra


Subtraction prediction vs. reality (positive dB is good)

Attachment 1: fitExample.png
fitExample.png
Attachment 2: FFspectra.png
FFspectra.png
Attachment 3: PITsub.png
PITsub.png
Attachment 4: YAWsub.png
YAWsub.png
  2550   Wed Jan 27 11:02:30 2010 AlbertoUpdateABSLPRC Cavity Length
 I fitted the data from scanning the PRC by changing the beat frequency of the auxiliary laser beam with the PSL beam.
The data points that I've taken so far over the entire frequency range (0-300 MHz) are not continuous. For several reasons the PLL was unable to maintain lock for such a large range and I had to break it into smaller segments. The measurements to acquire them stretched over a too long period of time during which the status of the PRC changed.
 
Because of that, before I get a continuous set of data points (perhaps normalized by the circulating power inside of the cavity), I restricted the fit to a 55MHz range around 100MHz. I obtained the following numbers for the fit parameters:
Length PRC = 2.169 +/- 0.007 m
Schnupp Asymmetry: 0.471+/- 0.006 m
 
The fit is shown in the attached plot:
2010-01-21_PRCtransmissivityVsFit.png
When I fit over the entire set of data I get this:
 
2010-01-21_PRCtransmissivity_EntireFreqRange_VsFit.png
 
Length PRC = 2.224 +/- 0.005 m
Schnupp Asymmetry: 0.457+/- 0.005 m
 
The results are different. Evidently I have to improve the measurement. I'm working on it.
 
For posterity:
The function I used to fit the transmitted beat power vs. frequency is the following:
 
E_trans = - t_prm * r_itm * exp(1i*2*wb*l_prc/c) .* sin(wb*l_/c) ./ ( 1 + r_prm * r_itm * exp(1i*2*wb*l_prc/c) .* cos(wb*l_/c)
 
Where wb is the angular frequency of the beat, l_prc and l_ are the length of the PRC and the Schnupp asymmetry, respectively; r_itm, t_itm, r_prm, t_prm are reflectances and transmittances of PRM and ITM; c is the speed of light.
 
  6421   Thu Mar 15 04:04:23 2012 KojiConfigurationLockingPRC Matching issues

Kiwamu and Koji

We found that the intra-cavity mode of the PRC is not round although it was obvious even with the DARK and REFL port images.
We need to review the mode matching situation.

In order to look at the PRC intra-cavity mode, we reconfigured the POP CCD.

If we look at the beam reflected from the Michelson, the beam is round. However, the PRC intra-cavity mode can never be round
in any resonant conditions. (Pict 1, 2, and 3, for the sideband resonant, carrier resonant conditions and another carrier resonant
one, respactively). Particularly the mode of the carrier resonant case is very unstable and always changing.

P3150902.jpg

P3150906.jpgP3150907.jpg

By misaligning the PRM, we can compare between the spot directly reflected from the Michelson and the one after additional round trip in the PRC (Pic 4).

They looks round, but it was obvious the secondary reflection is dimmer and larger (Pic 5). The intensity difference corresponds to the factor RPRM RMI
(i.e. product of the reflectivities for the PRM and MI). It can be understand if the dimmer spot looks smaller due to the artifact of the CCD. But it is opposite.

This may mean the mode matching is not correct. We are not sure what is not right. This could be just an incorrect incident beam, the curvature error of the PRM,
beam is distortec by the TT mirrors, or some other unknown reasons.

More precise analysis can be done with quantitative analysis of those two spots with Beamscan. This could happen tomorrow.

P3150910.jpgP3150900.jpg

  10987   Sat Feb 7 21:30:45 2015 JenneUpdateLSCPRC aligned

I'm leaving the PRC aligned and locked.  Feel free to unlock it, or do whatever with the IFO.

  7641   Mon Oct 29 18:50:02 2012 JenneUpdateAlignmentPRC aligned, Yarm almost aligned

[Jamie, Jenne, Raji, with consultation from Nic, Ayaka and Manasa]

We went back and re-looked at the input alignment, and now we're "satisfied for the moment" (quote from Jamie) with the PRC alignment.  Also, by adjusting the PR folding mirrors, we are almost perfectly aligned to the Yarm.

What we did:

Set PRM DC biases to 0 for both pitch and yaw.

Aperture was attached to PRM cage, double aperture was attached to BS cage, free-standing aperture was placed in front of PR2. 

Adjusted PZT1, PZT2 such that we were centered on PZT2, and through apertures at PRM and PR2.   This was mainly for setting beam height in PRC.

Checked centering on PZT1, MMT1, MMT2, PZT2.

Adjusted PRM pitch bias and PZT2 yaw such that REFL beam was retro-reflected from PRM.

Checked that REFL beam came nicely out of Faraday.

Checked that beam was still going through center of PRM aperture, and pitch height at PR2 was good.

Moved PR2 sideways until beam hit center in yaw of PR2.

Twisted PR2 such that beam was hitting center of PR3.

Moved and twisted PR3 (many times) so that beam went through BS input and output apertures, and through center of ITMY aperture.

Found that beam was just getting through black glass aperture at ETMY, top left corner, if looking at the face of ETM from ITM.

Locked down dog clamps on PR2.

This required some re-adjustment of PR3.  Re-did making sure going through BS apertures and ITMY aperture, locked down PR3 dog clamps.

Found that we are centered in yaw at ETMY, a little high in pitch on ETMY.

Replaced all of the light doors, to take a break.  4 hours in bunny suits seemed like enough that we earned a break.

This all sounds more straighforward than it was.  There was a lot of iteration, but we finally got to a state that we were relatively happy with.

 

What we will do:

Tweak PZT2 a *tiny* bit in pitch, ~0.5 mrad, so that the beam goes through the ETMY aperture.

See if we can align EMTY and ITMY to get multiple bounces through the Yarm.

Remove ETMX heavy door, steer BS such that we're getting through the center of an aperture at ETMX.

Align ETMX and ITMX such that we get multiple bounces through the Xarm.

Check SRM, AS path alignment.

Check REFL out of vac alignment.

Check other pickoffs.

Check all oplevs.

Check IPPOS/IPANG

 

We have a open-sided 2" mirror mount that we are considering using for the POY pick-off mirror.  This might help us get a little more clearance in the Y-arm of the Michelson.  Problem is the mount is not steerable, so we need to determine if that's doable or not.

 

  7642   Tue Oct 30 11:51:45 2012 JenneUpdateAlignmentPRC aligned, Yarm almost aligned

[Raji, Jenne]

We tweaked PZT2, PZT1 (yaw only), and PR3 (pitch only) to get the beam ~centered on the BS aperture, the ITMY aperture, and the ETMY aperture.

After lunch I'll tweak up the MC alignment, since, although the spots are in the right places, the transmitted beam could be higher power.  This will make it easier to check our pointing, especially since the ETMY spot is larger than our aperture, but the beam is dim.

We're getting there!

  3227   Thu Jul 15 12:21:08 2010 AlbertoConfigurationLSCPRC and SRC length adjustements

Lately I've been trying to calculate the corrections to the recycling cavity lengths that would compensate for the phase that the sidebands will pick up from the arms in the upgraded interferometer.

To do that calculation , I tried two quite different ways, although equivalent in principle. They both use the optickle model of the 40m, but the calculation is made differently.

In the first way, I looked directly at the phases of the field: phase of [input field] / [reflected field], phase of [input field at PRM] / [transmitted field at SRM].

In the second way I looked at the demodulation phases of the LSC signals.

The first way is much simpler, especially from a computational point of view. It is the first I tried several weeks ago, but then I had abandoned because back then I thought it wasn't the correct way.

Anyway, both ways gave me the same results for the PRC length.
For the SRC length, the first way has given me a clear outcome. On the other hand, the second way has produced a less clear result.

According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m

I) 1st Way
a) case of arms ideal length (33.86 m)

sidebandPhaseRotation_73433447384.png sidebandPhaseRotation_73433447590.png


b) case arm length = 38.40 m

PRC

 sidebandPhaseRotation_73433447960.png zoom -> sidebandPhaseRotation_73433448864.png

SRC

sidebandPhaseRotation_73433445372.png zoom -> sidebandPhaseRotation_73433449354.png


II) 2nd Way
a) case of arms ideal length (33.86 m)

 demodPhaseVsRecCavLengths_73432637363.png


b) case arm length = 38.40 m

demodPhaseVsRecCavLengths_73433237349.png

  3228   Thu Jul 15 15:57:10 2010 KojiConfigurationLSCPRC and SRC length adjustements

Tell me whether it is correct or not. Otherwise I won't be able to sleep tonight.

Quote:

According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.612 m

  3229   Thu Jul 15 16:16:51 2010 AlbertoConfigurationLSCPRC and SRC length adjustements

Quote:

Tell me whether it is correct or not. Otherwise I won't be able to sleep tonight.

Quote:

According to these results, these would be the proposed adjustements to the cavity lengths:
dl(PRC) = -0.0266 m; dl(SRC) = 0.612 m

 Sorry. I was in a rush to go to the LIGO "all hands" meetings when I posted that elog entry, that I forgot a zero in the SRC length value. The correct values are:

dl(PRC) = -0.0266 m; dl(SRC) = 0.0612 m

The cavity absolute lengths are then:

L(PRC) = 0.5/2/f1*c - 0.0266 = 6.7466 m

L(SRC) = c/f2 + 0.0612 = 5.4798 m

where c is the speed of light; f1 = 11065399 Hz; f2 = 55326995 Hz

ELOG V3.1.3-