40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 331 of 339  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  16479   Mon Nov 22 17:42:19 2021 AnchalUpdateGeneralConnected Megatron to battery backed ports of another UPS

[Anchal, Paco]

I used the UPS that was providing battery backup for chiara earlier (a APS Back-UPS Pro 1000), to provide battery backup to Megatron. This completes UPS backup to all important computers in the lab. Note that this UPS nominally consumes 36% of UPS capacity in power delivery but at start-up, Megatron was many fans that use up to 90% of the capacity. So we should not use this UPS for any other computer or equipment.

While doing so, we found that PS3 on Megatron was malfunctioning. It's green LED was not lighting up on connecting to power, so we replaced it from the PS3 of old FB computer from the same rack. This solved this issue.

Another thing we found was that Megatron on restart does not get configured to correct nameserver resolution settings and loses the ability to resolve names chiara and fb1. This results in the nfs mounts to fail which in turn results in the script services to fail. We fixed this by identifying that the NetworkManager of ubuntu was not disabled and would mess up the nameserver settings which we want to be run by systemd-resolved instead. We corrected the symbolic link: /etc/resolv.conf -> /run/systemd/resolve/resolv.conf. the we stopped and diabled the NetworkManager service to keep this persistent on reboot. Following are the steps that did this:

> sudo rm /etc/resolv.conf
> ln -s /etc/resolv.conf /run/systemd/resolve/resolv.conf
> sudo systemctl stop NetworkManager.service
> sudo systemctl disable NetworkManager.service

 

  16480   Tue Nov 23 18:02:05 2021 AnchalUpdateIMCMC autolocker shifted to python3 script running in docker

I finished copying over the current autolocker bash script functionality into a python script which runs using a simple configuration yaml file. To run this script, one needs to ssh into optimus and :

controls@optimus|~> cd /opt/rtcds/caltech/c1/Git/40m/scripts/MC
controls@optimus|MC> sudo docker-compose up -d
Creating mc_AL_MC_1 ... done

That's it. To check out running docker processes, one can:

controls@optimus|MC> sudo docker ps

And to shut down this particular script, in the same directory, one can

controls@optimus|MC> sudo docker-compose down
Removing mc_AL_MC_1 ... done

If the docker image requires to be rebuild in future, go to the directory where Dockerfile is present and run:

controls@optimus|MC> sudo docker build -t pyep .

I had to add PyYAML package in the pyepics docker image already present on docker hub, thanks to Andrew.

For now, I have disabled the MCautolocker service on Megatron. To start it back again, one would need to ssh into megatron and do following:

~> sudo systemctl enable MCautolocker
~> sudo systemctl start MCautolocker

Let's see for a day how this new script does. I've left PSL shutter open and autolocker engaged.

To do: Fix the C1:IFO-STATE epics channel definition so that it takes its bits from separate lock status channels instead of scripts writign the whole word arbitrarily.

  16483   Wed Nov 24 14:15:15 2021 YehonathanUpdateBHDSOS assembly

Late update. We got 2 modified side blocks from Jordan a few days ago. Yesterday, I glued a side magnet to one of the modified side blocks.

I took the opportunity to reglue some magnets that were knocked off from the adapters. I did this for 2 adapters only since w need 4 shallow adapters and we already had 2 complete ones.

Today, Jordan gave us the rest of the modified side blocks clean and baked. We are ready to suspend a mirror today.

  16484   Wed Nov 24 14:34:15 2021 YehonathanUpdateBHDSaving on SUSAUX slow channels

Koji found out that the stock for BIO Acromag modules is very low and that the lead time for ordering new ones is ~ 1-year X-o.

We figure we might need to minimize the number of modules but still keep the Acromag chassis functional.

 

Looking at the new C1AUXEY feed-throughs spreadsheet one can see that we actually normally need only 1 BIO (not 2) module since there are 16 suspensions related bios + 1 green shutter which is unrelated to SUSAUX so there is no room to cut back here.

 

There are 16 analog input channels, 5 for PDMONs and 5 VMONs, and 6 spares which require 2 ADCs. Removing the spares and 2 monitoring channels will be enough to get us to 1 ADC.

  16488   Tue Nov 30 17:11:06 2021 PacoUpdateGeneralMoved white rack to 1X3.5

[Paco, Ian, Tega]

We moved the white rack (formerly unused along the YARM) to a position between 1X3, and 1X4. For this task we temporarily removed the hepas near the enclosures, but have since restored them.

Attachment 1: IMG_8749.JPG
IMG_8749.JPG
Attachment 2: IMG_8750.JPG
IMG_8750.JPG
  16489   Wed Dec 1 12:57:08 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We glued some magnets onto modified side blocks. We followed pretty much the same procedure form last time. The music wires were clamped on the side blocks away from the optic adapter. The clamps were screwed down using the low profile screws the Jordan obtained from UC components to allow maximum clearance for the coils (Attachment 2).

The modified side blocks with wires already clamped in them were screwed onto the adapter. We put the adapter on the EQ stops and do rough adjustments, making sure the side magnet is roughly on the center of a coil we inserted to the side. The wires were threaded through the wire clamp on the suspension block and clamped on the winches. We realigned the Oplev beam such that it is parallel to the table using the quad photodiode.

We balanced the height of the adapter. This time we used a camera facing the adapter. The tilt of the camera was set by drawing a straight line (red line in attachment 1) such that the bottom clamps on the SOS are parallel to it.

Then, we adjusted the winches such that the screws on the side blocks are on the same green line on attachment 1.

Once the height was adjusted, we clamped the wire on the suspension block and cut it at the winches.

We balanced the optic. We had to take out the front counterweight to get the balance (attachment 3).

We checked whether the wire is touching anything. We confirmed that it doesn't. The wire goes nicely through the new hole on the side blocks (attachment 4, 5).

We measure the resonance frequency for both yaw (attachment 6) and pitch (attachment 7). They both seem to be sub-Hz. The pitch trace also shows that the oscillations are centered around 0 meaning the optic is balanced.

There's still the issue of what to do with the lower back EQ stop not touching the adapter.

Attachment 1: SOS_Roll_Balance.png
SOS_Roll_Balance.png
Attachment 2: IMG_20211201_120041570.jpg
IMG_20211201_120041570.jpg
Attachment 3: IMG_20211201_115551005.jpg
IMG_20211201_115551005.jpg
Attachment 4: IMG_20211201_115640728.jpg
IMG_20211201_115640728.jpg
Attachment 5: IMG_20211201_115454629.jpg
IMG_20211201_115454629.jpg
Attachment 6: IMG_20211201_115717907.jpg
IMG_20211201_115717907.jpg
Attachment 7: Pitch_oscillations.png
Pitch_oscillations.png
  16490   Mon Dec 6 14:26:52 2021 KojiUpdateVACPumping down the RGA section

Jordan reported that the RGA section needs to be pumped down to allow the analyzer to run at sufficiently low pressure (P<1e-4 torr).
The RGA section was pumped down with the TP2/TP3. The procedure is as listed below.
If the pressure go up to P>1e-4 torr, we need to keep the pump running until the scan is ready.

----
### Monitor / Control screen setup ###
1. On c1vac: cd /cvs/cds/caltech/target/c1vac/medm
2. medm -x C0VAC_MONITOR.adl&
3. RGA section (P4) 3.6e-1 torr / P3/P2 still atm.
4. medm -x C0VAC_CONTROL.adl

### TP2/TP3 backing ###
5. Turn on AUX RP with the circuit breaker hanging on the AC.
6. Open manual valve for TP2/3/ backing / PTP2/3 ~ 8torr

### TP2/TP3 starting ###
7. Turned on TP2/TP3 with the Standby OFF

### Pump down the pump spool ###
8. Connect manual RP line (Quick Connect)
9. Turned on RP1/RP3 -> quickly reached 0.4 torr
10. Open V6 for pump spool pumping -> Immediately go down to sufficiently low pressure for TP2/TP3.
(10.5 I had to close V6 at this point)
11. Open V5 to start pumping pump spool with TP3 (TP2 still stand by) -> P3 immediately goes down below 1e-4 torr. This automatically closed V6 because of the low pressure of P3 (interlocking)

### Pump down the RGA section ###
12. Open VM3 to pump down RGA section -> P4 goes down to <1e-4 torr
13. P2 is still 2e-3. So decided to open V4 to use TP2 (now it's ready) too. -> Saturated at 1.7e-3

### Shutting down ###
14. Close VM3
15. Close V4/V5 to isolate TP2/TP3
16. Stop TP2/TP3 -> Slowing down
17. Stop RP1/RP3
18. Close the manual valves for TP2/3/ backing
19. Stop AUX RP with the circuit breaker hanging on the AC.

  16491   Mon Dec 6 18:23:04 2021 YehonathanUpdateBHDSOS assembly

I installed OSEMs on the LO1 SOS. To my surprise, the side magnet is not in the center of the side OSEM. It completely misses the LED as can be seen in the attachment.

Looking at the CAD model, it turns out the position of the OSEM on the left side plate is different from the position of the OSEM on the right side plate in the SOS tower.

We need to take the optic down, swap the right and left side blocks, and resuspend it.

There is not enough 🤦🏻‍♂️in the world

Attachment 1: signal-2021-12-06-165751_001.jpeg
signal-2021-12-06-165751_001.jpeg
  16493   Tue Dec 7 13:12:50 2021 KojiUpdateVACPumping down the RGA section

So that Jordan can run the RGA scan this afternoon, I ran TP3 and started pumping down the RGA section.

Procedure:
- Same 1~4
- Same 5
- 6 Opened only the backing path for TP3
- 7 Turned on TP3 only

- TP3 reached the nominal full speed @75kRPM

- 11 Opened V5 to pump the pump spool -> Immediately reached P3<1e-4
- 12 Opened VM3 to pump the RGA section -> Immediately reached P4<1e-4

The pumps are kept running. I'll come back later to shut down the pumps.
=> Jordan wants to heat the filament (?) and to run the scan tomorrow.
So we decided to keep TP3 running overnight. I switched TP3 to the stand-by mode (= lower rotation speed @50kRPM)

 

  16494   Wed Dec 8 10:14:43 2021 JordanUpdateVACPumping down the RGA section

After an overnight pumpdown/RGA warm up, I took a 100 amu scan of the RGA volume and subsequent pumping line. Attached is a screenshot along with the .txt file. Given the high argon peak (40) and the N2/O2 ratio, it looks like there is a decent sized air leak somehwere in the volume.

Are we interested in the hydrocarbon leak rates of this volume? That will require another scan with one of the calibrated leaks opened.

Edit: Added a Torr v AMU plot to see the partial pressures

Quote:

So that Jordan can run the RGA scan this afternoon, I ran TP3 and started pumping down the RGA section.

Procedure:
- Same 1~4
- Same 5
- 6 Opened only the backing path for TP3
- 7 Turned on TP3 only

- TP3 reached the nominal full speed @75kRPM

- 11 Opened V5 to pump the pump spool -> Immediately reached P3<1e-4
- 12 Opened VM3 to pump the RGA section -> Immediately reached P4<1e-4

The pumps are kept running. I'll come back later to shut down the pumps.
=> Jordan wants to heat the filament (?) and to run the scan tomorrow.
So we decided to keep TP3 running overnight. I switched TP3 to the stand-by mode (= lower rotation speed @50kRPM)

 

 

Attachment 1: 40m_RGAVolume_12_8_21.PNG
40m_RGAVolume_12_8_21.PNG
Attachment 2: 40m_RGAVolume_Torr_12_8_21.PNG
40m_RGAVolume_Torr_12_8_21.PNG
  16495   Thu Dec 9 00:32:56 2021 TegaUpdateCDSNew SUS medm screen update

The new SUS screen can be reached via sitemap -> IFO SUS button -> NEW ETMX dropdown menu link. Please use and provide feedback. Not sure exactly if we need/want the display screens after the IOP model on the right of the medm screen. I have not been able to locate the corresponding channels but did not want to remove them until I was sure that we don't plan to add these features to our screens. When all bugs have been ironed out, we can use appropriate macro substitution for the other optics.

The next feature to add is the BLRMS to the coil and PD channels. I plan to combine the PEM BLRMS medm implementation with the sus_single_BLRMS model block (located in  /opt/rtcds/userapps/release/cds/c1/models). This way we use the latest BLRMS block in "/opt/rtcds/userapps/release/cds/common/models/BLRMS.mdl" whilst also leveraging the previous work done on the sus_single_BLRMS model, which neatly fits into our current SUS model.

Attachment 1: Screen_Shot_2021-12-09_at_12.29.30_AM.png
Screen_Shot_2021-12-09_at_12.29.30_AM.png
Attachment 2: Screen_Shot_2021-12-09_at_12.42.35_AM.png
Screen_Shot_2021-12-09_at_12.42.35_AM.png
  16496   Thu Dec 9 18:22:36 2021 TegaUpdateCDSNew SUS medm screen update

Work on the medm screen for SUS RMS monitor is ongoing. The next step would be to incorporate this into the SUS medm screen, add the BLRMS model to the SUS controller model, recompile, check that the channels are being correctly addressed, then load the appropriate bandpass and lowpass filters.  

Attachment 1: Screen_Shot_2021-12-09_at_6.21.09_PM.png
Screen_Shot_2021-12-09_at_6.21.09_PM.png
  16497   Thu Dec 9 21:57:35 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Tega}

We took the optic out of the SOS tower and removed the side blocks. We mounted new side blocks with wires already clamped in them in the reverse order.

The Adapter was placed back into the SOS and the wires were threaded through the wire clamp and suspended on the winches. The roll of the optic was balanced using a camera (attachment 1).

The pitch was balanced. this time I used 2 counterweights instead of 1 in order to not have to take so much of the weight out.

The mechanical resonances were measured by taking a 100 sec time series of QPD readout and doing PSD estimation (attachment 2). The mirror motion was damped as much as possible before taking the measurement.

3 peaks below 1.5Hz can be seen with frequencies of 755mHz (Yaw), 942mHz, 1040mHz (Pitch + Pos). The pitch/pos peaks are a bit close to each other, I bet if we go back to 1 counterweight the situation will be better.

While inserting the side OSEM I realized I didn't check the overall height of the adapter. The magnet was too high. I will fix it tomorrow and repeat the roll balancing.

 

Attachment 1: balancingsos2.png
balancingsos2.png
Attachment 2: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
  16499   Fri Dec 10 15:59:23 2021 PacoUpdateBHDFinished Coil driver (even serial number) units tests

[Paco, Anchal]

We have completed modifications and testing of the HAM Coil driver D1100687 units with serial numbers listed below. The DCC tree reflects these changes and tests (Run/Acq modes transfer functions).

SERIAL # TEST result
S2100608 PASS
S2100610 PASS
S2100612 PASS
S2100614 PASS
S2100616 PASS
S2100618 PASS
S2100620 PASS
S2100622 PASS
S2100624 PASS
S2100626 PASS
S2100628 PASS
S2100630 PASS
S2100632 PASS
S2101648** FAIL (Ch1, Ch3 run mode)
S2101650** FAIL (Ch3 run mode)
S2101652** PASS
S2101654** PASS

** A fix had to be done on the DC power supply for these. The units' regulated power boards were not connected to the raw DC power, so the cabling had to be modified accordingly (see Attachment #1)

Attachment 1: dc_fail.jpg
dc_fail.jpg
  16500   Fri Dec 10 18:55:58 2021 TegaUpdateCDSNew SUS medm screen update

Turns out the BLRMS monitoring channels for MC1, MC2, MC3, ITMY and SRM already exist in c1pem. So I modified the new SUS screen to display the BLRMS info for the aforementioned optics. Next step is to add the BLRMS monitor for PRM, ITMX, ETMX and ETMY. This would require extending the number of inputs for the "SUS" block in c1pem to accomodate the additional inputs from the remaining optics.

Attachment 1: BLRMS_ITMY_screenshot.png
BLRMS_ITMY_screenshot.png
  16501   Fri Dec 10 19:22:01 2021 KojiUpdateVACPumping down the RGA section

The scan result was ~x10 higher than the previously reported scan on 2020/9/15 (https://nodus.ligo.caltech.edu:8081/40m/15570), which was sort of high from the reference taken on 2018/7/18.

This just could mean that the vacuum level at the RGA was x10 high.
We'll just go ahead with the vacuum repair and come back to the RGA once we return to "vacuum normal".

Meanwhile, I asked Jordan to turn off the RGA to make it cool down. I shut off RGA section and turned TP2 off.

  16503   Mon Dec 13 15:05:47 2021 TegaUpdatePEMgit repo for temp sensor and sus medm

[temperature sensor]

git repo: https://git.ligo.org/40m/tempsensor.git

todo

Update the temp sensor channels to fit with cds format, ie. "C1:PEM-TEMP_EX", "C1:PEM-TEMP_EY", "C1:PEM-TEMP_BS"

- Use FLOAT32_LE data format for the database file (/cvs/cds/caltech/target/c1pem1/tempsensor/C1PEMaux.db) to create the new channels.

- Keep the old datadase code and channels so we can compare with new temp channels afterwards. Also we need a 1-month overlap b4 deleting the old channels.

 

[sus medm screen]

git repo: https://git.ligo.org/40m/susmedmscreen.git

todo (from talk with Koji)

- Link stateword display to open "C1CDS_FE_STATUS.adl"

- Damp filter and Lock filter buttons should open a 3x1 filter screen so that the 6 filters are opened by 2 buttons compared to the old screen that has 3 buttons connected to 2X1 filter screen

- Make the LOCKIN signla modulation flow diagramlook more like the old 40m screen since that is a better layout

- Move load coefficient button to top of sus medm screen (beside stateword)

- The rectangular red outline around the oplev display is confusing and needs to be modified for clarity

- COMM tag block should not be 3D as this suggests it is a button. Make it flat and change tag name to indicate individual watchdog control as this better reflect its functionality. Rename current watchdog switch to watchdog master is it does what the 5 COMM switches do at once.

- Macro pass need to be better documented so that when we call the sus screens from locations other than sitemap, we should know what macro variables to pass in, like DCU_ID etc.

- Edit sitemap.adl to point only to the new screens. Then create a button on the new screen that points to the old screen. This way, we can still access the old screen without clogging sitemap.

- Move the new screen location to a subfolder of where the current sus screens reside, /opt/rtcds/userapps/trunk/sus/c1/medm/templates

- Rename the overview screen (SUS_CUST_HSSS_OVERVIEW.adl) to use the SUS_SINGLE nomenclature, i.e. SUS_SINGLE_OVERVIEW.adl

- Keep an eye of the cpu usage of c1pem as we add BLRMS block for other optics. 

 

 

  16504   Tue Dec 14 11:33:29 2021 TegaUpdatePEMgit repo for temp sensor and sus medm

[Temperature sensor]

Added new temp EPICs channels to database file (/cvs/cds/caltech/target/c1pem1/tempsensor/C1PEMaux.db)

Added new temp EPICs channels to slow channels ini file (/opt/rtcds/caltech/c1/chans/daq/C0EDCU.ini)

 

[SUS medm screen]

Moved new SUS screen to location : /opt/rtcds/userapps/trunk/sus/c1/medm/templates/NEW_SUS_SCREENS

Place button on the new screen to link to the old screen and replace old screens link on sitemap.

Fixed Load Coefficient button location issue

Fixed LOCKIN flow diagram issue

Fixed watchdog labelling issue

Linked STATE WORD block to FrontEnd STATUS screen

Replaced the 2x1 pit/yaw filter screens for LOCK and DAMP fliters with 3x1 LPY filter screen

*Need some more time to figure out the OPTLEV red indicator

  16505   Tue Dec 14 14:02:33 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Paco}

I fixed the overall height of the adapter (attachment 1). I put an OSEM next to the side magnet. I positioned a camera in front of the SOS and connected it to my laptop for live streaming. I painted a line indicating the height of the OSEM plates and a line in between with the mean height. I discarded the wire clamp on the suspension block I released the wires from the winches and pulled on them until the magnet was roughly in the right position. I clamped the wires back on the winches and adjusted them until the magnet was on the middle line. I also verified that the roll of the adapter is aligned as before by making sure that the horizontal features on the adapter are parallel to the horizontal features on the SOS tower.

The wires were clamped to the suspension block using a new wire clamp.

I Found that locking the counterweight setscrew changes the alignment. Today we verified this effect. We released the setscrew and pre-compensated by adjusting the counterweight such that when the setscrew was locked the mirror was aligned.

We measured mechanical resonances (attachment 2). This time the yaw motion was very quiet so we got a smaller peak for the yaw. The peaks are the same as before. Y readout has peaks around the pitch and pos resonances that don't appear in the X readout. I'm not sure what they are. Maybe coming from the QPD electronics.

We locked the adapter using the EQ stops. We made sure the alignment stays close to ideal.

We installed OSEMs on the SOS. We chose suboptimal OSEMs because LO1 will only be used for steering. I made a spreadsheet copying the OSEM catalog into it. There we mark which OSEM goes where.

I cleaned the optic using the ion gun with a pressure of 30 PSI.

The next steps are:

1. Engrave the SOS tower.

2. Cut the wire at the winches and remove the winch adapter plate.

3. Wrap the SOS with foil.

4. Install the SOS in the vacuum chamber.

 

 

Attachment 1: magnetcentring.png
magnetcentring.png
Attachment 2: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
  16506   Tue Dec 14 19:29:42 2021 PacoUpdateBHD1Y0 rack work for LO1

[Paco]

Two coil drivers have been installed on 1Y0 (slots 6, 7, for LO1 SOS). All connections have been made from the DAC, AI board, DAC adapter, Coil driver, Sat Amp box. Then no SOS load installed, all return connections have been made from Sat Amp box, ADC adapter, AA board, and to ADC. We will continue this work tomorrow, and try to test everything before closing the loop for LO1 suspension.

  16507   Wed Dec 15 13:57:59 2021 PacoUpdateComputersupgraded ubuntu on zita

[Paco]

Upgraded zita's ubuntu and restarted the striptool script.

  16508   Wed Dec 15 15:06:08 2021 JordanUpdateVACVacuum Feedthru Install

Jordan, Chub

We installed the 4x DB25 feedthru flange on the North-West port of ITMX chamber this afternoon. It is ready to go.

  16511   Wed Dec 15 22:09:53 2021 YehonathanUpdateBHDSOS assembly

{Paco, Yehonathan, Anchal}

I cut the wires from the winches and removed the winch adapter plate. I engrave  'LO1' on the SOS tower. Me and Paco wrapped the SOS with foil and transported it to Anchal who put it inside the ITMX chamber.

The transportation seems to be successful. Nothing broke. However, we found that even with the short side OSEM the LO1, as it is now, cannot sit in its designed position since ITMX's side OSEM stands in its way.

If there are magnets on both ITMX sides we can move its side OSEM to the other side. Another option is to resuspend LO1 with a side magnet on its left side.

 

  16512   Thu Dec 16 12:21:16 2021 AnchalUpdateBHDCoil driver test failed for S2100619-v1

Today I found one of the coil driver boards, S2100619 failed the test on CH2. There appears to be an extra phase lag after 10 kHz and some resonant-like feature at 7 kHz. This of course is very high-frequency stuff and maybe we don't care about these deviations. But it could mean something is off with the channel and could potentially lead to failure in the relevant frequency band in the future. I'll need help to debug this. Please see the attachment for details of test failure.

Attachment 1: D1100687_S2100619-v1_TF_CH2_Not_Matching.pdf
D1100687_S2100619-v1_TF_CH2_Not_Matching.pdf D1100687_S2100619-v1_TF_CH2_Not_Matching.pdf
  16513   Thu Dec 16 15:04:12 2021 ChubUpdateElectronicsITMX feedthroughs and in-vac cables installed

The ITMX 10" flange with four DSUB-25 feedthroughs has been install with the cables connected at the in-vac side.  See photo; as requested, LO1-1 and LO1-2 are connected to the top row of feedthroughs from left to right respectively and the opposite ends of the cables placed left to right on the laser table.  PR2-1 and PR2-2 are connected to the lower row of feedthroughs from left to right respectively, with the opposite ends placed on the surface below the laser from left to right.  This seemed the easiest way to keep the cable orientation clear.

Attachment 1: ITMX_feedthrough_install_12-16-21.jpg
ITMX_feedthrough_install_12-16-21.jpg
  16514   Thu Dec 16 15:32:59 2021 AnchalUpdateBHDFinished Coil driver (odd serial number) units tests

We have completed modifications and testing of the HAM Coil driver D1100687 units with serial numbers listed below. The DCC tree reflects these changes and tests (Run/Acq modes transfer functions).

SERIAL # TEST result
S2100609 PASS
S2100611 PASS
S2100613 PASS
S2100615 PASS
S2100617 PASS
S2100619 FAIL (CH2 phase)
S2100621 PASS
S2100623 PASS
S2100625 PASS
S2100627 PASS
S2100629 PASS
S2100631 PASS
S2100633 Waiting for more components
S2101649** PASS
S2101651** PASS
S2101653** PASS
S2101655** PASS

** A fix had to be done on the DC power supply for these. The units' regulated power boards were not connected to the raw DC power, so the cabling had to be modified accordingly.

Further, Paco fixed the two even serial number units (S2101648, S211650) that failed the test. The issues were minor soldering mistakes that were easily resolved.

  16515   Thu Dec 16 15:54:08 2021 KojiUpdateElectronicsITMX feedthroughs and in-vac cables installed

Thanks for the installation.

With regard to the connector convention, let's use the attached arrangement so that it will be consistent with the existing flange DSUB configuration. Not a big deal.

 

Attachment 1: PXL_20211216_235056582.jpg
PXL_20211216_235056582.jpg
  16516   Thu Dec 16 17:41:12 2021 KojiUpdateBHDCoil driver test failed for S2100619-v1

Good catch. It turned out that the both + and - side of the output stages for CH2 were oscillating at ~600kHz. If I use a capacitance sticks to touch arbitrarily around the components, it stops their oscillation and they stay calm.
It means that the phase margin becomes small while the circuit starts up.

I decided to increase the capacitances C6 and C20 (WIMA 150pF) to 330pF (WIMA FPK2 100V) and the oscillation was tamed. 220pF didn't stop them. After visually checked the signal behavior with an oscilloscope, the unit was passed to Anchal for the TF test.

The modification was also recorded in the DCC S2100619

Attachment 1: PXL_20211217_001735762.jpg
PXL_20211217_001735762.jpg
Attachment 2: PXL_20211217_001719345.jpg
PXL_20211217_001719345.jpg
Attachment 3: PXL_20211217_005344828.jpg
PXL_20211217_005344828.jpg
Attachment 4: PXL_20211217_010131027.PORTRAIT.jpg
PXL_20211217_010131027.PORTRAIT.jpg
Attachment 5: PXL_20211217_011423823.jpg
PXL_20211217_011423823.jpg
Attachment 6: HAMA_Driver_V4.pdf
HAMA_Driver_V4.pdf
  16517   Thu Dec 16 17:57:17 2021 AnchalUpdateBHDFinished Coil driver (odd serial number) units tests

S2100619 was fixed by Koji and it passed the test after that.

Quote:
SERIAL #  
S2100619 FAIL (CH2 phase)

 

  16518   Thu Dec 16 18:16:36 2021 YehonathanUpdateBHDSOS assembly

Today I glued magnets onto the new 3/4" mirror adapters. I also took the opportunity to make some more side magnets assemblies.

Yesterday I mounted PR3/SR2 3/4" thick mirror onto one of the new adapter. There seem to be no issues for now.

I started the process of suspending AS1 (E2000226-A). The Lambda Optic mirror with the closest specs has Rc = 2 m. I attached side blocks with clamped wires onto adapter number 7 - side block with a magnet on the right.

I then took one of the Lambda Optic mirrors and tried mounting it in the adapter. It was quite difficult to get it right. Unfortunately, I chipped the edge of the substrate (attachment 1) 🤦🏻‍♂️. I put the mirror back in the box and decided to use the spare mirror. I successfully mounted it into the adapter but when I put the clamping screws one of them fell on the mirror 🤦🏻‍♂️🤦🏻‍♂️. There is no visible damage though. I took some pictures (attachment 2-4).

I and Anchal then started suspending the mirror but then we found that one of the wires is dented in the middle 🤦🏻‍♂️🤦🏻‍♂️🤦🏻‍♂️. I'm burned out for today.

Late update: one nice thing that I found yesterday is that the glue is viscous enough to hold the dumbells without a metal sheet from above holding the magnets. This greatly simplifies the gluing process.

 

Attachment 1: chippedmirror.png
chippedmirror.png
Attachment 2: IMG_6311.JPG
IMG_6311.JPG
Attachment 3: IMG_6310.JPG
IMG_6310.JPG
Attachment 4: IMG_6309.JPG
IMG_6309.JPG
  16519   Fri Dec 17 12:32:35 2021 KojiUpdateSUSRemaining task for 2021

Anything else? Feel free to edit this entry.

- SUS: AS1 hanging

- SUS: PR3/SR2/LO2 3/4" thick optic hanging

v Electronics chain check (From DAC to the end of the in-air cable / From the end of the in-air cable to the ADC)
[ELOG 16522]

- Long cable installation (4x 70ft)

- In-air cable connection to the flange

- In-vac wiring (connecting LO1 OSEMs)

- LO1 OSEM insertion/alignment

- LO1 Damping test

 

  16520   Fri Dec 17 17:50:17 2021 YehonathanUpdateBHDSOS assembly

I threaded a new wire through a different side block with a magnet and clamped it under a microscope. It was hard, but eventually, I was able to do it by holding the wire on both sides of the side block with weights.

The dented wire was discarded and the side block that was mounted on the AS1 adapter was put aside. I mounted the side block with the new wire on the AS1 adapter.

 

Anchal and I hanged the AS1 adapter and clamped the wires on the winches of an SOS tower. I balanced the roll and adjusted the height of the magnet with respect to a side OSEM using a camera (attachments 1 & 2).

I shoot the Hene laser on the optic and look at the reflection. I align the laser beam to be as close as possible to the center of the mirror. The OpLev needs to be realigned.

To my surprise, the ghost beam shoots up above the reflected beam! See attachment 3. I check to see that the arrow which marks the thinnest side of the mirror is horizontal (attachment 4). WTF?!

Also, now I realize that the marking on the Lambda optics are pencil markings 😵😵😵.

Attachment 1: AS1rollbalance.png
AS1rollbalance.png
Attachment 2: AS1Magnet_height.png
AS1Magnet_height.png
Attachment 3: ghostbeam.png
ghostbeam.png
Attachment 4: lambdaopticarrow.jpg
lambdaopticarrow.jpg
  16521   Fri Dec 17 19:16:45 2021 KojiUpdateBHDSOS assembly

We @40m do the convention of the arrow at the thinnest side & pointing the HR side, but nobody says Lambda does the same.

We can just remount the mirror without breaking the wires and adjust the pitching if you do it carefully.

Does this mean that the LO1 also likely to have the wedge pointing up? Or did you rotate the mirror to have the wedge reflection to be as horizontal as possible?

  16522   Fri Dec 17 19:19:42 2021 KojiUpdateSUSRemaining task for 2021

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

Attachment 1: PXL_20211218_030145356.MP.jpg
PXL_20211218_030145356.MP.jpg
  16523   Fri Dec 17 22:16:07 2021 YehonathanUpdateBHDSOS assembly

I specifically checked the specification before mounting the mirror. It says clearly "Arrow at the thinnest location pointing towards Side 1". I guess they just ignored it.

As for LO1, I mounted it without noticing the location of the arrow. Later, I checked and the ghost beam was horizontal so I left it as it is. Yeah, I guess I will remount the mirror. Also, what do we do with the pencil markings? It's not vacuum-compatible.

Quote:

We @40m do the convention of the arrow at the thinnest side & pointing the HR side, but nobody says Lambda does the same.

We can just remount the mirror without breaking the wires and adjust the pitching if you do it carefully.

Does this mean that the LO1 also likely to have the wedge pointing up? Or did you rotate the mirror to have the wedge reflection to be as horizontal as possible?

 

  16524   Sat Dec 18 00:56:14 2021 KojiUpdateBHDSOS assembly

Sad... We just need to check the wedge direction everytime, unfortunately.

Pencil: can you try to gently wipe it off with solvent & a swab? (IPA / Acetone)
If it does not come off in the end, it's all right to leave. Do we want to scribe the arrow mark? You need a diamond pen.

  16525   Sun Dec 19 07:52:51 2021 AnchalUpdateSUSRemaining task for 2021

The I/O chassis reassigns the ADC and DAC indices on every power cycle. When we moved it, it must have changed it from the order we had. We were aware of this fact and decided to reconnect the I/O chassis to AA/AI to relect the correct order. We forgot to do that but this is not an error, it is expected behavior and can be solved easily.

Quote:

I had the fear that any mistake in the electronics chain could have been the show stopper.

So I quickly checked the signal assignments for the ADC and DAC chains.

I had initial confusion (see below), but it was confirmed that the electronics chains (at least for LO1) are correct.

Note: One 70ft cable is left around the 1Y0 rack

 


There are a few points to be fixed:

- It looks like the ADC/DAC card # assignment has been messed up.

CDS ADC0 -> Cable label ADC1 -> AA A1 -> ...
CDS ADC1 -> Cable label ADC0 -> AA A0 -> ...
CDS DAC0 -> Cable label DAC2 -> AI D2 -> ...
CDS DAC1 -> Cable label DAC0 -> AI D0 -> ...
CDS DAC2 -> Cable label DAC1 -> AI D1 -> ...
(What is going on here... please confirm and correct as they become straight forward)

Once this puzzle was solved I could confirm reasonable connections from the end of the 70 cables to the ADC/DAC.

- We also want to change the ADC card assignment. The face OSEM readings must be assigned to ADC1 and the side OSEM readings to ADC0.
  My system wiring diagram needs to be fixed accordingly too.
  This is because the last channel of the first ADC (ADC0) is not available for us and is used for DuoTone.

 

  16526   Mon Dec 20 13:52:01 2021 KojiUpdateBHDSOS assembly

LO1: No need to remove the pencil mark for the damping test. Until we see serious contamination on the LO1 optic, we don't need to take the optic off from the mount and clean it. If there is a chance of rehanging (because of a broken wire/etc), we do wipe the pencil mark.

Other optics: wipe the pencil mark as much as possible.

  16527   Mon Dec 20 14:10:56 2021 AnchalUpdateBHDAll coil drivers ready to be used, modified and tested

Koji found some 68nF caps from Downs and I finished modifying the last remaining coil driver box and tested it.

SERIAL # TEST result
S2100633 PASS

With this, all coil drivers have been modified and tested and are ready to be used. This DCC tree has links to all the coil driver pages which have documentation of modifications and test data.

  16528   Mon Dec 20 17:26:13 2021 YehonathanUpdateBHDSOS assembly

{Yehonathan, Anchal}

I released the AS1 wires from the winches, removed the adapter from the SOS tower, and removed the Lambda optic from the adapter. Attachment 1 shows the pencil markings on the optic before cleaning. I cleaned the pencil marking from the side of the optic with acetone using swabs until there were no pencil residues on the swab (attachment 2 shows the swab I used next to an unused swab). I was not able to remove the markings completely though (attachment 3).

I remounted the optic with the arrow rotated by 90 degrees counterclockwise.

We hang the adapter on the winches and adjust the height of the magnet and the adapter roll using the winches. We monitor the height of the adapter using a live stream from the Cannon camera. The camera's tilt was adjusted using straight features on the SOS tower. When we ran out of winch travel we adjust the height using the lower EQ stops and pull tight the wires. Attachment 4 shows the alignment of the side magnet with respect to the SOS tower and a side OSEM.

We checked the ghost beam trajectory and it looks much better (attachment 5)

We started realigning the OpLev. We realize that the height of the beam should be 5+14/32" = 5.437 by measuring the height of the screw holding the side OSEM from the table. The real height from the schematics is 5.425 We make the beam parallel with the table first using an iris and then the QPD.

Today, I balanced the counterweight. First using an iris, then by placing a QPD close to the SOS measuring the reflection from AS1. I locked the counterweight's set screw and the QPD Y readout looks good. Attachment 6 shows the QPD y readout near the beat node between pitch and pos. The node comes very close to zero which indicates that the pitch is balanced.

I measured the free-swinging motion using the QPD x and y axes. Attachment 7 shows the spectra of that motion. The major peaks are at 755mHz, 953mHz, and 1.05Hz.

 

Attachment 1: IMG_6312.JPG
IMG_6312.JPG
Attachment 2: IMG_6315.JPG
IMG_6315.JPG
Attachment 3: IMG_6314.JPG
IMG_6314.JPG
Attachment 4: AS1adapterbalancing.png
AS1adapterbalancing.png
Attachment 5: as1ghostbeam2.png
as1ghostbeam2.png
Attachment 6: beat.png
beat.png
Attachment 7: FreeSwingingSpectra.pdf
FreeSwingingSpectra.pdf
  16529   Tue Dec 21 16:35:39 2021 KojiUpdateVACITMX NW feedthru (LO1-1) connector pin bent

I've received a report that a pin of an ITMX NW feedthru connector was bent. (Attachment 1)
The connector is #1 (upper left) and planned to be used for LO1-1.

This is Pin25 and used for the PD K of OSEM #1. This means that Coil Driver #1 (3 OSEMs) uses this pin, but Coil Driver #2 (2 OSEMs) does not.

Anyways, I tried to fix it by bending it back. WIth some tools, it was straightened enough for plugging the cable connector. (Attachment 2)

It seemed that the pins were exceptionally soft compared to the ones used for usual DSUBs, probably because of the vacuum compatibility.
So it's better to approach the pins in parallel to the surface and not apply mating pressure until you are sure that all the 25pins are inserted in the counterpart holes.

Attachment 1: PXL_20211222_002019620.jpg
PXL_20211222_002019620.jpg
Attachment 2: PXL_20211222_003014068.jpg
PXL_20211222_003014068.jpg
  16531   Tue Dec 21 18:04:46 2021 YehonathanUpdateBHDSOS assembly

I locked the EQ stops while retaining the XY alignment on the QPD and installed 5 green OSEMs. AS1 is ready for transfer into the vacuum chamber.

  16532   Wed Dec 22 14:57:05 2021 KojiUpdateGeneralchiara local backup

chiara local backup of /cvs/cds has not been running since the move of chiara in Nov 19. The remote backup has not been taken since 2017.
The lack of the local backup was because of the misconfiguration of /etc/fstab.

It was fixed and now the backup disk was mounted. We'll see the backup script running tomorrow morning.
The backup disk is smaller than the main disk. So sooner or later, we will face the backup problem again.


localbackup script was crying because there was no backup disk.

backup>pwd
/opt/rtcds/caltech/c1/scripts/backup
backup>tail localbackup.log
2021-12-18 07:00:02,002 INFO       Updating backup image of /cvs/cds
2021-12-18 07:00:02,002 ERROR      External drive not mounted!!!
2021-12-19 07:00:01,146 INFO       Updating backup image of /cvs/cds
2021-12-19 07:00:01,146 ERROR      External drive not mounted!!!
2021-12-20 07:00:01,255 INFO       Updating backup image of /cvs/cds
2021-12-20 07:00:01,255 ERROR      External drive not mounted!!!
2021-12-21 07:00:01,361 INFO       Updating backup image of /cvs/cds
2021-12-21 07:00:01,361 ERROR      External drive not mounted!!!
2021-12-22 07:00:01,469 INFO       Updating backup image of /cvs/cds
2021-12-22 07:00:01,470 ERROR      External drive not mounted!!!

fstab had no entry for the backup disk.

backup>cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid -o value -s UUID' to print the universally unique identifier
# for a device; this may be used with UUID= as a more robust way to name
# devices that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point>   <type>  <options>       <dump>  <pass>
proc            /proc           proc    nodev,noexec,nosuid 0       0
# / was on /dev/sda1 during installation
UUID=972db769-4020-4b74-b943-9b868c26043a /               ext4    errors=remount-ro 0       1
# swap was on /dev/sda5 during installation
UUID=a3f5d977-72d7-47c9-a059-38633d16413e none            swap    sw              0       0

# OLD BACKUP DISK
#UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# CURRENT BACKUP DISK as of 2021/09/02
#UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

#fb:/frames      /frames nfs     ro,bg

# CURRENT MAIN DISK as of 2021/09/02
# UUID=92dc7073-bf4d-4c58-8052-63129ff5755b   /home/cds    ext4    defaults,relatime,commit=60    0   0
UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"   /home/cds    ext4   defaults,relatime,commit=60    0   0

Checked the dev name of the disks and the UUIDs

backup>sudo lsblk
[sudo] password for controls:
NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sda      8:0    0 465.8G  0 disk
├─sda1   8:1    0 446.9G  0 part /
├─sda2   8:2    0     1K  0 part
└─sda5   8:5    0  18.9G  0 part [SWAP]
sdb      8:16   0   5.5T  0 disk
└─sdb1   8:17   0   5.5T  0 part /home/cds
sdc      8:32   0   3.7T  0 disk
└─sdc1   8:33   0   3.7T  0 part
sr0     11:0    1  1024M  0 rom
backup> sudo blkid
/dev/sda1: UUID="972db769-4020-4b74-b943-9b868c26043a" TYPE="ext4"
/dev/sda5: UUID="a3f5d977-72d7-47c9-a059-38633d16413e" TYPE="swap"
/dev/sdb1: UUID="1843f813-872b-44ff-9a4e-38b77976e8dc" TYPE="ext4"
/dev/sdc1: UUID="92dc7073-bf4d-4c58-8052-63129ff5755b" TYPE="ext4"

Added the fstab entry for the backup disk

media>cat /etc/fstab
# /etc/fstab: static file system information.
#
# Use 'blkid -o value -s UUID' to print the universally unique identifier
# for a device; this may be used with UUID= as a more robust way to name
# devices that works even if disks are added and removed. See fstab(5).
#
# <file system> <mount point>   <type>  <options>       <dump>  <pass>
proc            /proc           proc    nodev,noexec,nosuid 0       0
# / was on /dev/sda1 during installation
UUID=972db769-4020-4b74-b943-9b868c26043a /               ext4    errors=remount-ro 0       1
# swap was on /dev/sda5 during installation
UUID=a3f5d977-72d7-47c9-a059-38633d16413e none            swap    sw              0       0

# OLD BACKUP DISK
#UUID="90a5c98a-22fb-4685-9c17-77ed07a5e000"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# OLD BACKUP DISK as of 2021/09/02
#UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

# Current backup disk as of 2021/12/22
UUID="92dc7073-bf4d-4c58-8052-63129ff5755b"    /media/40mBackup       ext4      defaults,relatime,commit=60       0         0

#fb:/frames      /frames nfs     ro,bg

# CURRENT MAIN DISK as of 2021/09/02
# UUID=92dc7073-bf4d-4c58-8052-63129ff5755b   /home/cds    ext4    defaults,relatime,commit=60    0   0
UUID="1843f813-872b-44ff-9a4e-38b77976e8dc"   /home/cds    ext4   defaults,relatime,commit=60    0   0

  16534   Wed Dec 22 18:16:23 2021 KojiUpdateSUSRemaining task for 2021

The in-vacuum installation team has reported that the side OSEMs of ITMX and LO1 are going to be interfering if place LO1 at the planned location.
I confirmed that ITMX has the side magnet on the other side (Attachment 1 ITMX photo taken on 2016/7/21). So we can do this swap.

The ITMX side OSEM is sticking out most. By doing this operation, we will recover most of the space between the ITMX and LO1. (Attachment 2)

Attachment 1: ITMX_2016_07_21.jpg
ITMX_2016_07_21.jpg
Attachment 2: Screen_Shot_2021-12-22_at_18.03.42.png
Screen_Shot_2021-12-22_at_18.03.42.png
  16535   Thu Dec 23 16:38:21 2021 KojiUpdateGeneralIs megatron down? (Re: chiara local backup)

The local backup seems working fine again. But I found that megatron is down and this is a real issue. This should be fixed at the earliest chance.


It seems that the local backup has been successfully taken this morning.

controls@nodus|backup> tail /opt/rtcds/caltech/c1/scripts/backup/localbackup.log
2021-12-19 07:00:01,146 INFO       Updating backup image of /cvs/cds
2021-12-19 07:00:01,146 ERROR      External drive not mounted!!!
2021-12-20 07:00:01,255 INFO       Updating backup image of /cvs/cds
2021-12-20 07:00:01,255 ERROR      External drive not mounted!!!
2021-12-21 07:00:01,361 INFO       Updating backup image of /cvs/cds
2021-12-21 07:00:01,361 ERROR      External drive not mounted!!!
2021-12-22 07:00:01,469 INFO       Updating backup image of /cvs/cds
2021-12-22 07:00:01,470 ERROR      External drive not mounted!!!
2021-12-23 07:00:01,594 INFO       Updating backup image of /cvs/cds
2021-12-23 07:19:55,560 INFO       Backup rsync job ran successfully, transferred 338425 files.

However, I noticed that the autoburt has been stalled since Dec 6 (I used to check how the backup is up-to-date using the autoburt snapshots)

Dec>pwd
/opt/rtcds/caltech/c1/burt/autoburt/snapshots/2021/Dec
Dec>ls -l
total 24
drwxr-xr-x 26 controls controls 4096 Dec  1 23:07 1
drwxr-xr-x 26 controls controls 4096 Dec  2 23:07 2
drwxr-xr-x 26 controls controls 4096 Dec  3 23:07 3
drwxr-xr-x 26 controls controls 4096 Dec  4 23:07 4
drwxr-xr-x 26 controls controls 4096 Dec  5 23:07 5
drwxr-xr-x 19 controls controls 4096 Dec  6 16:07 6

There are a bunch of errors in the log file as follows, but maybe this is not an issue

controls@nodus|burt> pwd
/opt/rtcds/caltech/c1/burt
controls@nodus|burt> tail burtcron.log
!!!  ERROR !!! Target c1supepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1tstepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1x10epics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1aux Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1dcuepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1iscaux Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1iscepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1losepics Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1psl Snapshot file inconsistent with Request file
!!!  ERROR !!! Target c1susaux Snapshot file inconsistent with Request file

The real issue seems that megatron is down. It has a lot of house keeping jobs on corn including the N2 pressure alert.
https://wiki-40m.ligo.caltech.edu/Computers_and_Scripts/CRON
This needs to be fixed at the earliest chance.

  16536   Fri Dec 24 16:49:41 2021 KojiUpdateGeneralIs megatron down? (Re: chiara local backup)

It turned out that the UPS installed on Nov 22 failed (cf https://nodus.ligo.caltech.edu:8081/40m/16479 ). As a fact, it was alive just for 2 weeks!

The APC UPS unit indicated F06. According to the manual (https://www.apc.com/shop/us/en/products/APC-Power-Saving-Back-UPS-Pro-1000VA/P-BR1000G), F06 means "Relay Welding" and can not be fixed by a user. Resetting the UPS eliminated the error, but I didn't want to have the same issue while no one is in the lab, I moved the megatron power source from the UPS to the power strip on 1Y7. So, megatron is currently vulnerable to a power glitch.

After the power cords were restored, megatron eventually recovered ssh terminals. I manually ran autoburt.cron at 16:50 so that the latest snapshot is taken.

Attachment 1: PXL_20211224_235652821.jpg
PXL_20211224_235652821.jpg
  16538   Sun Jan 2 20:46:46 2022 KojiUpdateSUSEnd SUS Electronics building

19:00~ Start working on the electronics bench

The following units were tested and ready to be installed. These are the last SUS electronics units and we are now ready to upgrade the end SUS electronics too.

40m End ADC Adapter Unit D2100016 / 2 Units (S2200001 S2200002)

40m End DAC Adapter Unit D2100647/ 2 Units (S2200003 S2200004)

These are placed on Tega's desk together with the vertex DAC adapters

0:30 End work

Attachment 1: PXL_20220103_081133119.jpg
PXL_20220103_081133119.jpg
  16539   Mon Jan 3 12:05:08 2022 PacoUpdateBHD1Y0 rack work for LO2 AS1 AS4

[Paco, Anchal]

Continue working on 1Y0. Added coil drivers for LO2, AS1, AS4. Anchal made additional labels for cables and boxes. We lined up all cables, connected the different units and powered them without major events.

  16540   Mon Jan 3 16:46:41 2022 PacoUpdateBHD1Y1 rack work for SR2, PR2, PR3

[Paco, Anchal]

Continued working on 1Y1 rack. Populated the 6 coil drivers, made all connections between sat amp, AA chassis, DAC, and ADC adapters for SR2, PR2, and PR3 suspensions. Powered all boxes and labeled them and cables where needed. Near the end, we had to increase the current limit on the positive rail sorensen (+18 V) from ~ 7 to > 8.0 Amps to feed all the instruments. We also increased the negative (-18 V) current limit proportionally.

We think we are ready for all the new SOS on this side electronics-wise.


Photos: https://photos.app.goo.gl/GviuqLQviSPo1M3G6

  16541   Tue Jan 4 18:26:59 2022 AnchalUpdateBHDTested 2" PR2 candidates transmission

I used the rejected light from the PBS after the motorized half-wave plate between PMC and IMC injection path (used for input power control to IMC) to measure the transmission of PR2 candidates. These candidates were picked from QIL (QIL/2696). Unfortunately, I don't think either of these mirrors can be used for PR2.

  Polarization Incident Power [mW] Transmitted Power [mW] Transmission [ppm]
V2-2239 & V2-2242 s-pol 940 0.015 16.0
V2-2239 & V2-2242 p-pol 935 0.015 16.0
V6-704 & V6-705 p-pol 925 21 22703

If I remember correctly, we are looking for a 2" flat mirror with a transmission of the order of 1000 ppm. The current PR2 is supposed to have less than 100 ppm transmission which would not leave enough light for LO path.

I've kept the transmission testing setup intact on the PSL table, I'll test existing PR2 and another optic (which is 0.5" thick unfortunately) tomorrow.

ELOG V3.1.3-