ID |
Date |
Author |
Type |
Category |
Subject |
1647
|
Wed Jun 3 11:28:01 2009 |
caryn | Update | PEM | Unplugged Guralp channels |
|
1646
|
Wed Jun 3 03:30:52 2009 |
rana | Update | MOPA | NPRO current adjust |
I increased the NPRO's current to the max allowed via EPICS before the chiller shutdown. Yesterday, I did this
again just to see the effect. It is minimal.
If we trust the LMON as a proportional readout of the NPRO power, the current increase from 2.3 to 2.47 A gave us
a power boost from 525 to 585 mW (a factor of 1.11). The corresponding change in MOPA output is 2.4 to 2.5 W
( a factor of 1.04).
Therefore, I conclude that the amplifier's pump has degraded so much that it is partially saturating on the NPRO
side. So the intensity noise from NPRO should also be suppressed by a similar factor.
We should plan to replace this old MOPA with a 2 W Innolight NPRO and give the NPRO from this MOPA back to the
bridge labs. We can probably get Eric G to buy half of our new NPRO as a trade in credit. |
Attachment 1: Untitled.png
|
|
1645
|
Wed Jun 3 03:22:16 2009 |
pete | Update | Locking | DD handoff |
Rana, Alberto, Pete
We have the DD handoff nominally working. Sometimes, increasing the SRC gain at the end makes MICH get unstable. This could be due to a non-diagonal term in the matrix, or possibly because the DRM locks in a funky mode sometimes.
To get the DD handoff working, first we tuned demod phases in order to zero the offsets in the PD signals handed-off-to. Based on transer function measurements, I set the PRC PD6_I element to 0.1, and set the PD8_I signal to 0, since it didn't seem to be contributing much. We also commented out the MICH gain increase at the end of the DD_handoff script.
It could still be more stable, but it seems to work most of the time.
|
1644
|
Tue Jun 2 23:55:45 2009 |
Alberto | Update | oplevs | oplevs centerd |
Tonight I centered the oplevs for ITMX/Y, SRM, PRM, BS.
After doing that I noticed that the BS drifted a little from where I had set it. |
1643
|
Tue Jun 2 23:53:12 2009 |
pete | DAQ | Computers | reset c1susvme1 |
rob, alberto, rana, pete
we reset this computer, which was out of sync (16384 in the FE_SYNC field instead of 0) |
1642
|
Tue Jun 2 23:12:08 2009 |
rob | Configuration | Computers | ntp on op440m |
I restarted ntpd on op440m to solve a "synchronization error" that we were having in DTT. I also edited the config file (/etc/inet/ntp.conf) to remove the lines referring to rana as an ntp server; now only nodus is listed.
To do this:
log in as root
/usr/local/bin/ntpd -c /etc/inet/ntp.conf |
1641
|
Tue Jun 2 02:28:58 2009 |
pete | Update | Locking | DD handoff work |
alberto, pete
We worked on tuning the DD handoff tonight. We checked the DD PD alignments and they looked fine. First I tuned the 3 demod phases to minimize offsets. Then I noticed that the post-handoff MICH xfer function needed an increase in gain to look like the pre-handoff xfer function (which has a UGF of about 25 Hz). I increased the MICH PD9_Q gain from 2 to 7 in the input matrix. But, the handoff to PRC still failed, so tomorrow we will try to find out why.
In the plot, ref0 is before MICH handoff, and ref1 is after MICH handoff. There is also a PRC trace (before PRC handooff).
|
Attachment 1: mich_dd.pdf
|
|
1640
|
Mon Jun 1 19:19:26 2009 |
rana | Update | PSL | 1000 days of hour-trend |
|
Attachment 1: u.png
|
|
1639
|
Mon Jun 1 15:01:31 2009 |
rana | Update | PSL | Laser Power after fixing the laser chiller: more traces |
If you look at the correlation between RMTEMP and HTEMP, you see what we knew: namely that there
was a 1:1 correlation before. After the chiller fix, I can see no correlation between the room and
amplifier temperature at the resolution of 10:1. So the chiller loop has a gain > 10 at 24 hour time
scales.
I don't understand why the PMC looks more stable. |
Attachment 1: Picture_7.png
|
|
1638
|
Mon Jun 1 14:49:07 2009 |
rob | Summary | PSL | psl thoughts |
Some thoughts on what happened with the MOPA cooling.
Some unknown thing happened to precipitate the initial needle valve jiggle, which unleashed a torrent of flow through the NPRO. This flow was made possible by the fact that the cooling lines are labeled confusingly, and so flow was going backwards through the needle valve, which was thus powerless to restrict it. The NPRO got extremely cold, and most of the chiller's cooling power was being used to unnecessarily cool the NPRO. So, the PA was not getting cooled enough. At this, point, reversing the flow probably would have solved everything. Instead, we turned off the chiller and thus discovered the flaky start-motor capacitor.
Now we have much more information, flow meters in the NPRO and main cooling lines, a brand-new, functioning needle valve, a better understanding of the chiller/MOPA settings necessary for operation, and the knowledge of what happens when you install a needle valve backwards.
|
1637
|
Mon Jun 1 14:33:42 2009 |
rob | Configuration | Computer Scripts / Programs | op540m Monitor added to web status |
I added op540m's display 0 (the northern-most monitor in the control room) to the MEDM screens webpage: https://nodus.ligo.caltech.edu:30889/medm/screenshot.html
Now we can see the StripTool displays that are usually parked on that screen.
|
1636
|
Mon Jun 1 13:56:52 2009 |
Alberto | Update | PSL | Laser Power after fixing the laser chiller |
The laser power seems to have become more stable after fixing the laser chiller. The power is lower than it used to be (MOPA amplitude 2.5 versus 2.7) but, as shown in the attchement, it became more steady. |
Attachment 1: MOPAtrend.jpg
|
|
1635
|
Mon Jun 1 13:25:00 2009 |
rob | Update | Computers | c1susvme2, c1iscex running late |
Quote: |
c1susvme2 has been running just a bit late for about a week. I rebooted it.
The plot shows SRM_FE_SYNC, which is the number of times in the last second that c1susvme2 was late for the 16k cycle. Similarly for ETMX.
|
The reboot appears to have worked. |
Attachment 1: doublesync.jpg
|
|
1634
|
Sat May 30 12:36:52 2009 |
rob | Update | Computers | c1susvme2, c1iscex running late |
c1susvme2 has been running just a bit late for about a week. I rebooted it.
The plot shows SRM_FE_SYNC, which is the number of times in the last second that c1susvme2 was late for the 16k cycle. Similarly for ETMX.
|
Attachment 1: srmsync.jpg
|
|
Attachment 2: etmxsync.jpg
|
|
1633
|
Sat May 30 12:03:34 2009 |
rob | Update | PSL | MC locked |
I locked to PSL loops, then tweaked the alignment of the MC to get it to lock.
I first steering MC1 until all the McWFS quads were saturated. This got the MC locking in a 01 mode. So I steered MC1 a little more till it was 00. Then I steered MC2 to increase the power a little bit. After that, I just enabled the MC autolocker. |
1632
|
Sat May 30 11:24:56 2009 |
rob | Configuration | PSL | NPRO slow scan |
I'm setting SLOWDC to about -5.
I had to edit FSSSlowServo because it had hard limits on SLOWDC at (-5 and 5). It now goes from -10 to 10.
|
Attachment 1: slowSCAN.png
|
|
1631
|
Fri May 29 18:57:09 2009 |
steve | Update | PSL | the laser is back |
Steve, Rob and Alberto
Starting capacitor 216 miroFarad was installed on the compressor. Water lines were connected to the MOPA as corrected, so the flow meter readings are logical.
Now IN means flowing water in the direction of black arrow on the hose.
We struggled with the Neslab presetting: temp, bauds rate and other unknowns till Rob found the M6000 manual on Peter king's website.
Alberto realized that the chiller temp had to be reset to 20C on water chiller.
I put 1mg of Chloramin T into the water to restrict the growth of algae in the bath.
The NPRO heat sink was around ~20C without flow meter wheel rotation and the PA body ~25C by touch of a finger
I just opened up the needle valve a litle bit so the flow meter wheel would started rotating slowly.
That small glitch at the end of this 3 hrs plot shows this adjustment. |
Attachment 1: laserisback.jpg
|
|
1630
|
Thu May 28 18:41:26 2009 |
steve | Update | PSL | the saga of the chiller is ending |
I drained the water and removed side covers from the Neslab RTE 140 refrigerated water cooler unit this morning. The hoses to the laser were disconnected.
This abled you to see the little window of refregerant R404A was free of bubles, meaning: no recharge was needed.
The circulator bath was refilled with 7 liters of Arrowhead distilled water and the unit was turned on.
The water temp was kept 20.00+- .05C without any load. Finally the AC-repair man Paul showed up.
He measured the R404A level to be as specified: 23-24 PSI on the suction side and 310 PSI on the discharge side.
The unit was working fine. Paul found an intermittently functioning starting capacitor on the compressor that was removed.
The 240 micro Farad 120VAC cap will arrive tomorrow |
1629
|
Thu May 28 14:34:25 2009 |
rob | Update | PSL | chiller diagnosis |
Quote: |
steve, alberto, rob
After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working. Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far).
|
The repair man thinks it's a bad start capacitor, which is 240uF at 120V. Steve has ordered a new one which should be here tomorrow, and with luck we'll have lasing by tomorrow afternoon. |
1628
|
Wed May 27 15:59:44 2009 |
rob | Update | PSL | we don't understand the chiller (broken) |
steve, alberto, rob
After some futzing around with the chiller, we have come to the tentative conclusion that the refrigeration unit is not working. Steve called facilities to try to get them to recharge the refrigerant (R-404a) tomorrow, and we're also calling around for a spare chiller somewhere in the project (without luck so far). |
1627
|
Wed May 27 10:54:09 2009 |
rob | Update | PSL | we don't understand the chiller (broken) |
Quote: |
Quote: |
steve, rob, alberto
Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line. After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end. This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa. This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference.
Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter.
We also re-discovered that the 40m procedures manual contains an error. To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER. The proc man says ON, RS-232, RUN/STOP.
The laser power is at 1.5W and climbing.
|
Rob, Alberto
The chiller HT alarm started blinking, as the water temperature had reached 40 degrees C, and was still rising. We turned off the MOPA and the chiller. Maybe we need to open the needle valve a bit more? Or maybe the flow needs to be reversed? The labels on the MOPA are backwards?
|
The chiller appears to be broken. We currently have it on, with both the SENSOR and RS-232 unplugged. It's running, circulating water, and the COOL led is illuminated. But the temperature is not going down. The exhaust out the back is not particularly warm. We think this means the refrigeration unit has broken, or the chiller computer is not communicating with the refrigerator/heat exchanger. Regardless, we may need a new chiller and a new laser. |
1626
|
Tue May 26 17:34:14 2009 |
rob | Update | PSL | MOPA re-deactivated |
Quote: |
steve, rob, alberto
Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line. After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end. This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa. This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference.
Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter.
We also re-discovered that the 40m procedures manual contains an error. To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER. The proc man says ON, RS-232, RUN/STOP.
The laser power is at 1.5W and climbing.
|
Rob, Alberto
The chiller HT alarm started blinking, as the water temperature had reached 40 degrees C, and was still rising. We turned off the MOPA and the chiller. Maybe we need to open the needle valve a bit more? Or maybe the flow needs to be reversed? The labels on the MOPA are backwards? |
Attachment 1: laser_temp.jpg
|
|
1625
|
Tue May 26 17:05:44 2009 |
rob | Update | PSL | MOPA re-activated |
steve, rob, alberto
Steve installed two rotary flow meters into the MOPA chiller system--one at the chiller flow output and one in the NPRO cooling line. After some hijinks, we discovered that the long, insulated chiller lines have the same labels at each end. This means that if you match up the labels at the chiller end, at the MOPA end you need switch labels: out goes to in and vice-versa. This means that, indubitably, we have at some point had the flow going backwards through the MOPA, though I'm not sure if that would make much of a difference.
Steve also installed a new needle valve in the NPRO cooling line, which works as expected as confirmed by the flow meter.
We also re-discovered that the 40m procedures manual contains an error. To turn on the chiller in the MOPA start-up process, you have to press ON, then RS-232, then ENTER. The proc man says ON, RS-232, RUN/STOP.
The laser power is at 1.5W and climbing. |
Attachment 1: DSC_0513.JPG
|
|
Attachment 2: DSC_0517.JPG
|
|
1624
|
Mon May 25 21:31:47 2009 |
caryn | Update | PEM | plugged in Guralp channels |
Guralp Vert1b and Guralp EW1b are plugged back in to PEM ADCU #10 and #12 respectively. Guralp NS1b remains plugged in. So, PEM-SEIS_MC1_X,Y,Z should now corrsp to seismometer as before. |
1623
|
Sun May 24 11:24:08 2009 |
rob | Update | Computers | elog restarted |
I just restarted the elog. It was crashed for unknown reasons. The restarting instructions are in the wiki. |
1622
|
Fri May 22 17:05:24 2009 |
rob, pete | Update | Computers | hard reboot of vertex suspension controllers |
we did a hard reboot of c1susvme1, c1susvme2, c1sosvme, and c1susaux. We are hoping this will fix some of the weird suspension issues we've been having (MC3 side coil, ITMX alignment). |
1621
|
Fri May 22 17:03:14 2009 |
rob, steve | Update | PSL | MOPA takes a holiday |
The MOPA is taking the long weekend off.
Steve went out to wipe off the condensation inside the MOPA and found beads of water inside the NPRO box, perilously close to the PCB board. He then measured the water temperature at the chiller head, which is 6C. We decided to "reboot" the MOPA/chiller combo, on the off chance that would get things synced up. Upon turning off the MOPA, the neslab chiller display immediately started displaying the correct temperature--about 6C. The 22C number must come from the MOPA controller. We thus tentatively narrowed down the possible space of problems to: broken MOPA controller and/or clog in the cooling line going to the power amplifier. We decided to leave the MOPA off for the weekend, and start plumbing on Tuesday. It is of course possible that the controller is the problem, but we think leaving the laser off over the weekend is the best course of action.
|
1620
|
Fri May 22 01:27:14 2009 |
pete | Update | SUS | 200 days of MC3 side |
Looks like something went nuts in late April. We have yet to try a hard reboot. |
Attachment 1: mc3_side_200days.png
|
|
1619
|
Fri May 22 00:43:24 2009 |
rob | Configuration | Computer Scripts / Programs | IFO configure scripts for XARM and YARM |
I edited the configure scripts (those called from the C1IFO_CONFIGURE screen) for restore XARM and YARM. These used to misalign the ITM of the unused arm, which is totally unnecessary here, as we have both POX and POY. They also used to turn off the drive to the unused ETM. I've commented out these lines, so now running the two restores in series will leave a state where both arms can be locked. This also means that the ITMs will never be deliberately mis-aligned by the restore scripts. |
1618
|
Thu May 21 18:21:57 2009 |
rana | Summary | Treasure | Yoichi's words |
Yoichi's final words on what do next with the interferometer (as of 5 PM on May 21, 2009):
- Measure laser noise couplings in spring and anti-spring configurations.
- Dewhitening filter turn on for the ETMs.
- Noisebudget - import from the sites.
- Stabilize CM handoff.
My personal sub-comments to these bullets:
- For the laser noise I'm not sure that we will be able to understand these if the couplings are mainly from junk light due to accidental HOM resonances.
- WE should look into putting a static passive stage of filtering into the ETMs if warranted by the NB.
- Because of the sad track record with this, I will start us off this time by importing and modifying the H1/L1 versions.
- I guess we can do this by just acquiring on MC2 with the huge CARM offset. It works for the single arm so it should work for offset CARM.
|
1617
|
Thu May 21 18:07:32 2009 |
rana | Update | PSL | Screw on Needle valve loosened |
Alberto and I went in to loosen up the needle valve yesterday around 4:30 PM. The idea was to cut down on
the flow to the NPRO so that the cooling power of the chiller would be used almost entirely on the
amplifier instead of the NPRO block.
The need valve was basically all the way open. The lock nut was screwed in all the way and stuck. By using
pliers and a wrench for the nut, we freed the lock nut. Even so, the screw for the needle valve seemed to
be bad: I think the thread is stripped; it doesn't go down even after several turns. I even tried to squirt
alchohol on it and really press down in the hopes of catching a thread. It may have closed slightly but its
impossible to be sure.
I also increased the NPRO diode current to the max (+0.1 A). This got us a little bit of NPRO power and
I hope some more AMPMON stability. The attached plot shows 4 days of minute trend. If you squint you
might believe that we got some suppression in the HTEMP fluctuations over the last two days. |
Attachment 1: Untitled.png
|
|
1616
|
Thu May 21 18:05:03 2009 |
pete | Update | SUS | ETMX coils look OK |
Quote: |
I checked the four rear coils on ETMX by exciting XXCOIL_EXC channel in DTT with amplitude 1000@ 500 Hz and observing the oplev PERROR and YERROR channels. Each coil showed a clear signal in PERROR, about 2e-6 cts. Anyway, the coils passed this test.
|
I also made xfer fctns of the 4 piston coils on ETMY and ETMX with OL_PIT. (I looked at all 4 even though the attached plot only shows three.) So it looks ike the coils are OK. |
Attachment 1: etmx_etmy_coils.pdf
|
|
1615
|
Thu May 21 12:58:32 2009 |
rob | Configuration | ALARM | PEM count-half disabled |
I've disabled the alarm for PEM_count_half, using the mask in the 40m.alhConfig file. We can't do anything about it, and it's just annoying. |
1614
|
Wed May 20 16:03:52 2009 |
steve | Omnistructure | Environment | using OSEMs to look at seismic activity |
Rana suggested using OSEM sensing voltages as guide lines to look seismic activity.
As you see todays drilling and tumping activity was nothing compared to the EQ of mag 5 and 4
Optic level servos are turned back on.
What Steve means is that there is some drilling going on in the CES shop to accomodate the new water flume group. We want to
make sure that the mirrors don't move enough to break the magnets. On the dataviewer we should look to make sure that the
sensor channels stay between 0-2 V. -Rana
|
Attachment 1: eqOSEM5m4.jpg
|
|
1613
|
Wed May 20 10:43:17 2009 |
steve | Omnistructure | Environment | accelerometers sensitivity |
Quote: |
2009 May 18 03:39:36 UTC
Earthquake Details
Magnitude |
5.0 |
Date-Time |
- Monday, May 18, 2009 at 03:39:36 UTC
- Sunday, May 17, 2009 at 08:39:36 PM at epicenter
|
Location |
33.940°N, 118.338°W |
Depth |
13.5 km (8.4 miles) |
Region |
GREATER LOS ANGELES AREA, CALIFORNIA |
Distances |
- 2 km (1 miles) E (91°) from Lennox, CA
- 2 km (1 miles) SSE (159°) from Inglewood, CA
- 3 km (2 miles) NNE (22°) from Hawthorne, CA
- 7 km (4 miles) ENE (72°) from El Segundo, CA
- 15 km (10 miles) SSW (213°) from Los Angeles Civic Center, CA
|
Location Uncertainty |
horizontal +/- 0.4 km (0.2 miles); depth +/- 0.9 km (0.6 miles) |
Parameters |
Nph=139, Dmin=7 km, Rmss=0.42 sec, Gp= 40°,
M-type=local magnitude (ML), Version=C |
Source |
|
Event ID |
ci10410337 |
|
Wilcoxon 731A seismic accelerometers and Guralp CMG-40T-old seismometer at magnitude 5 and 4 erthquakes |
Attachment 1: eq5m4.jpg
|
|
1612
|
Wed May 20 09:55:18 2009 |
steve | Update | PEM | oplev servos turned off |
All oplevs servos turned off to protect our suspentions from vibration due to drilling and pounding in CES high bay area.
This activity will be done from 10 am till 3 pm today.
Meanwhile our IFO-air conditions are turned off for maintenance.
Their performance of 6 months is shown on plot. |
Attachment 1: ACpart6m.jpg
|
|
1611
|
Wed May 20 01:53:48 2009 |
rob, pete | Update | Locking | violin mode filters in drstep_bang |
Recently the watch script was having difficulty grabbing a lock for more than a few seconds. Rob discovered that the violin notch filters which were activated in the script were causing the instability. We're not sure why yet. The script seems significantly more stable with that step commented out. |
1610
|
Wed May 20 01:41:19 2009 |
pete | Update | VAC | cryopump probably not it |
I found some neat signal analysis software for my mac (http://www.faberacoustical.com/products/), and took a spectrum of the ambient noise coming from the cryopump. The two main noise peaks from that bad boy were nowhere near 3.7 kHz. |
1609
|
Tue May 19 16:18:45 2009 |
steve | Configuration | VAC | IFO pressure is 4.2e-7 Torr with CRYO pump |
Quote: | Morning Vacuum condition: IFO is not being pumped, P1 pressure is 1.8 mTorr and rising (see P1 pressure plot of 100 min ).
Overnight the RGA protection software interlock at closed the VM1 valve triggering on CC1 = 1e-5 torr.
This interlock blocked our attempt to hold the IFO operational pressure in the high 1e-5 Torr range with one small
"beer can" turbopump (Varian V70D drag-turbo pumping speed for N2 is ~60 l/s at 75KRPM).
I started CRYO regeneration using TP3. Pressure readout on the P3 gauge. This is after 30 days of CRYO operation.
V5 was closed for 60 sec to see the outgassing rate of the cryopump surfaces. It was good (but I am not going to elog
what 'good' actually means - instead I will write it in my paper logbook to prevent others from learning). I will now'
go start cooling down the cryo pump.
** translated into English by Rana |
The Cryo cooled down to ~12K by noon.Photo switch was reset and VC1 was opened at 2pm
The VACMONITOR.adl screen is not working. Someone made some improvement on it last night. |
1608
|
Tue May 19 16:08:03 2009 |
rana | Summary | SEI | EUCLID |
From Stuart Aston, I've attached a picture of the EUCLID position sensor: |
Attachment 1: Picture_6.png
|
|
1607
|
Tue May 19 15:57:07 2009 |
steve | Update | IOO | MC2 damping restored after EQ |
Earthquake mag 4.0 at Lennox, Ca trips MC2 watchdogs http://quake.usgs.gov/recenteqs/Quakes/ci10411545.html
See 40m accelerometers as they see it. |
Attachment 1: acc.jpg
|
|
1606
|
Tue May 19 15:54:29 2009 |
Jenne | Update | PEM | More Plots for the S5 H1:DARM Wiener Filtering.... |
Even more plots for the Wiener filtering!
We have a set of spectrograms, which show (in color) the amplitude spectrum, at various times during a one month stretch of time, during S5. Each vertical data-'stripe' is 10min long.
We also have a set of band-limited plots, which take the spectra at each time, and integrate under it, for different frequency bands.
Each set of plots has the following 3 plots: The raw DARM spectrum, a ratio of residual/raw, and the residuals, normalized to the first one (on which the wiener filter was trained).
The residuals are the DARM spectrum, after subtracting the Wiener-filtered seismometer witness data.
From the ratio plots, it looks like the wiener filter is pretty much equally effective at the time on which the filter was trained, as one month later. Static filters may be okey-dokey for a long period of time with for the seismic stuff. |
Attachment 1: H1darmCompSpecgramRAW.png
|
|
Attachment 2: H1darmCompSpecgramRATIO.png
|
|
Attachment 3: H1darmCompSpecgramRESIDUALS.png
|
|
Attachment 4: H1darmCompWienerRAW.png
|
|
Attachment 5: H1darmCompWienerRATIO.png
|
|
Attachment 6: H1darmCompWienerRESIDUALS.png
|
|
1605
|
Tue May 19 12:30:41 2009 |
rob | Configuration | SUS | ETMY f2pRatio script run |
Quote: | Now that the ETMY optical lever is not so bad, I ran the f2pRatio script and it seems to have worked.
I cleaned up the script a little also. Updated in the SVN.
ETMY's A2L scripts have to be run to reduce the A2L noise once the arm is locked again. Might also need
to set the OL UGF too. |
Just to show, in part, what the script does.
The F2A filters are turned on at 12:21, and the oplev no longer responds to large LSC drives in ETMY. |
Attachment 1: f2ademo.png
|
|
1604
|
Tue May 19 09:34:29 2009 |
steve | Configuration | VAC | IFO is not pumped & CRYO is being regenerated |
Morning Vacuum condition: IFO is not being pumped, P1 pressure is 1.8 mTorr and rising (see P1 pressure plot of 100 min ).
Overnight the RGA protection software interlock at closed the VM1 valve triggering on CC1 = 1e-5 torr.
This interlock blocked our attempt to hold the IFO operational pressure in the high 1e-5 Torr range with one small
"beer can" turbopump (Varian V70D drag-turbo pumping speed for N2 is ~60 l/s at 75KRPM).
I started CRYO regeneration using TP3. Pressure readout on the P3 gauge. This is after 30 days of CRYO operation.
V5 was closed for 60 sec to see the outgassing rate of the cryopump surfaces. It was good (but I am not going to elog
what 'good' actually means - instead I will write it in my paper logbook to prevent others from learning). I will now'
go start cooling down the cryo pump.
** translated into English by Rana |
Attachment 1: cryoreg.jpg
|
|
Attachment 2: cryo30d.jpg
|
|
1603
|
Mon May 18 21:34:18 2009 |
rana | Configuration | SUS | ETMY f2pRatio script run |
Now that the ETMY optical lever is not so bad, I ran the f2pRatio script and it seems to have worked.
I cleaned up the script a little also. Updated in the SVN.
ETMY's A2L scripts have to be run to reduce the A2L noise once the arm is locked again. Might also need
to set the OL UGF too. |
1602
|
Mon May 18 20:16:20 2009 |
rana | Configuration | VAC | not it |
There was essentially no change in the ETMY oplev spectrum with the cryo off!
So I went out to the ETMY OL table to see what else was going on. I found there one of
the most horrible opto-mechanical setups I have ever seen (and remember that I have once
seen someone mount an NPRO on a cardboard box). Some bad person had mounted the ETMY OL
lens on a 12" long skinny post and extended it towards the viewport. So there was a post
holder on the table and a lens ~12" away on a rickety lever arm.
I took this lens away and the spectrum is now good. Shame on you.
CYAN - cryo ON
BLACK - cryo OFF
BLUE - no crappy lens + mount
This OL needs to be fixed correctly by putting in a proper lens to get a small spot on the QPD. |
Attachment 1: a.png
|
|
1601
|
Mon May 18 19:44:52 2009 |
rana, steve | Configuration | VAC | Cryo Pump turned off and valved off: 1 beer can only |
I was seeing some excess noise in the ETMY oplev yaw and so we turned off the cryo and restarted c1vac2 to get the turbo pump channels back.
The RGA was also turned off to protect its innocence and we are now running on the single beer can Turbo (TP3). The pressure has risen
from 1e-7 to 2e-5 torr. We'll probably level off at 5e-5 overnight and that's fine for now.
Unfortunately, the VM1 valve, which is between the RGA and the main volume, keeps getting turned off by our interlock software
to protect the RGA. Probably because our Vac screen shows the RGA 'Normal' even though the power is off and the record is invalid (white;
although the MEDM screen doesn't show it white).
I also moved Steve's secret Vacuum control screen from the target/ directory to the correct medm directory (with all the other Vacuum
screens) and added it to the SVN. |
1600
|
Mon May 18 15:31:11 2009 |
rana | Update | PEM | Temp sensor |
Quote: | Picture of cooler for posterity is attached |
I'm puzzled as to why the minute trend doesn't pick this up; its clearly there in the full data.
Looks like its several samples too. Can someone please reboot this DCU and see if the problem goes away? |
Attachment 1: Untitled.png
|
|
1599
|
Mon May 18 10:06:56 2009 |
caryn | Update | PEM | Temp sensor |
Quote: | To see if Caryn's data dropouts were happening, I looked at a trend of all of our temperature channels. Looks OK now.
Although you can't see it because I zoomed in, there's a ~24 hour relaxation happening before Caryn's sensors equilibrate.
I guess that's the insulating action of the cooler? We need a picture of the cooler in the elog for posterity.[/quote
Dropouts can't been seen with a minute trend, only a second trend. No big deal, but they are still occurring. See plot below.
The 24hr relaxation period is due to the cooler and some metal blocks that were cooled in the freezer and then put in the cooler to see if the relationship between the temp sensors changed with temperature. The relationship is not linear, which probably means there is some non-linearity in each temperature sensor's relationship to temperature. So, when calibrating them with Bob's temp sensor, more than 2 data points need to be collected.
Picture of cooler for posterity is attached |
Attachment 1: datadropout.png
|
|
Attachment 2: coolerpic1.jpg
|
|
Attachment 3: coolerpic2.jpg
|
|
1598
|
Mon May 18 02:18:17 2009 |
rana | Summary | SEI | Using STACIS w/ a good position sensor | WE turned off STACIS a few years ago because we noticed that it was causing noise below a few Hz and making
the overall velocity between the ends higher than with them off. I'm pretty sure they were causing noise
because they use little geophones which are noisy. Below ~0.2 Hz the horizontal geophones are also probably
limited by tilt-horizontal coupling.
Another concept (based on discussion with Brian Lantz and Matt Evans) is to instead put a good position sensor
between the ground and then blue support beam. Since the the STACIS rubber acts like a Q~2 passive resonance at
20 Hz, the whole seismic system (including the blue beams, in-vac tubes, and internal stack) act like a proof
mass of a seismometer.
So, in principle, if we use a very good position sensor and feedback to the STACIS piezo actuators, we can cancel
the ground motion before it enters the stacks. The initial LIGO OSEMs have a noise of 10^-10 m/rHz above 10 Hz
and going up like 1/f below 10 Hz. The AdvLIGO BOSEMs have a noise of ~2x better. Even better, however, are the
UK's EUCLID interferometric OSEMs (developed by Stuart Aston and Clive Speake).
In the attached plot, I show what we can get if we use these EUCLIDs make a ~60 Hz BW feedback loop w/ STACIS.
BLACK - raw ground motion measured by the Guralp
MAGENTA - motion after passive STACIS (20 Hz harmonic oscillator with a Q~2)
GREEN - difference between ground and top of STACIS
YELLOW - EUCLID noise in air
BLUE - STACIS top motion with loop on (60 Hz UGF, 1/f^2 below 30 Hz)
CYAN - same as BLUE, w/ 10x lower noise sensor
One of the SURF projects this summer is to put together a couple different sensors like EUCLID to understand the noise. |
Attachment 1: stacis40.png
|
|
|