40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 228 of 339  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  15472   Sun Jul 12 22:40:35 2020 gautamUpdateElectronicsWFS characterization - old SURF report

After some hunting, I found this old SURF report with the WFS head measurements. The y-axes don't make much sense to me, and I can't find the actual data anywhere (her wiki page doesn't actually exist). So I think it's still unknown if these heads ever had the advertised transimpedance gain, or if the measured transimpedance of ~1kohm was what it always was.

  15475   Mon Jul 13 12:37:05 2020 gautamUpdateComputersrossa: more developmental work

In fact, all these utilities are now available in python3. There may be some bugs (e.g. this), but I've checked basic functionality and things look usable enough for development to proceed. While we can have a python2 env on rossa, I think it's unnecessary.

Quote:

I too, would prefer py3 for everything, but aren't all the cdsutils / gaurdian things still python2?

  15476   Tue Jul 14 00:06:09 2020 gautamUpdateLSCLocking with POX for CARM

I tried using the POX_I error signal for the DC CARM_B path today a couple of times. Got to a point where the AO path could be engaged and the arm powers stabilized somewhat, but I couldn't turn the CARM_A path off without blowing the lock. Now the IMC has entered a temperemental state, so I'm abandoning efforts for tonight, but things to try tomorrow are:

  1. Check that the demod phase is set correctly
  2. With the CARM_B path engaged, measure some CARM OLTFs. Tonight, I was a bit over-optimistic I think, by expecting the scripted transition to take me all the way, but I think I'll have to fiddle around with the gains a bit.
  3. Check for offsets. The AO path should be AC coupled, but maybe the POX signal has some offset?

I have some data from a couple of days ago when the PRFPMI was locked as usual (CARM_B on REFL for both DC and AO paths), and the sensing lines were on, so I can measure the relative strength of the sensing lines in POX/REFL and get an estimate of what the correct digital gain should be.

The motivation here is to see if the sensing matrix looks any different with a modified locking scheme.

  15479   Tue Jul 14 15:29:25 2020 gautamUpdateBHDIn-air BHD - DCPD amplifier noise

For the first pass, it's probably easiest to use the existing DCPD amplifier. Looking at the gain and noise performance in Attachment #1, seems totally fine, the electronics noise will not be limiting if we have ~10mW of LO power. I assumed a transimpedance resistor of 1 kohm, and all other numbers as on the schematic (though who knows if the schematic is accurate). The noise should be measured to confirm that the box is performing as expected...

Attachment 1: DCPDamp.pdf
DCPDamp.pdf
  15480   Tue Jul 14 16:52:47 2020 gautamUpdateElectronicsCoil drivers for the test masses

Summary:

Koji and I had a discussion last Friday about the suspension electronics. I think there are still a few open questions - see Attachment #1. We should probably make a decision on these soon.

Other useful links:

  1. High-voltage coil driver circuit - D1900163
    • This board is ready to be fabricated and tested on the bench.
    • The way the connectors J2 and J3 are designed currently is meant to interface with the existing coil driver electronics.
    • Depending on the eventual coil driver we choose for the fast path, it may be benificial to change the signals on the connectors J2 and J3, to avoid the need for a custom interface board.
  2. HAM-A coil driver noise analysis.
    • The linked attachment evaluates the noise for the design value of the fast path series resistor, which is 1.2 kohms.
    • Iff we still have ambitions of measuring ponderomotive squeezing, we will need the resistance to be much higher, ~10 kohms (in the linked noise budget, only the Johnson noise of the series resistor is considered, but in reality, the OpAmp voltage and current noises also matter). 
    • This corresponds to a maximum current of 10V/10kohms = 100uA
    • Looking at signals to the ETMs from the current lock acquisition sequence, the RMS current to a single coil is approximately _____ (to be filled in later).
    • So we may need a version of the fast coil driver that supports a low noise mode (with large series resistance) and a high-range mode (with lower series resistance for lock acquisition).
  3. You can follow the links to DCC entries for other parts from Attachment #1.
Attachment 1: coilDriverSchem.pdf
coilDriverSchem.pdf
  15481   Tue Jul 14 17:28:29 2020 gautamUpdateLSCLocking with POX for CARM

From Attachment #1, looks like the phasing and gain for CARM on POX11 is nearly the same as CARM of REFL11, which is probably why I was able to execute a partial transition last night. The response in POY11 is ~10 times greater than POX11, as expected - though the two photodiodes have similar RF transimpedance, there is a ZFL-500-HLN at the POY11 output. The actual numerical values are 2.5e10 cts/m for CARM-->REFL11_I, 2.6e10 cts/m for CARM-->POX11_I, and 3.2e11 cts/m for CARM-->POY11_I.

So I think I'll just have to fiddle around with the transition settings a little more tonight. 

One possible concern is that the POX and POY signals are digitized without preamplificatio, maybe this explains the larger uncertainty ellipse for the POX and POY photodiodes relative to the REFL11 photodiode? Maybe the high frequency noise is worse and is injecting junk in the AO path? I think it's valid to directly compare the POX and REFL spectra in Attachment #2, without correcting for any loops, because this signal is digitized from the LSC demodulator board output (not the preamplified one, which is what goes to the CM board, and hence, is suppressed by the CARM loop). Hard to be sure though, because while the heads are supposed to have similar transimpedance, and the POX photodiode has +12dB more whitening gain than REFL11, and I don't know what the relative light levels on these photodiodes are in lock.

Quote:

I have some data from a couple of days ago when the PRFPMI was locked as usual (CARM_B on REFL for both DC and AO paths), and the sensing lines were on, so I can measure the relative strength of the sensing lines in POX/REFL and get an estimate of what the correct digital gain should be

Attachment 1: PRFPMI_2020712sensMat.pdf
PRFPMI_2020712sensMat.pdf
Attachment 2: LSCerrSigs.pdf
LSCerrSigs.pdf
  15483   Wed Jul 15 19:11:40 2020 gautamUpdateBHDIn-air BHD - alignment into OMC

I forgot about the pointing - probably we will need another actuator to control the pointing of the AS beam onto the DCPDs. I found a few old PI PZTs (model number is S-320, which is a retired part), one is labelled broken but the others don't indicate a-priori that they are broken. I'll post a more detailed hardware survey later.

  Draft   Wed Jul 15 19:17:09 2020 gautamUpdateBHDIn-air BHD - alignment into OMC

You can activate all 3axis

 

  15485   Wed Jul 15 19:23:44 2020 gautamUpdateGeneralEmergency light on in control room

The emergency lamps above the exit sign on the NW entrance to the control room are on. I tried opening and closing the door, but it remains on. Probably nothing to worry about, but noting here anyway.

  15487   Wed Jul 15 20:58:40 2020 gautamUpdateGeneralEmergency light on in control room

True - it is now not on anymore.

Quote:

It happened before too. Doesn't it say it has occasional self-testing or something?

  15488   Wed Jul 15 21:08:43 2020 gautamUpdateElectronicsETM coil outputs DQed

To facilitate this investigation, I've DQed the 4 face coil outputs for the two ETMs. EX is currently running with 5 times the series resistance of EY, so it'll be a nice consistency check. Compilation, installation etc went smooth. But when restarting the c1scx model, there was a weird issue - the foton file, C1SCX.txt, got completely wiped (all filter coefficients were empty, even though the filter module names themselves existed). I just copied the chiara backup version, restarted the model, and all was well again.

This corresponds to 8 additional channels, recorded at 16k as float 32 numbers, so in the worst case (neglecting any clever compression algorithms), we are using disk space at a rate of ~4 MB/s more. Seems okay, but anyway, I will remove these DQ channels in a few days, once we're happy we have enough info to inform the coil driver design.

spoke too soon - there was an RFM error for the TRX channel, and restarting that model on c1sus took down all the vertex FEs. Anyways, now, things are back to normal I think. The remaining red light in c1lsc is from the DNN model not running - I forgot to remove those channels, this would've been a good chance! Anyways, given that there is an MLTI in construction, I'm removing these channels from the c1lsc model, so the next time we restart, the changes will be propagated.

For whatever reason, my usual locking scripts aren't able to get me to the PRFPMI locked state - some EPICS channel value must not have been set correctly after the model reboot 😞. I'll debug in the coming days.

Fun times lie ahead for getting the new BHD FEs installed I guess 🤡 ....

Quote:
 

Looking at signals to the ETMs from the current lock acquisition sequence, the RMS current to a single coil is approximately _____ (to be filled in later).

So we may need a version of the fast coil driver that supports a low noise mode (with large series resistance) and a high-range mode (with lower series resistance for lock acquisition).

Attachment 1: CDS.png
CDS.png
Attachment 2: coilOutDQed.png
coilOutDQed.png
  15489   Thu Jul 16 01:12:22 2020 gautamUpdateBHDIn-air BHD - preparing the LO path

Attachment #1 - The 80mW pickoff was getting clipped on a BNC cable, and not making it to the doubling oven. 😢 .

  • Since the PSL doubled beam isn't used for locking these days, I just didn't notice.
  • I blame the ringdown team, this crazy tee arrangement wasn't the case before.
  • I fixed the situation by changing the cabling such that the beam clears the cables comfortably.

Attachment #2 - PSL green shutter removed. Alignment into the doubling oven is extremely tedious, and so I opted to preserve the capability of recovering the green beam by simply removing a single mirror.

Attachment #3 - The beam path for coupling the LO beam into a fiber.

  • Primary goal was to have easy access to some steering mirrors so that I can optimize alignment into the fiber collimator.
  • I opted to use the NW corner of the PSL table - that's where most of our existing fiber hardware is anyways, and there was sufficient space and easy access over there.
  • 3 Y1 mirrors were installed, using the preferred Polaris mounts and 3/4" post + baseplate hardware. They were labelled Y1-1037-45P so that future workers need not be un-necessarily tortured. The third mirror is not visible in this photograph.
  • Once the collimator arrives, I will mode match this beam into the fiber. Plan is to use the fiber originally used for the mode spectroscopy project. It needs to be moved to the NW corner of the PSL table, and the other end needs to be routed to the AP table (it was brought back to the PSL table to facilitate Anjali's fiber MZ experiment). 
  • There is plenty of space in the beam path for mode-matching lens(es) and polarization control optics.

Attachment #4 shows the BHD photodiodes taken from QIL. 

  • Unfortunately, we could not find the readout electronics. 
  • In the worst case, we can just interface these PDs with the existing Satellite box (associated with the copper OMC).
  • It might be that the OMC cavity can simply be placed on this breadboard, making the whole setup nice and portable.
  • We may want to consider having an OFI between the OMC and the IFO AS beam at some point...
Attachment 1: IMG_8626.JPG
IMG_8626.JPG
Attachment 2: IMG_8627.JPG
IMG_8627.JPG
Attachment 3: IMG_8628.JPG
IMG_8628.JPG
Attachment 4: IMG_8629.JPG
IMG_8629.JPG
  15490   Thu Jul 16 14:41:22 2020 gautamUpdateGeneralFire extinguisher inspection

The (masked) tech accessed all areas in the lab (office area, control room, VEA) between ~230pm-3pm. The laser safety goggles he used have been kept aside for appropriate sanitaiton.

  15491   Fri Jul 17 00:18:13 2020 gautamUpdateGeneralLocking updat
  1. I found that an EPICS channel wasn't reset to the correct value by burtrestore after the FE bootfest yesterday.
    • This cost me the whole of last night, found it finally tonight. 
    • I'll try and modify the locking scripts to better capture such errors, but ideally, we should just use Guardian or something since it's made for this purpose already.
    • Anyways, tonight I was able to re-acquire the PRFPMI lock in a completely scripted way.
  2. Locking CARM on POX remains out of reach.
    • I think this has to do with the fact that the zero-crossing of the CARM and REFL error signals are dependent on the 3f PRCL/MICH error point offsets.
    • So even if the DC gain is right, the fact that we use POX for the digital AO path and REFL for the analog AO path is leading to some conflict I think.
    • Ran out of energy tonight, I'll try again tomorrow.

The DQ channels of the ETM coils were active tonight, so I'll make the coil driver actuation budget over the next couple of days.

  15493   Sun Jul 19 15:40:15 2020 gautamUpdateBHDIn-air BHD - CDS and wiring summary

Attachment #1 shows the proposed wiring and CDS topology for the in air BHD setup. The PDF document has hyperlinks you can follow to the DCC entries. Main points:

  1. I think we should run the realtime model on c1lsc. This will negate the need for any IPC between c1ioo and c1lsc machines.
  2. I think we have most of the electronics we need already, though I am still in the process of testing the various boards, especially the HV ones.
  3. We may choose to use the switchable whitening feature for the M2 ISS board
    • This would require some BIO channels
    • There are plenty spare in c1lsc, so it's not going to be a show stopper
    • This is why I've not explicitly included a whitening board for now...
  4. The main job seems to be to make a whole bunch of custom cables. For the most part, I think we have the long (~20m) long D9 cables, so I propose just snipping off the connector at one end, and soldering on the appropriate connectors to the correct conductors.
  5. For the homodyne phase control - the proposal is to use a PI PZT with 3 piezoelectric elements. We would drive the 3 elements with the same voltage, by shorting the conductors together (at least that's how I understood Koji's comment), so we'd only need a single DAC channel for this purpose.
    • Need to confirm that the parallel PZT capacitances (each element is ~300 nF so 3 in parallel would be ~900 nF) still allows sufficient actuation bandwidth.
    • If the relative actuation strength of the 3 elements needs to be individually tuned, we may have to use three DAC channels. The D980323 board will allow the driving of 3 independent channels. I have one of these boards in hand, but need to check if it works, and also implement the changes outlined here.
  6. The alignment control has not yet been accounted for
    • We could consider using the in-vacuum PZTs, these were verified to be working ~2018.
    • If we use only 1 steering PZT mirror, we have sufficient free DAC channels available in c1lsc. But if we need both (to avoid clipping for example), then we need more DAC channels - we can either free up one DAFI channel, or install a DAC in the c1lsc expansion chassis
  7. We may want to expand to have a second OMC at some point. In which case we'd need, at the very least
    • 1 more DAC card
    • A HV driver for the second OMC length (could use the Trek driver if we use D980323 for the homodyne phase control).

Please comment if I've overlooked something.

Attachment 1: wiringDiagram.pdf
wiringDiagram.pdf
  15494   Mon Jul 20 17:23:46 2020 gautamUpdateElectronicsCoil drivers for the test masses

Summary:

Looking at the signals to the test mass coils, it seems borderline to me that we will be able to acquire lock and run in a low noise configuration with the same series resistor in the coil driver circuit. The way I see it, options are:

  1. Use a moderately high series resistance (e.g. 5 kohms) for the time being, and go ahead with the HAM-A coil driver.
    • This will mean a current noise of ~3pA/rtHz, which translates to ~3e-18 m/rtHz @ 100 Hz in DARM displacement noise (assuming the ITMs have much higher series resistance than the ETMs).
    • If the lock acquisiton looks smooth, double the resistance to 10 kohms.
    • With 5 kohm series resistance, there is negligible possibility of measuring ponderomotive squeezing for any of the input powers we consider feasible, but this is under the assumption that we will expose coil driver noise, which is very optimistic imho.
  2. Re-design a new coil driver that allows switchable impedance, so we can have a higher noise acquisition mode for acquiring and holding the ALS lock, then transition to a lower noise, lower range config once the RF / BHD lock has been acquired.
    • On paper, this solves all the problems, but the design of such a circuit is probably pretty non-trivial and time consuming.

Details:

I only looked at the ETMs for this study. The assumption is that we will have no length actuation on the ITMs, only local damping and Oplev loops (and maybe some ASC actuation?), which can be sufficiently low-pass filtered such that even with coil de-whitening, we won't have any range issues.

Attachment #1 shows the time-domain traces of the coil driver signals as we transition from POX/POY lock to the ALS lock. There are some transients, but I think we will be able to hold the lock even with a 5 kohm resistor (~twice what is on ETMX right now). From just these numbers, it would seem we can even go up to 10 kohms right away and still be able to acquire lock, especially if we re-design the digital feedback loop to have better low-pass filtering of the high-frequency ALS noise, see the next attachment.

Attachment #2 shows the f-domain picture, once the arm lengths are fully under ALS control (~25 seconds onwards in Attachment #1). The RMS is dominated by high frequency ALS length loop noise, which we can possibly improve with better design of the digital control loop.

Finally, Attachment #3 shows the situation once DARM control has been transitioned over to AS55_Q. Note that the vertex DoFs are still under 3f control, so there is the possibility that we can make this even lower noise. However, one thing that is not factored in here is that we will have to de-whiten these signals to low-pass filter the DAC noise (unless there is some demonstrated clever technique with noise-mons or something to subtract the DAC noise digitally). Nevertheless, it seems like we can run safely with 5 kohms on each ETM coil and still only use ~2000 cts RMS, which is ~1/10th the DAC range (to allow for dealing with spurious transients etc). 

Quote:

Looking at signals to the ETMs from the current lock acquisition sequence, the RMS current to a single coil is approximately _____ (to be filled in later).

Attachment 1: ALSlock_timeDomain.pdf
ALSlock_timeDomain.pdf
Attachment 2: ALSlock.pdf
ALSlock.pdf
Attachment 3: RFlock.pdf
RFlock.pdf
  15495   Mon Jul 20 17:55:15 2020 gautamUpdateBHDIn-air BHD - preparing the LO path

The LO pickoff has been coupled into a fiber with ~90% MM (8 mW / 9 mW input). While I wait for the DCPD electronics to be found in the Cryo lab, I want to monitor the stability of the pointing, polarization etc, so I'd like to clear some space on the AP table that was occupied for the mode spectroscopy project. If there are no objections before 2pm tomorrow July 21 2020, I will commence this work.

  15497   Tue Jul 21 00:30:24 2020 gautamUpdateBHDIn-air BHD - LO RIN

Attachment #1 shows the RIN of the local oscillator beam delivered to the AP table via fiber. I used a PDA520 to make this measurement, while the electronics for the DCPDs are pending. I don't really have an explanation for the difference between the locked IFO trace vs the not locked trace - we don't have an ISS running (but this first test suggests we should) and the beam is picked off before any cavities etc, so this is a reflection of the state of the FSS servo at the times of measurement?


Tried locking CARM using the hybrid REFL (for AO path) and POX 11 (for MCL path) scheme a bunch of times today, but I had no luck. When the CARM offset is zeroed, the PRMI lock is lost almost immediately. Maybe this is indicative of some excess noise in the POX data stream relative to the REFL signal? The one thing I haven't tried is to take the IFO all the way to the locked state, and then transition the MCL actuation from CM_SLOW to POX11_I.


An SR785 is sitting on the North side of the AP table in the walkway - I will clear it tomorrow.

Attachment 1: LO_RIN.pdf
LO_RIN.pdf
  15498   Tue Jul 21 16:41:46 2020 gautamUpdateBHDPMC assembly space

I decided to use the old EY auxiliary optics table, which is now stored along the east arm about 10 m from the end, as a workspace for assembling the little PMCs. I wiped everything down with isopropanol for general cleanliness, removed the metal plate on the south edge of the table enclosure to allow access, covered the table with some clean Aluminium foil, and then moved the plastic box with PMC parts to the table - see Attachment #1. I haven't actually done any assembly just yet, waiting for more info (if available) on the procedure and implements available...

Attachment 1: IMG_8635.JPG
IMG_8635.JPG
  15506   Thu Jul 30 16:16:43 2020 gautamUpdateSUSSuspension recovery

This earthquake and friends had tripped all watchdogs. I used the scripted watchdog re-enabler, and released the stuck ITMX (this operation is still requires a human and hasn't been scripted yet). IMC is locked again and all Oplevs report healthy optic alignment.

  15508   Thu Aug 6 22:57:20 2020 gautamUpdatesafetyNew live HV Supplies

Be aware that there is now a KEPCO HV supply that is energized, sitting on the floor immediately adjacent to the OMC rack, east of the AP table. It is currently set to 100 V DC, and a PI PZT installed on the AP table has its 3 PZTs energized by said supply (via an OMC piezo driver). I will post pictures etc of the work from the last 10 days over the weekend.

  15513   Mon Aug 10 16:52:04 2020 gautamUpdateBHDWorkable setup prepared

All the details are in E2000436, and documents linked from there, I think an elog would be much too verbose. In summary, a workable setup consisting of

  • 2 DCPDs interfaced with the realtime CDS system. Note that because this circuit is single-ended, while the AA and ADC are differential receiving, there is an overall gain of 0.5. Explicitly, for the 300 ohm DC transimpedance, the conversion is ~350 cts/mW.
  • A local oscillator beam delivered via fiber that is mode-matched (roughly) with the IFO AS beam.
  • A PZT mounted mirror to control the homodyne phase. The PZT (S320) is an obsolete part and it's hard to find a datasheet for it, but if its specs are comparable to the more modern S330, the full stroke is 10 um, for a max applied voltage of 100 V DC, so 100nm/V. c.f. 200V for 3um full stroke of the Noliac.

was prepared.

Last night, I locked the PRMI with the carrier resonant, and convinced myself that the DCPD null stream was sensing the MICH degree of freedom (while it was locked on AS55_Q) with good SNR below ~60 Hz. Above ~60 Hz, in this configuration, the ADC noise was dominating, but by next week, I'll have a whitening board installed that will solve this particular issue. With the optical gain of MICH in this configuration, the ADC noise level was equivalent to ~500 nrad/rtHz of phase noise above ~60 Hz (plots later).

Now, I can think about how to commission this setup interferometrically.

  15514   Tue Aug 11 23:20:29 2020 gautamUpdateBHDSome first tests with air BHD setup

Some tests done today:

All of these tests were done with the PRMI locked with carrier resonant in the recycling cavity (i.e. sidebands rejected to REFL port). I then actuated the BS length DOF with a sine wave at 311.1 Hz, 40 cts amplitude (corresponding to ~8 pm of peak-to-peak displacement).

  1. Attempt to balance the DCPDs
    • I tried to tune the digital gains of the two DCPDs so as to minimize the appearance of this line in the SUM channel
    • but no matter how I tuned the gains, I couldn't make the line in the SUM channel disappear entirely - in fact, the best I could do was to make the line height in SUM and NULL channels (yes I recognize the poor channel name choice, I'll change "NULL" to "DIFF" at the next model recompile) the same. See Attachment #1.
    • The lobes around the main peak are indicative of some scattering?
    • Attachment #2 shows a wider frequency range. The homodyne phase isn't controlled, so the "NULL" channel is not necessarily measuring the correct quadrature to be sensing MICH motion.
    • I think I can back out something about the contrast defect from this fact, but I need to go back to some modeling.
  2. A simple test of the homodyne phase actuator
    • I wanted to check that this PI S320 piezo actually allows me to actuate the optical path length of the local oscillator.
    • I'm using the OMC HV driver to drive said PZT - so there are two DAC channels available, one to dither the optic and one to apply a control signal. I think mainly this is to avoid using up DAC range for the dither signal, the overall dynamic range is still limited by the HV supply.
    • I can't find the maximum voltage that can be applied on the datasheet - so conservatively, I limited the HV output to saturate at 100 V DC, as this is the maximum for the S330 piezos used for green steering, for which there is a manual.
    • The S320 manual does say the full stroke of each PZT element is 10 um - so the actuation coefficient is ~100 nm/V. I then drove this actuator with a sine wave of 500 cts amplitude, at 314.1 Hz (corresponding to 15 nm of motion). With only the LO beam incident on the PDs, I saw no signal in either DCPD - as expected, so this was good.
    • Then, with the PRMI locked, I repeated the test. If there is no DC light field (as expected for the PRMI in this configuration), I wouldn't expect this drive signal to show up in the DCPDs. But in fact, I do. Again, this supports the presence of some (for now unquantified) contrast defect.

While it would seem from these graphs that the RIN of the LO beam at these frequencies is rather high, it is because of the ADC noise. More whitening (to be installed in the coming days) will allow us to get a better estimate, should be ~1e-6 I think.

I was just playing today, still need to setup some more screens, DTT templates etc to do more tests in a convenient way.

Now, I can think about how to commission this setup interferometrically.

Attachment 1: PRMI_RFlock.pdf
PRMI_RFlock.pdf
Attachment 2: PRMI_RFlock_fullscale.pdf
PRMI_RFlock_fullscale.pdf
  15515   Wed Aug 12 17:36:42 2020 gautamUpdateCDSTiming distribution slot availability

See Attachment #1. J8 was connected to a "LASTI timing slave" sitting in the rack that Chiara lives in - we don't use this for anything and I confirmed that there was no effect on the RTCDS when I pulled that fiber out. The LASTI timing slave also had a blinky that was blinking when the fiber was plugged in - which I take to believe that the slot works. 

Can we get away with just using these two available slots, J8 and J13? Do we really need three new expansion chassis?

Attachment 1: IMG_8706.JPG
IMG_8706.JPG
  15516   Wed Aug 12 17:42:58 2020 gautamUpdateElectronicsPhotodiode inventory

See Attachments #1 and #2. We don't have any Q3000 QPDs in hand, at least not in the photodiode box stored in the clean optics cabinet at the south end. I also checked a cabinet along the east arm where we store some photodiodes - but didn't find any there either. The only QPDs we have in hand are the YAG-444-4AH, which I believe is what is used in the iLIGO WFS heads.

So how many do we want to get?

Attachment 1: IMG_8709.JPG
IMG_8709.JPG
Attachment 2: IMG_8708.JPG
IMG_8708.JPG
  15517   Wed Aug 12 18:08:54 2020 gautamUpdateElectronicsNumber of the beast

The "source" output of the SR785 has a DC offset of -6.66 V. I couldn't make this up.

Upshot is, this SR785 is basically not usable for TF measurements. I was using the unit to characterize the newly stuffed ISC whitening board. The initial set of measurements were sensible, and at some point, I started getting garbage data. Unclear what the cause of this is. AFAIK, we don't have any knob to tune the offset - adjusting the "offset" in the source menu, I can change the level of the offset, but only by ~1 V even if I apply an offset of 10 V. I also tried connecting the ground connection on the rear of the SR785 to the bench power supply ground, no change.

Do we have to send this in for repair?

Attachment 1: IMG_8710.JPG
IMG_8710.JPG
  15521   Thu Aug 13 11:30:19 2020 gautamUpdateCDSTiming distribution slot availability

That's great. I wonder if we can also get away with not adding new Dolphin infrastructure. I'd really like to avoid changing any IPC drivers.

Quote:

I believe we will use two new chassis at most. We'll replace c1ioo from Sun to Supermicro, but we recycle the existing timing system.

  15523   Thu Aug 13 18:10:22 2020 gautamUpdateGeneralPower outage

There was a power outage ~30 mins ago that knocked out CDS, PSL etc. The lights in the office area also flickered briefly. Working on recovery now. The elog was also down (since nodus presumably rebooted), I restarted the service just now. Vacuum status seems okay, even though the status string reads "Unrecognized".

The recovery was complete at 1830 local time. Curiously, the EX NPRO and the doubling oven temp controllers stayed on, usually they are taken out as well. Also, all the slow machines and associated Acromag crates survived. I guess the interruption was so fleeting that some devices survived.

The control room workstation, zita, which is responsible for the IFO status StripTool display on the large TV screen, has some display driver issues I think - it crashed twice when I tried to change the default display arrangement (large TV + small monitor). It also wants to update to Ubuntu 18.04 LTS, but I decided not to for the time being (it is running Ubuntu 16.04 LTS). Anyways, after a couple of power cycles, the wall StripTools are up once again.

  15524   Fri Aug 14 00:01:55 2020 gautamUpdateCDSBHD / OMC model channels now added to autoburt

I added the EPCIS channels for the c1omc model (gains, matrix elements etc) to the autoburt such that we have a record of these, since we expect these models to be running somewhat regularly now, and I also expect many CDS crashes.

  15529   Mon Aug 17 15:18:26 2020 gautamUpdateEquipment loanBeam Profiler + peripherals --> 40m

Gabriele left the DataRay beam profiler + peripherals (see Attachment #1) in his office. I picked them up just now and brought them over to the 40m.

Attachment 1: IMG_8719.JPG
IMG_8719.JPG
  15530   Mon Aug 17 21:24:43 2020 gautamUpdateGeneralFire extinguisher inspection

A technician came to the lab today at ~4pm. He entered the VEA (with booties and googles), and also the clean and bake lab. The whole procedure lasted ~10 minutes. I did not follow him around, but was available in the control room throughout the process. I think the whole episode went without incident.

BTW, this guy didn't ring the doorbell, I just happened to be here when he came by. I don't know if this is usual practise - are we happy with the technicians entering the VEA and/or clean and bake labs without supervision? AFAIK, this wasn't scheduled.

  15531   Mon Aug 17 23:36:10 2020 gautamUpdateALSWhitening and ALS noise

finally managed to install a differential-receiving whitening board in 1Y2 - 4 channels are available at the moment. As I claimed, one stage of 15:150 Hz z:p whitening does improve the ALS noise a little, see Attachment #1. While the RMS (from 1kHz-0.5 Hz) does go down by ~10 Hz, this isn't really going to make any dramatic improvement to the 40m lock acquisiton. Now we're really sitting on the unsuppressed EX laser noise above ~30 Hz. This measurement was taken with the arm cavities locked with POX/POY, and end lasers locked to the arm cavities with uPDH boxes as usual. This was just a test to confirm my suspicion, the whitening board is to be used for the air BHD channels, but when we get a few more stuffed, we can install it for the ALS channels too.

Attachment 1: ALSimprovement.pdf
ALSimprovement.pdf
  15532   Mon Aug 17 23:41:50 2020 gautamUpdateBHDWhitening and air BHD dark noise

Summary:

With the chosen transimpedance of 300 ohms, in order to be able to see the shot noise of 10 mW of light in the digitized data streams, we'd need all 3 stages of whitening. If we want to be shot noise limited with 1 mW of LO light, we'd need to increase said transimpedance I think.

Details:

The measurements were taken with

  1. No light incident on the DCPDs.
  2. The flat whitening gain was set to 0 dB.
  3. Whitening engaged sequentially, stage by stage, shown as (Blue, Red, Orange and Green) curves corresponding to (0, 1, 2, 3) stages of whitening.

Of course, it's unlikely we're going to be shot noise limited for any configuration in the short run. But this was also a test of 

  1. My soldering.
  2. Change of whitening corner frequencies.
  3. Test of the overall whitening board assembly.

All 3 tests passed.

Attachment 1: BHD_whitening.pdf
BHD_whitening.pdf
  15534   Thu Aug 20 00:21:51 2020 gautamUpdateElectronicsFirst look at HV coil driver

Summary:

A single channel of this board was stuffed (and other channels partially populated). The basic tests passed, and nothing exploded! Even though this is a laughably simple circuit, it's nice that it works.

HV power supplies:

A pair of unused KEPCO BHK300-130 switching power supplies that I found in the lab were used for this test. I pulled the programmable cards out at the rear, and shorted the positive output of one unit to the negative of the other (with both shorted to the supply grounds as well), thereby creating a bipolar supply from these unipolar models. For the purposes of this test, I set the voltage and current limits to 100V DC, 10mA respectively. I didn't ramp up the supply voltage to the rated 300 V maximum. The setup is shown in Attachment #1.

Tests:

  1. With the input to the channel shorted to ground, I confirmed with a DMM that the output was (nearly) zero (there was an offset of ~40mV but I think this is okay).
  2. Used the calibrated voltage source, and applied +/- 3 V in steps of ~0.5 V, while monitoring the output with a DMM. Confirmed the output swing of ~ +/-90 V, which is what is expected, since the design voltage gain of this circuit is 31.
  3. Drove a 0.1 Hz, 500mVpp sine wave at the input while monitoring the output and the Vmon testpoints, see Attachment #2. Note the phasing between input and output, and also the fact that the gain is slightly lower than the expected gain of 31, because there are three poles at ~0.7 Hz, which already start showing some influence on the transfer function at 0.1 Hz.
  4. Noise measurement 
    • The whole point of this circuit is to realize sub 1pA/rtHz current noise to the coil, when it is connected.
    • For this test, no load was connected (i.e. voltage noise was measured at the output of the 25 kohm resistor), and the input was shorted to ground so that the DC value of the output was close to 0 (the idea was to not overload the SR560/SR785 with high voltage).
    • An SR560 preamp with gain x50 (DC coupled) was used to preamplify the signal. This was the maximum gain that could be used with the unit DC coupled, due to the small DC offset. I opted to keep the DC coupling to get a look at the low frequency noise as well, but in hindsight, maybe I should have used AC coupling as we only care about the current noise at ~100 Hz.
    • See Attachment #3 for results. The measurement is close to the model above ~100 Hz

Need to think more about how to better characterize this noise. An estimate of the required actuation can be found here.

Attachment 1: IMG_8724.JPG
IMG_8724.JPG
Attachment 2: timeDomain.pdf
timeDomain.pdf
Attachment 3: HVampNoise.pdf
HVampNoise.pdf
  15535   Fri Aug 21 15:27:00 2020 gautamUpdateBHDBetter BHD mode-matching

Summary:

The mode-matching between the LO and AS beams is now ~50%. This isn't probably my most average mode-matching in the lab, but I think it's sufficient to start doing some other characterization and we can try squeezing out hopefully another 20-30% by putting the lenses on translation stages, tweaking alignment etc.

Details:

The main change was to increase the optical path length of the IFO AS path, see Attachment #1. This gave me some more room to put a lens and translate it.

  • The LO path uses two lenses, f=200mm and f=100mm to focus the collimator output beam, which is supposedly ~1200um diameter, to something like 400um diameter (measured using beam profiler but not very precisely).
  • This beam is  fairly well collimated, and the beam size is close to what the PMC cavity will want, I opted not to tweak this too much more.
  • For the AS beam, the single bounce reflection from ITMY was used for alignment work.
  • There is a 2" f=600mm lens upstream (not seen in Attachment #1). This supposedly makes a beam with waist ~80um, but I couldn't numerically find a good solution numerically if this assumption is true, so I decided to do the mode-matching empirically.
  • A single f=150mm lens got me a beam that seemed pretty well collimated, and roughly the same size as the LO beam, so I opted to push ahead with that. Later, I measured with the beam profiler that the beam is ~600um in diameter, so the beam isn't very well matched to the LO spot size, but I decided to push ahead nevertheless.
  • Patient alignment work enabled me to see interference fringes.
    • Note that the ITM reflection registers 30 cts (~80 uW). Assuming 800mW transmission through the IMC, I would have expected more like 800mW * 5.637% * 50% * 98.6% * 50% * 10% * 30% * 50% * 50% = 80uW, so this is reasonable I guess. The chain of numbers corresponds to T_PRM * T_BS * R_ITM * R_BS * T_SRM * T_vac_OMC_pickoff * R_in_air_BS * R_homodyneBS.
    • The IFO AS beam appears rather elliptical to the eye (and also on the beam profiler). It already looks like this coming out of the vacuum so not much we can do about it right now I guess. By slightly rotating the f=150mm focusing lens so that the beam going through it at ~10 degrees instead of normal incidence, I was able to get a more circular beam as measured using the beam profiler.
    • With the AS beam blocked, the LO beam registers 240 cts on each DCPD (~0.7 mW). 
    • The expected fringe should then be (sqrt(240) + sqrt(30))^2 - (sqrt(240) - sqrt(30))^2 ~ 440 cts pp.
    • The best alignment I could get is ~200 cts pp, see Attachment #2.

Next steps:

Try the PRMI experiments again, now that I have some confidence that the beams are actually interfering.

See Attachment #3 for the updated spectra - the configuration is PRMI locked with carrier resonant and the homodyne phase is uncontrolled. There is now much better clearance between the electronics noise and the MICH signal as measured in the DCPDs. The "LO only" trace is measured with the PSL shutter closed, so the laser frequency isn't slaved to the IMC length. I wonder why the RIN (seen in the SUM channel) is different whether the laser is locked to the IMC or not? The LO pickoff is before the IMC.

Attachment 1: IMG_7548.JPG
IMG_7548.JPG
Attachment 2: BHD_MM.png
BHD_MM.png
Attachment 3: PRMI_DCPDs.pdf
PRMI_DCPDs.pdf
  15536   Sun Aug 23 23:36:58 2020 gautamUpdateElectronicsFirst look at HV coil driver

Summary:

A more careful analysis has revealed some stability problems. I see oscillations at frequencies ranging from ~600kHz to ~1.5 MHz, depending on the voltage output requested, of ~2 V pp at the high-voltage output in a variety of different conditions (see details). My best guess for why this is happening is insufficient phase margin in the open-loop gain of the PA95 high voltage amplification stage, which causes oscillations to show up in the closed loop. I think we can fix the problem by using a larger compensation capacitor, but if anyone has a better suggestion, I'm happy to consider it

Details:

The changes I wanted to make to the measurement posted earlier in this thread were: (i) to measure the noise with a load resistor of 20 ohms (~OSEM coil resistance) connected, instead of the unloaded config previously used, and (ii) measure the voltage noise on the circuit side (= TP5 on the schematic) with some high voltage output being requested. The point was to simulate conditions closer to what this board will eventually be used in, when it has to meet the requirement of <1pA/rtHz current noise at 100 Hz. The voltage divider formed by the 25 kohm series resistor and the 20 ohm OSEM coil simulated resistance makes it hopeless to measure this level of voltage noise using the SR785. On the other hand, the high voltage would destroy the SR785 (rated for 30 V max input). So I made a little Pomona box to alllow me to do this measurement, see Attachment #1. Its transfer function was measured, and I confirmed that the DC high voltage was indeed blocked (using a Fluke DMM) and that the output of this box never exceeded ~1V, as dictated by the pair of diodes - all seemed okay .

Next, I wanted to measure the voltage noise with ~10mA current flowing through the output path - I don't expect to require more than this amount of current for our test masses. However, I noticed some strange features in the spectrum (viewed continuously on the SR785 using exponential averaging setting). Closer investigation using an oscilloscope revealed:

  1. 600kHz to 1 MHz oscillations visible, depending on output voltage.
  2. The oscillations vanish if I drive output above +30 V DC (so input voltage > 1 V).
  3. The oscillations seem to be always present when the output voltage is negative.
  4. No evidence of this offset if circuit is unloaded and voltage across 25k resistor is monitored. But they do show up on scope if connected to circuit side even in this unloaded config.

Some literature review suggested that the capacitor in the feedback path, C4 on the schematic, could be causing problems. Specifically, I think that having that capacitor in the feeddback path necessitates the use of a larger compensation capacitor than the nominal 33pF value (which itself is higher than the 4.7pF recommended on the datasheet, based on experience of the ESD driver circuit which this is based on, oscillations were seen there too but the topology is a bit different). As a first test of this idea, I removed the feedback capacitor, C4 - this seemed to do the trick, the oscillations vanished and I was able to drive the output between the high voltage supply rails. However, we cannot operate in this configuration because we need to roll off the noise gain for the input voltage noise of the PA95 (~6 nV/rtHz at 100 Hz will become ~200 nV/rtHz, which I confirmed using the SR785). Using a passive RC filter at the output of the PA95 (a.k.a. a "snubber" network) is not an option because we need to sum in the fast actuation path voltage at the output of the 25 kohm resistor.

Some modeling confirms this hypothesis, see Attachment #2.  The quantity plotted is the open-loop gain of the PA95 portion of the circuit. If the phase is 0 degrees, then the system goes unstable.

So my plan is to get some 470pF capacitors and test this idea out, unless anyone has better suggestions? I guess usually the OpAmps are compensated to be unconditionally stable, but in this case maybe the power op-amp is more volatile?

Quote:

Need to think more about how to better characterize this noise. An estimate of the required actuation can be found here.

Attachment 1: IMG_5379.JPG
IMG_5379.JPG
Attachment 2: stabilityCriterion.pdf
stabilityCriterion.pdf
  15540   Wed Aug 26 00:52:55 2020 gautamUpdateBHDBHD activities

Listing some talking points from the last week of activity here.

  1. LO delivery fiber cable may be damaged.
    • The throughput itself doesn't suggest any problems, I get almost all the light I put in out the other end.
    • However, even when I slightly move the fiber, I see huge amplitude fluctuations in the DCPD readouts. This shouldn't be the case, particularly if the light is well matched to one of the special axes of the PM fiber. I checked with a PBS at the output that this is indeed the case, so something else must be funky?
    • In any case, I don't think it's a great idea to use this 70m long fiber for bringing the light from the PSL table to the adjacent AP table. Chub has ordered a 10m patch cable.
    • I was a bit too hasty this morning, thinking we had a patch cable in hand, and so I removed the fiber from the AP table. So right now, the LO beam doesn't make it to the BHD setup. Depending on the lead time for the new patch cable, I may or may not resurrect this old setup.
    • I have also located some foam and rigid plastic tubing which I think will help in isolating the fiber from environmental length(phase) modulation due to acoustic pickup.
  2. BHD commissioning activities
    • Basically, I've been trying to use the Single Bounce ITM reflection/ Michelson / PRMI with carrier locked to get some intuition about the BHD setup. These states are easily prepared, and much easier to understand than the full IFO for these first attempts.
    • One concern I have is the angular stability (or lack thereof). When the PRMI is locked, the DC light level on each DCPD fluctuates between ~0 (which is what it should be), up to ~30 cts (~85uW).
    • Using the empirically determined attenuation factor between the DCPDs and the dark port of the beamsplitter, I estimate the power can be as high as 20mW. This is a huge number, considering the input to the interferometer is ~800mW. I assume that all the light is at the carrier frequency, since the PRC should reject all the sideband light in this configuration. In any case, the total amount of sideband light is ~20mW, and the carrier stays resonant in the PRC even when there are these large ASDC excursions, so I think it's a reasonable assumption that the light is at the carrier frequency. Moreover, looking at the camera, one can see a clear TEM10/01 profile, indicative of imperfect destructive interference at the beamsplitter due to beam axis misalignment.
    • The effect of such excursions on the BHD readout hasn't yet been quantified (by me at least), but I think it may be hampering my attempts to dither the homodyne phase to estimate the LO phase noise.
  3. High voltage coil driver project - see thread for updates.
  4. Trek HV driver has arrived.
    • I haven't opened the box yet, but basically, what this means is that I can dither the mirror intended for homodyne phase control in a reasonable way.
    • Previously, I was using the OMC HV driver to drive the PZTs - but this dither signal path has a 2kHz high pass filter (since the OMC length dither is a kHz dither). I didn't want to futz around with the electronics, particularly since the unit was verified to be working.
    • So the plan now would be to drive the input of the Trek with a DAC output (an appropriate AI chassis has been prepared to interface with the CDS system).
    • Hopefully, there's enough DAC dynamic range to dither the PZT and also do the homodyne phase locking using a single channel. Else, we'd need to use two channels and install a summing amplifier.
    • We definitely need more high-voltage amplifiers/supplies in the lab:
      • Any Thorlabs HV drivers we can recover? 
      • Eventually, we will need HV for coil drivers, OMC PZTs, steering PZTs, homodyne phase control PZT. 
  5. PMC bases have arrived.
    • Joe Benson from the machine shop informed me today afternoon that the bases were ready for pickup.
    • We have 3 bases in hand now. The finish isn't the greatest in the world, but I think it'll work. You can see some photos here.
    • I will hold off on putting this together while I work on the basic airBHD commissioning tests. We can install the PMCs later.
  6. AS port WFS project
    • We now have in hand almost all the components for stuffing the ISC whitening and LSC demod boards.
    • Rich, Chub, Luis and I had a call on Monday. The advise from Rich/Luis was:
      • Choose an inductance that has Z~100 ohms at the frequency of interest, for the resonant transimpedance part.
      • Choose a capacitance that gives the appropriate resonant frequency.
      • Don't stuff more notches than you need - start with just a 2f notch (so 110 MHz for us), and make sure to place the highest frequency notch closest to the photodiode.
      • Rich also suggested looking at the optical signal with a non-optimized head, get an idea of what the field content is, and then tune the circuit as necessary. There are obviously going to be many issues that only become apparent once we do such a test.
    • The aLIGO modulation frequencies are only 20% different from the 40m modulation frequencies. So I thought it is best if for our first pass, we stick to the inductance values used in the aLIGO circuits (same footprint, known part etc etc). Then, we will change the capacitance so that we have a tuning range that is centered our modulation frequencies.
    • The parts have been ordered.
  7. ISS project
    • Half of the LO light on the BHD breadboard is diverted for the purpose of sensing the LO intensity noise, for eventual stabilization. Right now, it is just getting dumped.
    • A PD head has been located. It has a minimalist 1kohm transimpedance amplifier circuit integrated into the head.
    • Our AOM driver has an input range of 0-1V DC. We want to map the servo output of +/-10V DC (or +/-4V DC if we use an SR560 based servo for a first pass) to this range.
    • I wanted to do this for once in a non-hacky way so I drew up a circuit that I think will serve the purpose. It has been fabricated and will be tested on the bench in a couple of days.
    • Once I get a feel for what the signal content is, I will also draw up a interface board to the PD head that (i) supplies the reverse bias voltage and +/-15 V DC to the PD head and (ii) applies some appropriate HPF action and provides a DC monitor as well.
  8. Summary pages are dead.
  9. General lab cleanup
    • I moved all the PPE from the foyer area into the designated cabinets along the east arm.
    • Did some basic cleanup of the lab in preparation for crane inspection. Walkways are clear.
    • I de-cluttered the office area a bit, but today I received ~10 packages from Digikey/FrontPanelExpress etc. So, in fact, it got even more cluttered. Entropy will go down once we ship these off to screaming circuits for stuffing the PCBs.
  15541   Wed Aug 26 15:48:31 2020 gautamUpdateVACControl screen left open on vacuum workstation

I found that the control MEDM screen was left open on the c1vac workstation. This should be closed every time you leave the workstation, to avoid accidental button pressing and such.

The network outage meant that the EPICS data from the pressure gauges wasn't recorded until I reset everything ~noon. So there isn't really a plot of the outgassing/leak rate. But the pressure rose to ~2e-4 torr, over ~4 hours. The pumpdown back to nominal pressure (9e-6 torr) took ~30 minutes.

  15542   Wed Aug 26 16:12:25 2020 gautamUpdateElectronicsTest mass coil current requirements

Attachment #1 is a summary of the current to each coil on the suspensions. The situation is actually a little worse than I remembered - several coils are currently drawing in excess of 10mA. However, most of this is due to a YAW correction, which can be fixed somewhat more easily than a PIT correction. So I think the circuit with a gain of 31 for an input range of +/-10 V, which gives us the ability to drive ~12mA per coil through a 25kohm series resistor, will still provide sufficient actuation range. As far as the HV supplies go, we will want something that can do +/- 350 V. Then the current to the coils will at most be ~50 mA per optic. The feedback path will require roughly the same current. The quiescent draw of each PA95 is ~10mA. So per SOS suspension, we will need ~150mA.

If it turns out that we need to get more current through the 25kohm series resistance, we may have to raise the voltage gain of the circuit. Reducing the series resistance isn't a good option as the whole point of the circuit is to be limited by the Johnson noise of the series resistance. Looking at these numbers, the only suspension on which we would be able to plug in a HV coil driver as is (without a vent to correct for YAW misalignment) is ITMY.


Update 2 Sep 2020 2100: I confirmed today that the number reported in the EPICS channel, and the voltage across the series resistor, do indeed match up. The test was done on the MC3 coil driver as it was exposed and I didn't need to disable any suspensions. I used a Fluke DMM to measure the voltage across the resistor. So there is no sneaky factor of 2 as far as the Acromag DACs are concerned (unlike the General Standards DAC).

Attachment 1: coilCurrents.png
coilCurrents.png
  15543   Wed Aug 26 22:49:47 2020 gautamUpdateElectronicsCheckout of Trek Model 603

I unboxed the Trek amplifier today, and performed some basic tests of the functionality. It seems to work as advertised. However, we may have not specified the correct specifications - the model seems to be configured to drive a bipolar output of +/- 125 V DC, whereas for PZT driving applications, we would typically want a unipolar drive signal. From reading the manual, it appears to me that we cannot configure the unit to output 0-250V DC, which is what we'd want for general PZT driving applications. I will contact them to find out more. 

The tests were done using the handheld precision voltage source for now. I drove the input between 0 to +5 V and saw an output voltage (at DC) of 0-250 V. This is consistent with the voltage gain being 50V/V as is stated in the manual, but how am I able to get 250 V DC output even though the bipolar configuration is supposed to be +/- 125 V? On the negative side, I am able to see 50V/V gain from 0 to -1 V DC. At which point making the input voltage more negative does nothing to the output. The unit is supposed to accept a bipolar input of +/- 10 V DC or AC, so I'm pretty sure I'm not doing anything crazy here...

Update:

Okay based on the markings on the rear panel, the unit is in fact configured for unipolar output. What this means is we will have to map the +/- 10 V DC output from the DAC to 0-5 V DC. Probably, I will stick to 0-2.5 V DC for a start, to not exceed 125 V DC to the PI PZT. I'm not sure what the damage spec is for that. The Noliac PZT I think can do 250 V DC no problem. Good thing I have the inverting summing amplifier coming in tomorrow...

Attachment 1: IMG_8951.JPG
IMG_8951.JPG
  15544   Fri Aug 28 11:41:23 2020 gautamBureaucracysafetyCrane inspection 2020

Mr Fred Goodbar of Konacrane was in the lab 830am-1130am today. All three cranes in the VEA were inspected, loaded with 450lb test weights, and declared in good working condition and safe to use.

  1. Apparently, the clackity noise heard when running the crane at the south end is a known problem - the crane was opened up and inspected sometime in the past, and no obvious cause was found. This is not expected to affect the usability of the crane.
  2. The travel speed of the cranes is slow - but this is apparently intentional, on the request of Steve V.

The interferometer subsystems appear normal after the inspection. 

  15545   Fri Aug 28 23:33:38 2020 gautamUpdateBHDSome more hardware changes

Just a quick set of notes detailing changes so that there are no surprises, more details to follow.

  1. Trek driver has been temporarily placed on top of the KEPCO supply east of the OMC electronics rack. Cabling to it has been laid out as well. I turned both off so neither should be energized now.
  2. A new AI chassis (and associated cabling including the DAC SCSI cable and +/-24 V DC cable) has been installed in 1X2.
  3. To map the DAC range to what the Trek driver wants, I've configured the inverting summing amplifier with gain of 1/8. The offset voltage is set to 5V DC instead of 10V as intended, because the DAC can only drive +/-5 V when connected to a single ended receiving/sending unit.
  4. The LO delivery fiber was re-laid, and the interference between the IFO AS beam and LO beams were restored.

I briefly tried some LO PZT mirror dithering tonight, but didn't see the signal. Needs more troubleshooting.

  15548   Sat Aug 29 22:10:09 2020 gautamUpdateElectronicsWFS characterization

Clearly this "riff raff" is referring to me. It won't help today I guess but there is one each on the carts holding the SR785 (currently both in the office/electronics bench area), and the only other unit available in the lab is connected to a Prologix box on the Marconi inside the PSL enclosure. 

Quote:

The Prologix GPIB-ethernet dongle needs +8-13 V to run. Some riff raff has removed the adapter and I was thunderstruck to see that it had not been returned.

  15549   Sat Aug 29 22:46:29 2020 gautamUpdateBHDNew homodyne-phase control electronics

Summary:

The electronics chain used to drive the three elements of the PI PZT on which a mirror is mounted with the intention of controlling the LO phase has been changed, to now use the Trek Mode603 power amplifier instead of the OMC high voltage driver. Attachment #1 shows the new configuration.

Details:

The text of Attachment #1 contains most of the details. The main requirement was to map the DAC output voltage range, to something appropriate for the Trek amplifier. The latter applies a 50V/V gain to the signal received on its input pin, and also provides a voltage monitor output which I hooked up to an ADC channel in c1ioo. The gain of the interfacing electronics was chosen to map the full output range of the DAC (-5 to +5 V for a single-ended receiving config in which one pin is always grounded) to 0-2.5 V at the input of the Trek amplifier, so that the effective high voltage drive range is 0-125 V. I don't know what the damage threshold is for the PI PZT, maybe we can go higher. The only recommendation given in the Trek manual is to not exceed +/-12 V on the input jack, so I have configured D2000396 to have a supply voltage of 11.5 V, so that in the event of electronics failure, we still don't exceed this number.

On the electronics bench, I tested the drive chain, and also measured the transfer function, see Attachment #2. Seems reasonable (the Trek amplifier was driving a 3uF capacitive load used to protect the SR785 measurement device from any high voltage, hence the roll-off). The gain of D2000396 was changed from 1/8 to 1/4 after I realized that the DAC full range is only +/- 5 V when the receiving device is single-ended at both input and output. Maybe the next iteration of this curcuit should have differential sending, to preserve the range.

Testing:

To test the chain, I used the single bounce beam from the ITM, and interfered it with the LO. Clear fringing due to the seismic motion of the ITM (and also LO phase noise) is visible. In this configuration, I drove the PZT mirror in the LO path at a higher frequency, hoping to see the phase modulation in the DCPD output. However, I saw no signal, even when driving the PZT with 50% of the full DAC range. The voltage monitor ADC channel is reporting that the voltage is faithfully being sent to the PZTs, and I measured the capacitance of the PZTs (looked okay), so not sure what is going on here. Needs more investigation.

Update Aug 30 5pm: Turns out the problem here was a flaky elbow connector I used to pipe the high voltage to the PI PZT, it had some kind of flaky contact in it which meant the HV wasn't actually making it to the PZT. I rectified this and was immediately able to see the signal. Played around with the dark fringe Michelson for a while, trying to lock the homodyne phase by generating a dither line, but had no success with a simple loop shape. Probably needs more tuning of the servo shape (some boosts, notches etc) and also the dither/demod settings themselves (frequency, amplitude, post mixer LPF etc). At least the setup can now be worked on interferometrically.

Attachment 1: zetaDrive.pdf
zetaDrive.pdf
Attachment 2: trekTFs.pdf
trekTFs.pdf
  15552   Tue Sep 1 15:39:04 2020 gautamUpdateElectronicsHV coil driver oscillations fixed

Summary:

Increasing the compensation capacitance (470 pF now instead of 33 pF) seems to have fixed the oscillation issues associated with this circuit. However, the measured noise is in excess of the model at almost any frequency of relevance. I believe the problem is due to the way the measurement is done, and that we should re-do the measurement once the unit is packaged in a shielded environment.

Details:

Attachment #1 shows (schematically) the measurement setup. Main differences from the way I did the last round of testing are:

  1. A 20 ohm series resistor was connected between the high voltage output and ground to simulate the OSEM coil.
  2. The test was done under driven conditions (i.e. some non-zero input voltage) to better simulate conditions under which the circuit will be used.
  3. An Acromag XT1541 DAC was used to provide the input signal, to simulate more realistic operating conditions.
  4. A pomona box filter was used to block out the high voltage DC signal which would otherwise destroy the SR785.

Attachment #2 shows the measurement results:

  • Tests were done at a few different drive levels to check if there was any difference.
  • The difference between "Idrive=0mA" and "Input Grounded" traces is that in the former, the Acromag DAC was connected but putting out 0V, wheras in the latter, I shorted the input to the circuit ground.
  • Because the measurement was done at the output of the PA95, the Johnson noise of 25 kohms (~20 nV/rtHz) was manually summed in quadrature to all the measured traces.
  • The plotted spectra were collected in 3 spans, 0-200 Hz, 200Hz-1.8kHz, and 1.8kHz-14.6kHz. The input range was kept constant, so I'm not sure what to make of the discontinuity around 1.8 kHz. Maybe the comb of lines that were being picked up were distorting the spectra for lower frequencies?
  • The "Model" is only for the electronics noise of the circuit. The low-pass filtered noise of the Acromag should be totally negligible above 10 Hz, see here. The fact that there is little difference between the "Idrive=0mA" and "Input Grounded" traces further supports this claim.
  • The diodes in the Pomona box are also unlikely to be the culprit, because with this Pomona box connected to the SR785 and its input terminated with 50ohms, I don't see the comb of spectral lines.

I didn't capture the data, but viewing the high voltage output on an Oscilloscope threw up no red flags - the oscillations which were previously so evident were nowhere to be seen, so I think the capacitor switch did the trick as far as stability is concerned.

There is a large excess between measurement and model out to a few kHz, if this is really what ends up going to the suspension then this circuit is useless. However, I suspect at least part of the problem is due to close proximity to switching power supplies, judging by the comb of ~10 Hz spaced peaks. This is a frequent problem in coil driver noise measurements - previously, the culprit was a switching power supply to the Prologix GPIB box, but now a Linear AC-DC converter is used (besides, disconnecting it had no visible effect). The bench supplies providing power to the board, however, is a switching supply, maybe that is to blame? I think the KEPCO supplies providing +/-250 V are linear. I tried the usual voodoo of twisting the wires used to receive the signal, moving the SR785 away from the circuit board etc, but these measures had no visible effect either. 

Conclusions:

The real requirement of this circuit is that the current noise above 100 Hz be <1pA/rtHz. This measurement suggests a level that is 5x too high. But the problem is likely measurement related. I think we can only make a more informed conclusion after shielding the circuit better and conducting the test in a more electromagnetically quiet environment.

Attachment 1: testSetup.pdf
testSetup.pdf
Attachment 2: HVampNoise_driven.pdf
HVampNoise_driven.pdf
  15553   Wed Sep 2 00:49:47 2020 gautamUpdateBHDSome notes about homodyne phase

Summary:

Using a heterodyne measurement setup to track both quadratures, I estimated the relative phase fluctuation between the LO field and the interferometer output field. It may be that a single PZT to control the homodyne phase provides insufficient actuation range. I'll also need to think about a good sensing scheme for controlling the homodyne phase, given that it goes through ~3 fringes/sec - I didn't have any success with the double demodulation scheme in my (admittedly limited) trials.

For everything in this elog, the system under study was a simple Michelson (PRM, SRM and ETMs misaligned) locked on the dark fringe.

Details:

​This work was mainly motivated by my observation of rapid fringing on the BHD photodiodes with MICH locked on the dark fringe. The seismic-y appearance of these fringes reminded me that there are two tip-tilt suspensions (SR2, SR3), one SOS (SRM) + various steering optics on seismic stacks (6+ steering mirrors) between the dark port of the beamsplitter and the AS table, where the BHD readout resides. These suspensions modulate the phase of the output field of course. So even though the Michelson phase is tightly controlled by our LSC feedback loop, the field seen by the homodyne readout has additional phase noise due to these optics (this will be a problem for in vacuum BHD too, the question is whether we have sufficient actuator range to compensate).

To get a feel for how much relative phase noise there is between the LO field and the interferometer output field (this is the metric of interest), I decided to set up a heterodyne readout so that I can simultaneously monitor two orthogonal quadratures.

  • The idea is that with the Michelson locked, there is no DC carrier field from the interferometer.
  • The field incident on the DCPD from the interferometer should be dominated by the 55 MHz sideband transmitted to the dark port given the Schnupp asymmetry. 
  • The LO field is picked off before any RF sidebands are added to it (the PMC modulation sideband should be suppressed by the cavity transmission).
  • Therefore, the LO field should be dominantly at the carrier frequency.
  • By placing a broadband RFPD (PDA10CF) in place of one of the DCPDs, I can demodulate the optical beat between this 55 MHz sideband, which shares the same output path to the location of the DCPD as the audio-frequency sidebands on the carrier from the dark Michelson, to estimate the relative phase noise between the LO and IFO output fields.
  • The point is that with the heterodyne readout, I can track the fringe wrapping, which is not an option for the BHD readout with two DCPDs, and uncontrolled LO phase.

Attachment #1 shows the detailed measurement setup. I hijacked the ADC channels normally used by the DCPDs (along with the front-end whitening) to record these time-series.

Attachments #2, #3 shows the results in the time domain. The demodulated signal isn't very strong despite my pre-amplification of the PDA10CF output by a ZFL-500-HLN, but I think for the purposes of this measurement, there is sufficient SNR.

This would suggest that there are pretty huge (~200um) relative phase excursions between the LO and IFO fields. I suppose, over minutes, it is reasonable that the fiber length changes by 100um or so? If true, we'd need some actuator that has much more range to control the homodyne phasethan the single PZT we have available right now. Maybe some kind of thermal actuator on the fiber length? If there is some pre-packaged product available, that'd be best, making one from scratch may be a whole project in itself. Attachment #3 is just a zoomed-in version of the time series, showing the fringing more clearly.

Attachment #4 has the same information as Attachment #2, except it is in the frequency domain. The FFT length was 30 seconds. The features between ~1-3 Hz support my hypothesis that the SR2/SR3 suspensions are a dominant source of relative phase noise between LO and IFO fields at those frequencies. I guess we could infer something about the acoustic pickup in the fibers from the other peaks.

Attachment 1: heterodyneMICH.pdf
heterodyneMICH.pdf
Attachment 2: unwrappedPhase.pdf
unwrappedPhase.pdf
Attachment 3: unwrappedPhase_zoom.pdf
unwrappedPhase_zoom.pdf
Attachment 4: phaseNoisePSD.pdf
phaseNoisePSD.pdf
  15554   Thu Sep 3 00:00:57 2020 gautamUpdateBHDNew patch cable installed
  • 10m PM1064 cable was installed. I tried a double shielding approach (photos tmrw here), but I suspect the real weak point is where the fiber is plugged into the collimator - it's hard to imagine we can stabilize this sort of arrangement to better than 100um absolute length over long periods of time, I'd think thermal/mechanical strains in the fiber will modulate the length by ~mm (?). Anyways, let's see what the heterodyne measurement tells us.
  • This work required (i) realignment at the input coupler and (ii) change of position of mode matching lenses in the LO path on the AS table to see any interference with the IFO beam. This indicates something was seriously wrong with the old patch cable, as the collimator should set the mode. The MFD of the two fibers may have been different, but I don't know if that alone can account for it.
  • As of now, I have fringes between the ITM single bounce and the LO, but the fringe pk-pk is only 10% of the theoretical pk-pk based on DC values of the LO and AS beams. So the mode matching can be improved significantly (I preivously had ~60%).

To be continued tomorrow. I think it's a good idea to let the newly installed fiber relax into some sort of stable configuration overnight.

  15555   Thu Sep 3 15:55:04 2020 gautamUpdateBHDPhase drift between LO and IFO after fiber replacement

Summary:

After replacement of the fiber delivering the LO beam to the airBHD setup (some photos here), I repeated the measurement outlined here. There may be some improvement, but overall, conclusions don't change much.

Details:

The main addition I made was to implement a digital phase tracker servo (a la ALS), to make sure my arctan2 usage wasn't completely bonkers (the CDS block can be deleted later, or maybe it's useful to keep it, we will see). I didn't measure it today, but the UGF of said servo should be >100 Hz so the attached spectrum should be valid below that (loop has not been done, so above the UGF, the control signal isn't a valid representative of the free running noise). Attachment #1 shows the result. The 1 Hz and 3 Hz suspension resonances are well resolved. Anyways, what this means is that the earlier result was not crazy. I don't know what to make of the high frequency lines, but my guess is that they are electronic pickup from the Sorensens - I'm using clip-mini-grabbers to digitize these signals, and other electronics in that rack (e.g. ALS signals) also show these lines.

It is pretty easy to keep the simple Michelson locked for several minutes. Attachment #2 shows the phase-tracker servo output over several minutes. The y-axis units are degrees. If this is to be believed, the relative phase between the two fields is drifting by 12um ove an hour. This is significantly lower than my previous measurement, while the noise in the ~0.5-10 Hz band is similar, so maybe the shorter fiber patch cable did some good?

I think there is also correlation between the PSL table temperature, but of course, the evidence is weak, and there are certainly other effects at play. At first, I thought the abrupt jumps are artefacts, but they don't actually represent jumps >360 degrees over successive samples, so maybe they are indicative of some real jump in the relative phase? Either fiber slippage or TT suspension jumps? I'll double check with the offline data to make sure it's not some artefact of the phase tracker servo. If you disagree with these conclusions and think there is some meaurement/analysis/interpretation error, I'd love to hear about it.

Next steps:

  1. Budget the offline inferred phase noise spectrum, overlay a seismic noise model, to see if we can disentangle the contributions from the suspensions and that from the LO fiber.
  2. I'll see if I can setup an LO pickup with some RF sidebands on it in parallel to this setup so we can try some of the ideas discussed on the call this week. There are several beams available, but the question is whether I can get this into a fiber without 1 week of optical layout work.

I have left the heterodyne electronics setup at the LSC rack, but it is not powered (because there are some exposed wires). Please leave it as is.

Attachment 1: LOphaseDrift.pdf
LOphaseDrift.pdf
Attachment 2: phaseDrift_tempCorr.png
phaseDrift_tempCorr.png
  15562   Mon Sep 7 23:49:14 2020 gautamUpdateBHDA first look at RF44 scheme

Summary:

Over the last couple of days, I've been working towards getting the infrastructure ready to test out the scheme of sensing (and eventually, controlling) the homodyne phase using the so-called RF44 scheme. More details will be populated, just quick notes for now before I forget.

  • LO beam with RF sidebands needed to be re-coupled into collimator, it wasn't seated tightly and just touching the fiber completely destroyed the alignment.
  • HWP installed before said collimator - IMC wants s-polarized light whereas the IFO field is p-polarized.
  • After my work, the numbers were: ~1.47mW input to collimator, ~1.07mW out of collimator on AS table, ~1mW making it to the BHD board. All seem like reasonable numbers to me.
  • 44 MHz signal synthesis - for now, I use a Marconi (10 MHz synced to Rb clock), I think we could also use a mixer+SLP50 to mix 11 and 55 MHz signals (which are easily available at the LSC rack) to generate this. I looked at Wenzel quadruplers, the specs don't suggest a quadrupler will do much better.
  • CDS model was modified to accept the phase-tracker output as an error signal for the homodyne phase control servo. Compile and install went smooth but I opted against a model restart tonight, I'll do it tmrw.
  • Some trials were done with the Michelson locked to a dark fringe (as was done for the case of the DC LO field beating with the 55 MHz sideband). While the overall spectrum lines up fairly well with earlier trials, the signal looks somewhat more "discontinuous" in its traversal of I/Q space, and it never quite goes to 0. Some offset? What does this mean for locking? More investigations needed....
  15564   Tue Sep 8 11:49:04 2020 gautamUpdateCDSSome path changes

I edited /diskless/root.jessie/home/controls/.bashrc so that I don't have to keep doing this every time I do a model recompile.

Quote:

Where is this variable set and how can I add the new paths to it? 

export RCG_LIB_PATH=/opt/rtcds/userapps/release/isc/c1/models/isc/:/opt/rtcds/userapps/release/isc/c1/models/cds/:/opt/rtcds/userapps/release/isc/c1/models/sus/:$RCG_LIB_PAT
ELOG V3.1.3-