40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 310 of 341  Not logged in ELOG logo
ID Date Author Typeup Category Subject
  15122   Wed Jan 15 08:55:14 2020 gautamUpdateCDSYearly DAQD fix


Every new year (on Dec 31 or Jan 1), all of the realtime models will report a "0x4000" error. This happens due to an offset to the GPStime driver not being updated. Here is how this can be fixed (slightly modified version of what was done at LASTI).

Steps to fix the DC errors:

  1. ssh into FB machine. 
  2. Edit the file /opt/rtcds/rtscore/release/src/include/drv/spectracomGPS.c:
    • Look for the code block with a text string that reads something like
      /* 2019 had 365 days and no leap seconds */
                   pHardware->gpsOffset += 31536000;
    • Copy and paste the above string for the appropriate number of years of offset you are adding, and edit the comment string appropriately!.
  3. Navigate to /opt/rtcds/rtscore/release/src/drv/symmetricom. Run the following commands:
    sudo make
    sudo make install
  4. Stop all the daqd processes and reload symmetricom:
    sudo systemctl daqd_* stop
    sudo modprobe -r symmetricom
    sudo modprobe symmetricom
  5. Re-start the daqd processes:
    sudo service daqd_* start

Independent of this, there is a 1 second offset between the gpstimes reported by /proc/gps and gpstime. However, this doesn't seem to drift. We had effected a static offset to correct for this in the daqd config files, and it looks like these do not need to be updated on a yearly basis. All the daqd indicators are now green, see Attachment #1.

Attachment 1: DCerrors_fixed.png
  15124   Wed Jan 15 10:12:46 2020 gautamUpdatePSLAssembly underway for c1psl upgrade

I don't think this is an accurate statement. XT1111 modules have sinking digital outputs, while XT1121 modules have sourcing digital outputs. Depending on the requirement, the appropriate units should be used. I believe the XT1111 is the appropriate choice for most of our circuits.

For digital outputs, one should XT1121. XT1111 should be used for digital inputs.

  15126   Wed Jan 15 15:04:31 2020 gautamUpdatePSLPMC Linewidth measurement

For the ringdowns, I suggest you replicate the setup I had - infrastructurally, this was quite robust, and the main problem I had was that I couldn't extinguish the beam completely. Now that we have the 1st order beam, it should be easy.

  15127   Wed Jan 15 16:08:40 2020 not gautamUpdatePSLAssembly underway for c1psl upgrade

You're right. We had the right idea before but we got confused about this issue. I changed all the XT1121s to XT1111 and vice versa. We already know which channels are sourcing and which not. Updated the wiring spreadsheet. The chassis seems to work. It's time to pass it over to Chub.


I don't think this is an accurate statement. XT1111 modules have sinking digital outputs, while XT1121 modules have sourcing digital outputs. Depending on the requirement, the appropriate units should be used. I believe the XT1111 is the appropriate choice for most of our circuits.

For digital outputs, one should XT1121. XT1111 should be used for digital inputs.

  15128   Wed Jan 15 16:54:51 2020 gautamUpdateGeneralPDA10CF removed from AS table

Per Yehonathan's request, I removed one PDA10CF from a pickoff of REFL on the AS table (it was being used for the mode spectroscopy project). I placed a razor beam dump where the PD used to be, so that when the PRM is aligned, this pickoff is dumped. This is so that team ringdowns can use a fast PD.

  15129   Thu Jan 16 19:32:23 2020 shrutiUpdateGeneralPLL / PM measurement of Xend NPRO PZT

With Gautam's help today the PLL managed to be be locked for a few brief moments. Turns out the signal power of the beat was an issue.

What was changed prior to/ during the experiment:

1. The PSL shutter was closed so not light goes into the input mode cleaner.

2. HEPA turned up (will be turned back down to ~30%)

3. AOM driver offset voltage decreased from 1V to ~100 mV (this will be reverted to 1V by the end of today). This increases the beat signal by deflecting the zeroth order beam to create the beat.

4. Output of servo SR 560 sent to the PZT of the X NPRO laser (the cable was disconnected from the pomona box at the X end)

5. The SR560, mixer, LPF and cables required for connections were moved into the PSL enclosure.

6. The error and control signals were hooked up to the oscilloscope where the beat outputs were visible (the setup has been reverted back to the original).


Elog 14687 has a detailed description of the conditions that provide a stable lock. I was told that the PI controller (LB1005) may be a better servo than the SR560, but today it was not used.

1) Parameters during the more successful attempts:

LPF: 5 MHz, Mixer: ZP-3+

Gain set at SR560: varied, but generally 200

Filter at SR560: 1 Hz low pass (single pole? at least by the label)

2) The LO had to be very close (<2 MHz) to the beat frequency in order to achieve a lock for ~30s

gautam edits:

  • the error signal for the PLL was being sourced from the 20dB coupled port on the BeatMouth.
  • additionally, most of the power in the PSL beam coupled into the fiber was being deflected into the first order beam by team ringdown.
  • The Vpp of the mixer output (when using the coupled beat and low PSL beam power) was a paltry 5-10 mVpp no.
  • I suggested using the direct NF1611 output for this measurement instead of the coupled output (alternatively, use an amp). it's probably also better to use the LB1005 for locking the PLL, long term, this can be set up to be controlled remotely, and a slow PID servo can be used to extend the duration of the lock by servoing either the marconi carrier freq or the EX temp ctrl.

1. Some calculations

For a Unity Gain Frequency (UGF) of 1 kHz, assumed PZT response K_{VCO} of 1 MHz/V, Mixer response K_{M} of 25 mV/\pi rad, the required gain of the amplifier is

G = 2 \pi \times \text{UGF}/ (K_{VCO} K_M)

G ~ 0.8

2. Progress

- Measured the mixer response

Measuring mixer response:

- PSL laser temperature was adjusted so that beat frequency was roughly 25 MHz and the amplitude was found to be roughly -30dBm.

- At the RF port instead of the beat signal, a signal of 25 MHz + few kHz at -30 dBm was inputted. The LO was a 25 MHz signal was sent from the Marconi at 7 dBm.

- The mixer output was measured, with setup as in Attachment 1  Figure (A), on an oscilloscope. The slope near the small angle region of the sine curve would be the gain (in V/rad) and was found to be: K_M \approx 25 \text{ mV}/ \pi rad

- Since from the above calculations it seemed like an amplifer gain of 1 should work for the PLL, I rearranged the set up as in Figure (B) of Attachment 1 to actuate the X end NPRO PZT, I adjusted the PSL temperature (slow control) to try and match the frequency to 25 MHz, but couldn't lock the loop. I was monitoring the error signal after amplification (50 ohm output of the SR 560) which showed oscillations when the beat frequency was near 25 MHz and nothing significant otherwise.

- I used a 20 dB attenuator at the amplifier output and saw the beat note oscillate for longer, but maybe because it was a 50 ohm component in a high impedance channel it did not work either (?). I tried other attenuator combinations with no better luck.

- Is there a better location to add the attenuator? Should I pursue amplifying the beat signal instead?

- Also, it seemed like the beat note drift was higher than earlier. Could it be because the PMC was unlocke

  15130   Fri Jan 17 18:02:21 2020 gautamUpdateALSGain blocks packaged and characterized


  1. The ZHL-1010+ gain blocks acquired from MiniCircuits arrived sometime ago.
  2. I packaged them in a box prepared  (Attachment #1).
  3. Their performance was characterized by me (Attachment #2 and #3).

The measurements are consistent with the specifications, and there is no evidence of compression at any of the power levels we expect to supply to this box (<0dBm).


These "gain blocks" were acquired for the purpose of amplifying the IR ALS beat signals before transmission to the LSC rack for demodulation. The existing ZHL-3A amplifiers have a little too much gain, since our revamp to use IR light to generate the ALS beat.

Attachment #4: Setups used to measure transfer functions and noise.

For the transfer function measurement, I chose to send the output of the amplifier to a coupler, and measured the coupled port (output port of the coupler was terminated with 50 ohms). This was to avoid saturating the input of the AG4395. The "THRU" calibration feature of the AG4395 was used to remove the effect of cabling, coupler etc, so that the measurement is a true reflection of the transfer function of OUT/IN of this box. Yet, there are some periodic ripples present in the measured gain, though the size of these ripples is smaller than the spec-ed gain flatness of <0.6dB.

For the noise measurement, the plots I've presented in Attachment #3 are scaled by a factor of sqrt(2) since the noise of the ZFL-500-HLN+ and the ZHL-1010+ are nearly identical according to the specification. Note that the output noise measured was divided by the (measured) gain of the ZFL-500-HLN+ and the ZFL-1010+ to get the input referred noise. The trace labelled "Measurement noise floor" was measured with the input to the ZFL-500-HLN+ terminated with 50ohms, while for the other two traces, the inputs of the ZHL-1010+ were terminated with 50ohms.

Raw data in Attachment #5.

I will install these at the next opportunity, so that we can get rid of the many attenuators in this path (the main difficulty will be sourcing the required +12V DC for operation, we only have +15V available near the PSL table).

Attachment 1: photos.pdf
Attachment 2: gain.pdf
Attachment 3: noise.pdf
Attachment 4: measSchem.pdf
Attachment 5: zhl1010Data.zip
  15131   Fri Jan 17 21:56:22 2020 YehonathanUpdatePSLAOM first order beam alignment

Today I noticed that the beam reflected from the PMC into the RFPD has a ghost (attachment) due to reflection from the back of the high transmission beam splitter that stirs the beam into the RFPD.

The two beams are focused into the RFPD.

In the past, the ghost beam was probably blocked by the BS mirror mount.

I put an iris to block the ghost beam.

Attachment 1: 20200117_174841.jpg
  15132   Fri Jan 17 22:11:19 2020 YehonathanUpdatePSLRingdown measurements

I prepare for the ringdown measurement of the PMC according to Gautam's previous experiments.

1. I assembled the needed PDs and power supplies, lenses, beamsplitters and optomechanics needed for the measurement.

2. I surveyed the laser power with an Ophir power meter in the different parts of the experiment. All the measurements were done with the AOM driver excited with 1V DC.

For the PMC reflection, we chose to split off the beam that goes into the reflection camera. The power in that beam is ~ 0.11mW when the PMC is locked and 2.1mW otherwise.

For the PMC transmission, we chose to split the beam that is transmitted through the second steering mirror after the PMC. The power in that beam is 2mW.

For the peak off before the PMC, we chose to split the beam that goes into the fiber coupler. That path contains also the other AOM diffraction orders: 2.26mW in the 0th order beam, 6.5mW in the 1st order beam, 0.14mW in the 2nd order beam.

3. I placed a 10% beam splitter in the peak-off path such that 90% still goes into the fiber coupler (Attachment 1). I place a lens and PDA255 to measure the peak-off (Attachment 2).

It's getting late, I'll continue with the PD placements on Tuesday.

Attachment 1: 20200117_192455.jpg
Attachment 2: 20200117_192448.jpg
  15133   Mon Jan 20 12:16:50 2020 gautamUpdatePSLPMC input reverted to AOM zeroth order beam


  1. The input beam to the PMC cavity was changed back to the zeroth order beam from the AOM. 
  2. The PMC was locked and nominal transmission levels were recovered.
  3. The AOM driver voltage was set to 0V DC. 
  4. A razor beam dump was placed to catch the first (and higher order) beams from the AOM (see Attachment #1), but allow the zeroth order beam to reach the PMC cavity.
  5. Some dangling cabling was cleared from the PSL enclosure.


  • HEPA turned to 100% while work was going on in the PSL enclosure.
  • Input power to the PMC cut from ~1.3 W to ~20 mW using the first available HWP downstream of the laser head, before any realignment work was done.
  • Next, the beam dump blocking the undeflected zeroth order beam was removed.
  • Triangle wave was applied to the PZT servo board "EXT DC" input to sweep the cavity length to make the alignment easier.
  • After some patient alignment, I could see a weak transmitted beam locked to some high order mode, at which point I increased the input power to 200mW, and did the fine alignment by looking at the mode shape of the transmitted beam.
  • Once I could lock to a TEM00 mode, I bumped the power back up to the nominal 1.3W, I fine tuned the alignment further by minimizing PMC REFL's DC level. 
  • Dialled the power back down (using HWP) for installation of the beam block to catch the AOM's first (and higher order) beams.
  • Checked that the reflected beam from the PMC cavity is well centered on the PMC REFL PDH photodiode. The ghost from the AR coating of the high-T beamsplitter is blocked by the iris installed by yehonathan on Friday. 
  • The beam was a little low on the PMC REFL CCD camera - I raised the camera by ~1cm.
  • With the beam axis well matched to the PMC, I measured 1.33 mW going into the cavity, and 1.1 W transmitted, so T_{\mathrm{PMC}} \approx 83 \, \%. Whatever loss numbers we extract should be consistent with this fact.
  • HEPA turned back down to 30% shortly after noon.

Note that for all the alignment work, only the two steering mirrors immediately upstream of the PMC cavity were touched.

Attachment 1: IMG_8362.JPG
  15134   Mon Jan 20 15:11:20 2020 gautamUpdatePSLPMCT photodiode grounding issue

For a few days, I've noticed that the PSL overview StripTool panel shows PMC transmission and FSS RMTEMP channels with variation that is too large to be believable. Looking at these signals on an oscilloscope, there was no such fuzziness in the waveform. I ruled out flaky connections, and while these are the only two channels currently being acquired by the temporary Acromag setup underneath the PSL enclosure, the Acromags themselves are not to blame, because once I connected a function generator to the Acromag instead of the PMC transmission photodiode, both channels are well behaved. So the problem seems to be with the PMC transmission photodiode, perhaps a grouding issue? Someone please fix this.

Attachment 1: PMCT_anomaly.pdf
  15135   Mon Jan 20 20:20:36 2020 gautamUpdatePSLPMC servo checkout


The PDH discriminant of the PMC servo was measured to be ~0.064 GV/m. This is ~50 times lower than what is reported here. Perhaps this is a signature of the infamous ERA decay, needs more investigation.


  • Calibration of the error and control points were done using 1 Hz triangle wave injection to the "EXT DC" input of the PMC servo. Two such sweeps are shown in Attachment #1 (measured data as points, fits as solid lines). For the control signal monitor, I've multiplied the signal obtained on the scope by 49.6, which is the voltage divider implemented for this monitor point.
  • The PDH discrimiannt was calibrated into physical units knowing the modulation frequency of the PMC, which is 35.5 MHz. The error in this technique due to the free-running NPRO frequency noise is expected to be small since the entire fringe is crossed in <30 ms, in which time the laser frequency is expected to change by < 5 kHz.
  • The drive to the PZT was calibrated into physical units using the same technique. This number is within a factor of 2 of the number reported here
  • Attachment #2 shows the loop OLTF measured using the usual IN1/IN2 prescription (with an SR560). In fact, the 8kHz feature makes the loop unstable. For convenience, I've overlaid the OLTF from March 2017, when things were running smoothly. It is not clear to me why even though the optical gain is now lower, a smaller servo gain results in a larger UGF.

The light level hasn't changed by a factor of 50, leading me to suspect the modulation depth. Recall that the demodulation of the PMC is now done off the servo board using a minicircuits mixer (hence, the "C1:PSL-PMC_LODET" channel isn't a reliable readback of the LO signal strength over time). Although there is a C1:PSL-PMC_MODET channel which looks like it comes from the crystal reference card, and so should still work - this, however, shows no degradation over 1 year.

Somebody had removed the BLP-1.9 that I installed at the I/F output of the mixer to remove the sum frequency component in the demodulated signal, I reinstalled this. I find that there are oscillations in the error signal if the PMC servo gain is increased above 14.5 on the MEDM slider.

Attachment 1: PMCsweep.pdf
Attachment 2: OLTFmeas.pdf
  15138   Wed Jan 22 11:00:21 2020 gautamUpdatePSLPMC REFL ghost beam

I looked into this a little more today.

  1. The steering optic used to route PMC REFL to the RFPD is in fact a window (labelled W1-PW-1025-UV-1064-45P), not a High-T beamsplitter.
  2. With the PMC unlocked, I measured ~10.70 mW in the stronger of the two beams, 5.39 mW in the weaker one. 
    • The window spec is Tp > 97%. Since we have ~1.3 W incident on the PMC, the primary reflection corresponds to T=99.2%, which is consistent with the spec.
    • There is no spec given for the coating on the back side of this window. But from the measured values, it seems to be R = 100* 5.39e-3 / (1.3*T^2) ~ 0.4%. Seems reasonable.

Currently, the iris is set up such that the stronger beam makes it to the PMC RFPD, while the weaker one is blocked by the iris. As usual, this isn't a new issue - was noted last in 2014, but who knows whether the new window was intalled...


Today I noticed that the beam reflected from the PMC into the RFPD has a ghost (attachment) due to reflection from the back of the high transmission beam splitter that stirs the beam into the RFPD.

  15139   Wed Jan 22 11:22:39 2020 gautamUpdatePSLPMC modulation depth measurement


I estimate the PMC servo modulation depth to be approximately 50 mrad. This is only 15% lower than what was measured in Jan 2018, and cannot explain the ~x50 reduction of optical gain measured earlier in this thread. Later in the day, I also confirmed that the LO input to the ZAD-6 mixer is +7 dBm. So the crystal is not to blame.


  1. PSL frequency is locked to the IMC length.
  2. Arm lengths are locked to the PSL frequency using POX/POY.
  3. EX green laser locked to the X arm length using end PDH servo. GTRX was ~0.4 in this measurement, which is the nominal value.
  4. The 20dB coupled port of the beat between the EX and PSL lasers was monitored using the AG4395A in "Spectrum" units.
  5. The beat was set at ~90 MHz, and a spectrum was taken for ~100 MHz span centered at the beat frequency.
  6. The modulation depth is estimated by considering the ratio of power at the beat frequency relative to that 35.5 MHz away. See Attachment #1.

Assuming a finesse of 700 for the PMC, we expect an optical gain of 2*Pin*J0(50e-3)*J1(50e-3)/fp  ~ 1.2e-7 W/Hz (=0.089 GW/m). I can't find a measurement of the PMC RFPD transimpedance to map this onto a V/Hz value. 

Attachment 1: modDepth.pdf
  15140   Wed Jan 22 16:19:47 2020 JonUpdateVACTP3 controller errors

Gautam and I debugged a communications problem with TP3 that was causing its python service to fail. We traced the problem back to the querying of the pump controller for its operational parameters (speed, voltage, temp). Some small percentage of the time (~5%, indeterministically), the pump controller is returning an invalid response which causes the service to shut itself down and signal a NO COMM error.

As a temporary fix, I wrapped the failing query in an exception handler to continue past this particular error. However, we suspect the microprocessor in the TP3 controller may be beginning to fail. There is a spare controller sitting right next to it in the vacuum rack. We will ask Chub to install the replacement in the near future.

gautam: this pump is responsible for pumping the annular volume under normal operations. while this problem is being resolved, the annular volume is valved off (as it has been since July 2019 anyway which is when this problem first manifested).

  15141   Wed Jan 22 16:38:01 2020 ranaUpdateComputersrossa revival

wiped and install Debian 10 on rossa today

still to be done: config it as CDS workstation

please don't try to "fix" it in the meantime

  15143   Wed Jan 22 20:12:36 2020 gautamUpdatePSLPMC demodulator electrical characterization


The mixer + LPF combo used to demodulate the PMC PDH error signal seems to work as advertised.


Measurement setup --- Attachment #1. The IF signal was monitored using the scope in High-Z mode.

Results --- Attachment #2.

So the next step is to characterize the RF transimpedance of the PMC RFPD.

Attachment 1: demodChar.pdf
Attachment 2: mixerChar.pdf
  15144   Thu Jan 23 14:37:05 2020 gautamUpdatePSLPMC VGA chip damaged?

[jordan, gautam]


The AD602 chip which implements the overall servo gain for the PMC seems to be damaged. We should switch this out at the next opportunity.


  1. According to the PSL cross connect wiring diagram, the VME DAC that provides the control voltage to the VGA stage goes to pins 7/8 of cross connect J16.
    • Jordan and I verified that the voltage at this point [Vout], is related to the PMC_GAIN EPICS slider [dB] value according to the following relationship: V_{\mathrm{out}} = (10-\mathrm{dB})/2.
  2. On the PMC servo board, this voltage is scaled by a factor of -1/10. 
    • This was confirmed by peeking at this voltage using a DMM (I clipped onto R31) while the gain slider was varied.
    • This corresponds to +/- 1000 mV reaching the AD602.
    • However, the AD602 is rated to work with a control voltage varying between +/- 625 mV.
    • What this means is that the EPICS slider value is not the gain of the AD602 stage. The latter is given by the relation G [\mathrm{dB}] = 32 \times V_{\mathrm{G}} + 10.
    • @team PSL upgrade: this should be fixed in the database file for the new c1psl machine.
  3. Using TP1 and TP2 connected to the SR785, I measured the transfer function of the AD602 for various values of the EPICS slider.
    • Result is shown in Attachment #1.
    • I did this measurement with the PMC locked, so I'm using the in-loop error signal to infer the gain of the VGA stage.
    • As expected, the absolute value of the gain does not match that of the EPICS slider (note that the AD602 has an input impedance of 100 ohms. So the 499 ohm series resistor between TP1 and the input of AD602 makes a 1/5 voltage divider, so the gain seen between TP1 and TP2 has this factor folded in).
    • Moreover, the relative scaling of the gain for various slider values also doesn't appear to be liner.
    • For the highest gain setting of +15 dB, the servo began oscillating, so I think the apparent non-flatness of the gain as a function of frequency is an artefact of the measurement.
    • Nevertheless, my conclusion is that the IC should be changed.

I will pull the board and effect the change later today.

I pulled the board out at 345pm after dialling down all the HV supplies in 1X1. I will reinstall it after running some tests.

Attachment 1: VGAchar.pdf
  15146   Thu Jan 23 16:37:14 2020 ranaUpdatePSLPMC VGA chip damaged?

doesn't seem so anomolous to me; we're getting ~25 dB of gain range and the ideal range would be 40 dB. My guess is that even thought this is not perfect, the real problem is elsewhere.

  15147   Thu Jan 23 18:52:31 2020 gautamUpdatePSLPMC RFPD characterization


The RF transimpedance of the PMC PDH RFPD was measured, and found to be 1.03 kV/A


With the new fiber coupled PDFR system, it was very easy to measure the response of this PD in-situ 🎉 . The usual transfer function measurement scheme was used, with the AG4395 RF out modulating the pump current of the diode laser, and the measured transfer function being the ratio of the response of the test PD to the reference PD.

I assume that the amount of light incident on the reference NF1611 photodiode and the test photodiode were equal - I don't know what the DC transimpedance of the PMC REFL photodiode is (can't find a schematic), but the DC voltage at the DC monitor point was 16.4 mV (c.f. -2.04 V for the NF1611). The assumption shouldn't be too crazy because assuming the reference PD has an RF transimpedance of 700 V/A (flat in the frequency range scanned), we get a reasonable shape for the PMC REFL photodiode's transimpedance.

The fitted parameters are overlaid in Attachment #1. The 2f notch is slightly mistuned it would appear, the ratio of transimpedance at f1/2*f1 is only ~10. The source files have been uploaded to the wiki.

Knowing this, the measured PDH discriminant of 0.064 GV/m is quite reasonable:

  • expected optical gain from modulation depth assuming a critically coupled cavity is 0.089 GW/m.
  • Assume 0.7 A/W responsivity for InGaAs.
  • Account for the fact that only 0.8 % of the reflected light reaches the PMC photodiode because of the pickoff window.
  • Account for a conversion loss of 4.5 dB in the mixer.
  • Account for the voltage division by a factor of 2 at the output of the BLP-1.9 filter due to the parallel 50 ohm termination.
  • Then, the expected PDH discriminant is 0.089e9 W/m * 0.7 A/W * 0.8e-2 * 1.03kV/A * 10^(-4.5/20) * 0.5 ~ 0.15 GV/m. This is now within a factor of ~2 of the measured value, and I assume the total errors in all the above assumed parameters (plus the cable transmission loss from the photodiode to the 1X1 rack) can easily add up to this. 

So why is this value so different from what Koji measured in 2015? Because the monitor point is different. I am monitoring the discriminant immediately after the mixer, whereas Koji was using the front panel monitor. The latter already amplifies the signal by a factor of x101 (see U2 in schematic). 


I still haven't found anything that is obviously wrong in this system (apart from the slight nonlinearity in the VGA stage gain steps), which would explain why the PMC servo gain has to be lower now than 2018 in order to realize the same loop UGF.

So the next step is to characterize the RF transimpedance of the PMC RFPD.

Attachment 1: PDresp.pdf
  15148   Thu Jan 23 20:08:49 2020 shrutiUpdateGeneralPLL / PM measurement of Xend NPRO PZT

Setup Update:

- No more SR 560, upgraded to LB1005 P-I controller.  Because: Elog 14687. Schematic of new setup shown in Attachment 1.

- For this, the Marconi was moved to the other (east) side of the PSL table and a power supply was also placed in the enclosure.

I think that the RF power at the mixer in this new configuration is 0 dBm (since the spectrum analyzer read ~ -20 dBm)

Progress Today:

- Turned up the HEPA to 100%, closed the PSL shutter, misaligned the ITMX, connected the LB1005 to the PZT. [The PZT has been reconnected to the X arm PDH servo, HEPA back to 20-30%]

- Tried to look for the PSL+X beat, but it was not there. Gautam identified the flipmount in the path which sorted it out (eventually), but there was no elog about itsurprise.

- After much trial, the loop seemed to lock with PI corner 1 kHz, gain ~2.9 (as read on knob), LFGL set to 90 dB. The beat note looked quite stable on the oscilloscope, but the error signal had an rms of ~100 mV (Rana pointed out that it could be the laser noise) and the lock lasted for ~1 min each time.

The parameters were similar to that in elog 14687. Why do we require such a high PI corner frequency and LFGL?

Attachment 1: Image-1.jpg
  15149   Thu Jan 23 22:10:01 2020 gautamUpdatePSLPMC servo pulled out

While I have the board out, I'll try and do a thorough investigation of TFs and noise of the various stages. There is no light into the IFO until this is done.

I pulled the board out at 345pm after dialling down all the HV supplies in 1X1. I will reinstall it after running some tests.

  15151   Fri Jan 24 13:56:21 2020 JonUpdateBHDBHD optics specifications

I've started a spreadsheet for the BHD optics specifications and populated it with my best initial guesses. There are a few open questions we still need to resolve, mostly related to mode-matching:

  • PR2 replacement: What transmission do we need for a ~100 mW pickoff? Also, do we want to keep the current curvature of -700 m?
  • LO mode-matching telescope: What are the curvatures of the two mirrors?
  • Lenses: We have six of them in the current layout. What FLs do we need?

The spreadsheet is editable by anyone. If you can contribute any information, please do!

  15152   Fri Jan 24 15:42:08 2020 gautamUpdatePSLPMC servo restored

The PMC servo was re-installed at ~345pm. HV supplies were re-energized to their nominal values. I will update the results of the investigation shortly. The new nominal PMC servo gain is +9dB.


While I have the board out, I'll try and do a thorough investigation of TFs and noise of the various stages. There is no light into the IFO until this is done.

I pulled the board out at 345pm after dialling down all the HV supplies in 1X1. I will reinstall it after running some tests.

  15153   Fri Jan 24 17:14:01 2020 gautamUpdateALSGain blocks installed

Jordan will write up the detailed elog but in summary,

  1. Former +24V Sorensen in the AUX OMC power rack (south of 1X2) has been reconfigured to +12V DC.
  2. The voltage was routed to a bank of fusable terminal blocks on the NW corner of 1X1.
  3. An unused cable running to the PSL table was hijacked for this purpose.
  4. The ZHL-1010+ were installed on the upper shelf of the PSL table, the two gain blocks draw a total of ~600mA of current when powered.

I will install these at the next opportunity, so that we can get rid of the many attenuators in this path (the main difficulty will be sourcing the required +12V DC for operation, we only have +15V available near the PSL table).

  15154   Sat Jan 25 11:54:42 2020 YehonathanUpdatePSLRingdown measurements

Zero order beam PMC ringdown

On Wednesday I installed 3 PDs (see attached photos) measuring: 

1. The input light to the PMC. Flip-mirror was installed (sorry Shruti) on the beam path to the fiber coupler.

2. Reflected light from the PMC.

3. PMC transmitted light.

I connected the three PDs to the oscilloscope and the AOM driver to a function generator. I drive the AOM with a square wave going from 1V to 0V.

I slowly increased the square wave frequency. The PMC servo doesn't seem to care. I reach 100KHz - it seems excessive but still works. In any case, I get the same results doing a single shut-down from a DC level.

I download the traces. I normalize the traces but I don't rescale them (Attachment 4) so that the small extinction can be investigated.

I notice now that the PDs show the same extinction. It probably means I should have taken dark currents data for the PDs.

Also, I forgot to take the reflected data when the PMC is out of resonance with the laser which could have helped us determine the PMC transmission.

Again, the shutdown is not as sharp as I want. There is a noticeable smoothening in the transition around t = 0 which makes the fit to an exponential difficult. I suspect that the function generator is the limiting device now. I hooked up the function generator to the oscilloscope which showed similar distortion (didn't save the trace)

I try to fit the transmission PD trace to a double exponential and to Zucker model (Attachment 5).

The two exponentials model, being much less restrictive, gives a better fit but the best fit gives two identical time constants of 92ns.

The Zucker model gives a time constant of 88ns. Both of these results are consistent with more or less with the linewidth measurement but this measurement is still ridden with systematics which hopefully will become minimized IMC ringdowns.

Attachment 1: Input_beam_path.jpg
Attachment 2: Reflected_Beam_Path.jpg
Attachment 3: Transmitted_Beam_Path.jpg
Attachment 4: PMCRingdownNormalizedRawdata.pdf
Attachment 5: TransPDFits.pdf
  15155   Sun Jan 26 13:30:19 2020 gautamUpdateSUSAll watchdogs tripped, now restored

Looks like a M=4.6 earthquate in Barstow,CA tripped all the suspensions. ITMX got stuck. I restored the local damping on all the suspensions just now, and freed ITMX. Looks like all the suspensions damp okay, so I think we didn't suffer any lasting damage. IMC was re-aligned and is now locked.

Attachment 1: EQ_Jan25.pdf
  15156   Sun Jan 26 13:47:00 2020 gautamUpdatePSLPMC servo characterization


  1. I investigated the stage-by-stage transfer functions of the PMC servo up till the HV stage. See Attachment #1. There were no unexpected features.
  2. I replaced the AD602 used to implement the VGA capability. After the replacement, the gain of the VGA stage had the desired performance, see Attachment #2, Attachment #3.
  3. The servo board was re-installed and the OLTF of the PMC loop was measured. See Attachment #4.

​To avoid driving the PA85 without the HV rails connected, I removed R23. This was re-installed after my characterization.

Input stage:

Since we do the demodulation of the PMC PDH signal off this servo board, the I/F mixer output is connected to the "FP1test" front panel LEMO input.

  • A DG190 is used to enable/disable this path.
  • Initially I tried checking the enable/disable functionality by measuring the resistance across the IC's I/O pins. However, this method does not work - the resistance read off from a DMM varied from ~23 ohms in the "ON" state to ~123 ohms in the "OFF" state. While the former value is consistent with the spec, the latter is confusing.
  • But I confirmed that the switch does indeed isolate the input in the "OFF" state by injecting a signal with a function generator (100 Hz sine wave, 100mVpp) and monitoring the output on an oscilloscope.

Electronic TFs:

Using some Pomona mini-grabbers, I measured the electronic TFs between various points on the circuit. There were no unexpected features, the TFs all have the expected shape as per the annotations on the DCC schematic. I did not measure down to 0.1 Hz to confirm the low frequency pole implemented by U6, and I also didn't measure the RF low pass filter at the input stage (expected corner frequency is 1 MHz). 

VGA characterization:

After replacing the IC, I measured the transfer function between TP1 and TP2 for various values of the control voltage applied to pin 4A on the P1 connector, varying between +/- 5 V DC. 

  • Pin 9A on the P1 connector has to be grounded for the signal to be allowed to pass through the VGA. 
  • Note that there is an overall gain of -1/10 applied to the control voltage between pin 4A and pin #1 of the AD602, which is what actually sets the gain.
  • Furthermore, the input impedance of the AD602 is spec-ed to be 100 ohms. Because of the series resistance of 500 ohms from TP1 to the input of the AD602 (so that the upstream OP27 isn't overdrawn for current), the relation between the control voltage applied to Pin 4A and gain (measured between TP1 and TP2) is modified to G [dB] = 32*(-0.1 * V_pin4A) - 6. 
  • The gain behavior after the IC swap is as expected, both in terms of absolute gain, and the linearity w.r.t. the control voltage.
  • Note that in Attachment #2, each color corresponds to a different control voltage to the AD602, varying from -5V DC to +5V DC in 1V steps. 

PZT Capacitance measurement

I confirmed that the PZT capacitance is 225 nF. The measurement was made using an LCR meter connected to the BNC cable delivering the HV to the PZT, at the 1X1 rack end.

OLTF measurement

After re-soldering R23, I put the board back into its Eurocrate, and was able to lock the PMC. For subsequent measurements, the PSL shutter was closed.

  • I measured the OLTF using the usual IN1/IN2 prescription, implemented with the help of an SR560.
  • At the original PMC Servo gain of +12dB, I found that the feature at ~8kHz results in an OLTF with multiple unity gain crossings.
  • So I lowered it to +9dB. This yields an OLTF with ~60deg phase margin, ~2.3 kHz UGF. 
  • The feature that sets the gain margin is actually not any of the peaks fit by LISO, but is one of the high frequency features at ~40 kHz. At the new setting of +9dB gain, the gain margin is ~10 dB.
  • The measured TF (dots in Attachment #5) was fit with LISO (solid lines in Attachment #5) to allow inferring the out-of-loop servo noise by monitoring the in-loop noise (that plot to follow).
Attachment 1: elecTFs.pdf
Attachment 2: VGAchar_postFix.pdf
Attachment 3: VGAlinearity_postFix.pdf
Attachment 4: newOLTFs.pdf
  15157   Sun Jan 26 14:40:55 2020 gautamUpdateALSALS OOL noise

In preparation for resuming IFO locking activities, I measured the ALS noise with the arm lengths locked to IR, AUX laser frequencies locked to the arm lengths. Looks promising (y-axis units are Hz/rtHz).

Attachment 1: ALSnoise_20200126.pdf
  15160   Mon Jan 27 21:35:06 2020 YehonathanUpdatePSLRingdown measurements

Zeroth order IMC ringdown setup

Following Gautam's IMC ringdown setup, I took the REFL PD form the PMC ringdown experiment and installed it in the IMC REFL path blocking WFS2 (Attachment 1).

I also ran a BNC cable from the transmission PD that Gautam installed on the IMC table to the vertex where the signals are measured on the scope. 

I offloaded the WFS servo output values onto the MC alignment (using the WFS servo relief script) so that its dc values would be correct when the servo is off.

Unfortunately, it seems like the script severely misaligned the MC mirrors at some point when the MC got unlocked. We should fix the script such that it stops when the offloading is complete.

We got the MC realigned but left it in a state where it is not locking easily.

Attachment 1: IMC_REFL_Beam_Path.jpg
  15161   Mon Jan 27 21:48:49 2020 gautamUpdatePSLRingdown measurements

It's fine to block the WFS while doing ringdowns but please return the config to normal so I don't have to spend time every night recovering the interferometer before doing the locking. As I mention in that post, it is possible to do this in a non-invasive way without having to run any extra cables / permanently block any beams. If there is some issue with the data quality, then we can consider a new setup. But I see no reason to re-invent the wheel.

The IMC was also massively misaligned. I had to re-align both MC1 and MC2 to recover the lock. I took this opportunity to reset the WFS offsets. Please do not disturb the alignment of the existing optical layout unless you verify that everything is working as it should be after your changes.

And for whatever reason, ITMX was misaligned. If you do something with the interferometer, no matter how minor it seems, please leave a note on the ELOG. It will save many painful debugging hours.

As I fix these, the seismic activity has gone up no. I'll wait around for an hour, but not an encouraging restart to the locking 😢 


Zeroth order IMC ringdown

Following Gautam's IMC ringdown setup, I took the the REFL PD form the PMC ringdown experiment and installed it in the IMC REFL path blocking WFS2 (Attachment 1).

Attachment 1: elevatedSeis.pdf
  15163   Tue Jan 28 14:33:24 2020 gautamUpdatePSLInferred free-running frequency noise

To conclude my PMC noise investigations: Attachment #1 shows the PMC noise inferred from the calibrations earlier in this thread and the fitted OLTF for the PMC loop. Attachment #2 compares the frequency noise (inferred from the error point of the PMC servo) when the IMC is locked / unlocked. I don't know what to make of the fact that the PMC suggests improvement from ~20 Hz onwards already - does this mean that the NPRO noise model is wrong by 1 order of magnitude at 30 Hz?

  • The IMC was locked for the measurement shown in Attachment #1.
  • The in-loop spectra of the error (at the I/F output of the mixer) and control (at TP3) signals were measured with the SR785.
  • The control signal voltage monitors don't seem to work - neither the front panel LEMO nor the signals hooked up to the CDS system show me sensible shapes for the spectra between 1-3 Hz.
  • To convert in loop to free-running, I multiplied the measured error (control) signal spectra by \left | 1-L \right | (\left | \frac{L}{1-L} \right |), where L is the OLTF. THe control signal was pre-processed by multiplying by a pole at 11.3 Hz, corresponding to the LPF formed by the 63.3 kohm series resistor and the 225 nF PZT capacitance.
  • The "NPRO noise model" curve is 10^4/f Hz/rtHz.

While I initially thought the 1/f^2 rise below ~100 Hz is attributable to the IMC cavity length fluctuations, I found that this profile is present even in the measurement with the PSL shutter closed. I am not embarking on a detailed PMC noise budgeting project for now. Note however that we are not shot noise limited anywhere in this measurement band.

  • The measured TF (dots in Attachment #5) was fit with LISO (solid lines in Attachment #5) to allow inferring the out-of-loop servo noise by monitoring the in-loop noise (that plot to follow).
Attachment 1: inLoopNoise_IMClocked.pdf
Attachment 2: freqNoiseComparison.pdf
  15165   Tue Jan 28 16:01:17 2020 gautamUpdateIOOIMC WFS servos stable again

With all of the shaking (man-made and divine), it was a hard to debug this problem. Summary of fixes:

  1. The beam was misaligned on the WFS 1 and 2 heads, as well as the MC2 trans QPD. I re-aligned the former with the IMC unlocked, the latter (see Attachment) with the IMC locked (but the MC2 spot centering loops disabled).
  2. I reset the WFS DC and RF offsets, as well as the QPD offsets (once I had hand-aligned the IMC mirrors to obtain good transmission).

At least the DC indicators are telling me that the IMC locking is back to a somewhat stable state. I have not yet checked the frequency noise / RIN.

Attachment 1: QPD_recenter.png
  15169   Tue Jan 28 19:40:15 2020 shrutiUpdateGeneralPLL / PM measurement of Xend NPRO PZT

Over the past few days, I have been trying to make measurements of the phase modulation transfer function by modulating the X end laser PZT via PLL.

The setup was modified every time during the experiment in the same manner as mentioned in elog 15148.

I could not make the PLL lock for long enough to take a proper TF measurement, resulting in TFs that look like Attachment 1. The next step would be to use the method of a delay line frequency discriminator instead of the PLL.

Comments about locking with LB1005 PI controller:

  1. I do not understand why the high PI corner frequency of 1kHz or 3kHz was required to lock.
  2. The rms level of the error signal when locked was ~100 mV, which is 25% of the total mixer range (~400 mVpp). Decreasing the gain only caused the loop to go out of lock and did not decrease this noise in the error signal.
  3. The setup was also partly inside the PSL enclosure, with the HEPA turned to 100%, which is probably a noisy environment for this measurement. Closing and opening the shutters or any disturbance near the enclosure resulted in movement of the beat note up to 5 MHz.
  4. It may have been a better idea to actuate the PSL laser instead of the X NPRO because of its larger range, but would this solve the issue with the noise?
Attachment 1: PMTF.pdf
Attachment 2: BeatSpectrum.pdf
  15170   Tue Jan 28 20:51:37 2020 YehonathanUpdateIOOIMC WFS servos stable again

I resume my IMC ringdown activities now that the IMC is aligned again.

To avoid any accidental misalignments Gautam turned off all the inputs to the WFS servo.

I set up a PD and a lens as in attachment 1 (following Gautam's setup).

I connect the REFL, TRANS and INPut PDs to the oscilloscope.

I connect a Siglent function generator to the AOM driver. I try to shut off the light to the IMC using 1V DC waveform and pressing the output button manually. However, it produced heavily distorted step function in the PMC trans PD.

I use a square wave with a frequency of 20mHz instead with an amplitude of 0.5V offset of 0.25V and dutycycle of 1% so there will be minimal wasted time in the off state. I get nice ringdowns (attachment 2) - forgot to take pictures. The autolocker slightly misaligns the M2 every time it is acting, so I manually align it everytime the IMC gets unlocked.

Data analysis will come later.

I remove the PD and lens and reenable the WFS servo inputs. The IMC locks easily. The WFS outputs are very different than 0 now though.

  15171   Wed Jan 29 00:27:13 2020 gautamUpdateComputer Scripts / Programsmcup / mcdown modified

To fix the apparent slowness of execution of the caput commands on megatron, I changed the "ewrite" macro in the mcup and mcdown scripts to use ezcawrite instead of caput. The old lines are simply commented out, and can be reverted to at any point if we so desire. After these changes, we saw that both scripts complete execution much faster.

  15172   Wed Jan 29 00:29:43 2020 gautamUpdateLSClocking 2020

The goal tonight was to go through the locking scripts to see if I could recover the state from November 2019, when I could have the arm lengths controlled by ALS, and sit at zero CARM offset with the PRMI remaining locked and the arm powers fluctuating between 0-300. The IR-->ALS transitions went smoothly tonight, and the PRMI locking was also fairly robust when the CARM offset was large, but was less good when reduced to 0. Nevertheless, it is good to know that the system can be restored to the state it was late last year. Next step is to figure out how to keep the PRMI locked and get the AO path engaged, this was what I was struggling with before the new year.

Attachment 1: PRFPMI_2020Jan.png
  15173   Wed Jan 29 03:05:47 2020 rana, gautamUpdateSUSMC misalignments / sat box games

In the last couple days, as the IMC ringdowns have been going on, we have noticed that the MC is behaving bad. Misaligning, drifting, etc.

Gautam told me a horror story about him, Koji, and melted wires inside the sat boxes.

I said, "Its getting too hot in there. So let's take the lids off!"

So then we:

  1. Removed the lid (only 4 screws were still there)
  2. cut off some of the shield - ground wires and insulated them with electrical tape
  3. squished the IDC connectors on tightly
  4. left it this way to see if MC would get better - certainly the painfully hot heatinks inside the box were now just 110 F or so

After some minutes, we saw no drifting. So maybe my theory of "hot heatsink partially shorting a coil current to GND through partially melted ribbon cable" makes sense? IF this seems better after a month, lets de-lid all the optics.

Let's look at some longer trends and be very careful next to MC2 for the next 3 days! I have put a dangerous mousetrap there to catch anyone who walks near the vacuum chamber.

gautam: the grounding situation per my assessment is that the shield of all the IDC cables are connected to a common metal strip at 1X5 - but in my survey, I didn't see any grounding of this strip to a common ground.

Attachment 1: IMG_8366.JPG
  15174   Wed Jan 29 12:29:33 2020 shrutiUpdateGeneraldelay line frequency discriminator for PM

 Today I began working on a TF measurement based on the delay line frequency discriminator setup in elog 4254 using a single mixer (without the 'I' and 'Q' readout).

For this, I re-organised the setup for the PLL measurement of the transfer function (elog 15148), increasing the HEPA for the initial changes while the PSL door was open, and then reverting it back to ~30%:

  • I removed the 20dB coupler and connected the splitter directly after the amplifer to split the beat note signal into two coaxial cables one of which was ~1.5m longer than the other
  • The recombined signals were combined in a mixer outside the PSL enclosure. I also replaced the 1.9 MHz LPF with a 5 MHz LPF.
  • I used an SR 560 to amplify the signal after the LPF.

With the above setup the power that was seen at each channel of the delay line was <1dBm, which is not ideal for the any of the available mixers.

After the group meeting, I changed the amplifer to ZHL-3A (that is near the beat mouth) instead of a ZFL-500HLN because it had a higher gain (~28dB as opposed to ~19dB of the latter). The power seen at each of the delay line channels is over 5.5 dBm. This is consistent with the estimation 0 dBm beat -> -20 dBm after 20dB coupler -> 8 dBm after amplifier -> 5 dBm after splitter with insertion loss of 3 dB.

Is this sufficient enough for the mixer to work? In Attachment 1: A shows the mixer output (point B in Attachment 2) when the IMC is locked, in B the IMC is unlocked at the middle of the spectrum, and each of the dips show the DC voltage being sent to the PSL temperature servo being decreased by 0.01 V.

Gautam pointed me to the location of a few other RF amplifiers (ZHL-32A+, ZHL-1A) which don't possess a higher gain but can be used without disrupting the ALS related work (I was told).

For shorter duration changes that I made later, I opened and closed the PSL enclosure doors without changing the HEPA.

Attachment 2 shows the current setup as is, but I might add a PSL servo tomorrow to stabilise its frequency corresponding to a null mixer output without driving anything else.

Attachment 1: 20200128.png
Attachment 2: IMG_BB01C068495A-1.jpeg
  15175   Wed Jan 29 12:40:24 2020 YehonathanUpdateIOOIMC Ringdowns preliminary data analysis

I analyze the IMC ringdown data from last night. 

Attachment 1 shows the normalized raw data. Oscillations come in much later than in Gautam's measurement. Probably because the IMC stays locked.

Attachment 2 shows fits of the transmitted PD to unconstrained double exponential and the Zucker model.

Zucker model gives time constant of 21.6us

Unconstrained exponentials give time constants of 23.99us and 46.7us which is nice because it converges close to the Zucker model.

Attachment 1: IMCRingdownNormalizedRawdata.pdf
Attachment 2: IMCTransPDFits.pdf
  15176   Thu Jan 30 12:52:10 2020 JonUpdateBHDMetal OMCs procured

Last night Yehonathan and I located the two steel PMCs in the QIL, with help from Anchal. They are currently sitting on my desk in Bridge, inside a box that also contains optics and other OMC parts. I will bring them over to the 40m the next time I come.

  15177   Thu Jan 30 15:24:10 2020 ?UpdateGeneraldelay line frequency discriminator for PM

yes, its fine to use this with a level 3 or level 7 mixer; let's see some PM transfer functions !


Is this sufficient enough for the mixer to work?

  15178   Thu Jan 30 17:31:28 2020 JonUpdatePSLErrant FSS_INOFFSET change

A script I was testing errantly set C1:PSL-FSS_INOFFSET => 10 V at about 5:30 pm. I manually reverted the channel value to 0, but I don't know what the value was initially. Someone please check this value if there are problems locking the FSS.

  15179   Thu Jan 30 17:41:10 2020 gautamUpdatePSLErrant FSS_INOFFSET change

You can trend the data for the past few hours and see what the appropriate value. I think these tests should only be done when whoever is running a test is in the lab.

P.S. I was surprised that the IMC didn't lose lock when this step was applied. I manually stepped this voltage between +/- 10 V and didn't see any response in the FSS readbacks. Either the channel doesn't work, or there is a divide by 40 in the physical circuit or something...


A script I was testing errantly set C1:PSL-FSS_INOFFSET => 10 V at about 5:30 pm. I manually reverted the channel value to 0, but I don't know what the value was initially. Someone please check this value if there are problems locking the FSS.

  15180   Thu Jan 30 22:02:42 2020 shrutiUpdateGeneraldelay line frequency discriminator for PM

I could not find any level 3 mixers, but by adjusting the beat frequency the power in each of the delay line channels rose to almost 6.5 dBm.

In short: Delay line seems to work

Things I did earlier today:

  1. Played with the slow servo on the FSS screen, but then reset the parameters to what was there before (Later found out that this was to lock the PSL freq to the IMC when the IMC power is significant.)
  2. Connected the AG 4395A to the X PZT
  3. Closed the PSL shutter

Transfer function measurement: (Refer Attachment 1)

Everything about the setup remained as I had left it earlier: described in elog 15174


  • SR560 gain set to 10, DC coupled
  • DC block at channel A of Agilent (The measurement was A/R)

I did not use a slow servo, but took individual sweeps adjusting the PSL temperature each time to bring the error voltage between +/-25 mV. The beat frequency was over 100 MHz.

For the plot posted in Attachment 1, the measurement paramters are the following. Will do further measurements/analysis tomorrow.

# AG4395A Measurement - Timestamp: Jan 30 2020 - 21:58:00
# Parameter File: TFAG4395Atemplate.yml
#---------- Measurement Parameters ------------
# Start Frequency (Hz): 50000.0, 50000.0
# Stop Frequency (Hz): 1000000.0, 1000000.0
# Frequency Points: 801, 801
# Measurement Format: LOGM, PHAS
# Measuremed Input: AR, AR
#---------- Analyzer Settings ----------
# Number of Averages: 1
# Auto Bandwidth: Off, Off
# IF Bandwidth: 1000.0, 1000.0
# Input Attenuators (R,A,B): 0dB 0dB 0dB 
# Excitation amplitude = -20.0dBm


yes, its fine to use this with a level 3 or level 7 mixer; let's see some PM transfer functions !


Is this sufficient enough for the mixer to work?

Attachment 1: Figure_2.png
  15181   Fri Jan 31 16:04:30 2020 gautamUpdateIOOInput pointing drift

One factor which hampers locking efforts is the apparent drift of the input beam into the IFO. Over timescales of ~1 hour, I have noticed that the spot on the AS camera drifts significantly (~1 spot size) in pitch. The IPPOS QPD bears out this observation, see Attachment #1. The IMC WFS control signals do not show a correlated drift, hence my claim that the TTs are to blame.

I am able to correct this misalignment by moving TT1 in pitch (see Attachment #2, which shows some signals from a ~1 hour PRMI lock, during which time the pointing drifted, and I corrected it by moving TT1 pitch). Assuming the problem is purely TT1 pitch drifting, this corresponds to 3mm / 6m ~500urad of shift in 1 hour - seems very large. The fact that the drift is only present in pitch and doesn't really show up in yaw makes me think the problem is likely mechanical (unless the voltage to the top two coils is drifting relative to the bottom, but no LR drift, which would be very coincidental). At the moment, this is just an annoyance, but it'd be good for this problem to be fixed.

I haven't yet figured out how to make ndscope export these plots to SVG preserving the dark color theme, hence the weird light axes...

Attachment 1: IPdrift.pdf
Attachment 2: IPdrift_PRMI.pdf
  15182   Fri Jan 31 16:57:09 2020 gautamUpdateGeneralMetal PMC parts

Jon brought over a box of parts for constructing the metal PMCs. I have stored it along the Y-arm, on top of the green optics cabinet.

I didn't do an exhaustive inventory check, but the following are the rough contents of the box:

  • 41 deg AoI flat mirrors, R=99% @ 1064nm --- 11 pcs
  • 6.8 deg AoI curved mirrors --- 5 pcs
  • PZTs --- 3pcs
  • Metal PMC body --- 2 pcs
  • "Baked PZT endcaps" --- 3 pcs
  • Ball bearings, clamps, misc hardware

I didn't inspect the optics but since we have so many, I am hoping we can find 3 good quality ones for one cavity at least. We should check that the geometry is suitable for our RF sideband frequencies.  

  15183   Mon Feb 3 13:54:10 2020 YehonathanUpdateIOOIMC Ringdowns extended data analysis

I extended the ringdown data analysis to the reflected beam following Isogai et al.

The idea is that measuring the cavity's reflected light one can use known relationships to extract the transmission of the cavity mirrors and not only the finesse.

The finesse calculated from the transmission ringdown shown in the previous elog is 1520 according to the Zucker model, 1680 according to the first exponential and 1728 according to the second exponential.

Attachment 1 shows the measured reflected light during an IMC ringdown in and out of resonance and the values that are read off it to compute the transmission.

The equations for m1 and m3 are the same as in Isogai's paper because they describe a steady-state that doesn't care about the extinction ratio of the light.

The equation for m2, however, is modified due to the finite extinction present in our zeroth-order ringdown.

Modelling the IMC as a critically coupled 2 mirror cavity one can verify that:

m_2=P_0KR\left[T-\alpha\left(1-R\right)\right]^2+\alpha^2 P_1

Where P_0 is the coupled light power 

P_1 is the power rejected from the cavity (higher-order modes, sidebands)

K=\left(\mathcal{F} /\pi \right )^2 is the cavity gain.

R and T are the power reflectivity and transmissivity per mirror, respectively.

\alpha^2 is the power attenuation factor. For perfect extinction, this is 0.

Solving the equations (m1 and m3 + modified m2), using Zucker model's finesse, gives the following information:

Loss per mirror = 84.99 ppm
Transmission per mirror = 1980.77 ppm
Coupling efficiency (to TEM00) = 97.94%
Attachment 1: IMCTransReflAnalysis_anotated.pdf
  15184   Mon Feb 3 15:22:39 2020 JonUpdatePSLc1psl progress/Acromag ADC grounding

I tested the c1psl AO channels on the electronics bench on Friday. While I found all the wiring to be correct, some of the channels exhibited excess noise with all appearances of a grounding problem.

Today Jordan, Gautam, and I investigated this further. It is indeed a grounding problem, but actually with the Acromag ADCs. The Acromag DAC outputs are single-ended (return is grounded), so (for the purpose of a loopback test) I would expect to leave the ADC inputs ungrounded. This is the configuration I tested Friday. Today we also tested driving the ADC with a floating source. The ADC noise behavior is exactly the same, whether the source end is grounded or not.

However, grounding the minus pin of the ADC channel eliminates the noise. We don't understand why this seems to be required irrespective of the driving source, so there something we're missing about the ADC design. As it turns out, this same fix was made to the AI channels of the previously-upgraded Acromag machines. I know Chub and I had to do this for the AI channels of c1vac, but at the time we thought the source grounding was causing the issue. However, today Jordan and I looked inside c1iscaux, which Chub wired, and confirmed that its AI channels are wired in the same way.

So in any case, Jordan is grounding the c1psl AI channels in the same way as c1iscaux. Once this is done, we'll continue with the bench testing tomorrow.

gautam: here are my notes about this issue when i was doing the c1iscaux testing. As I note there, "previously-upgraded Acromag machines" in the plural may be a bit of a stretch - I have no idea what the grounding situation is in c1susaux / c1auxex for example.

  15185   Tue Feb 4 02:13:02 2020 gautamUpdateLSCLocking updates


The CARM-->RF transition remains out of reach. No systematic diagnosis scheme comes to mind.


  • Config is PRFPMI, SRM is misaligned macroscopically.
  • PRMI can easily be locked with 3f signals while CARM is offset from resonance. Aided by DAFI, I turned on the PR violin filter in the BS output section to prevent it from ringing up, making the lock much more robust.
  • When the CARM offset is reduced
    • POP22 level dips and sometimes goes negative - i don't see this in my simple simulations. POP22 is the trigger signal for MICH/PRCL loops, so to prevent the PRMI lockloss, I mix in some POPDC into the trigger matrix element.
    • Once the circulating power exceeds ~10, the ALS noise apparently increases.
    • The arms "buzz" through resonance, but the power fluctuation is nearly 0-200 in TRX/TRY, corresponding to several CARM linewidths, but all the out-of-loop ALS noise measurements have me believe that we are close to the CARM linewidth in noise. So we should only see ~factor of 2 fluctuation in power.
    • The RF error signal for CARM (=REFL 11) doesn't show any features that i can use to aid the transition / diagnose what is going on systematically.
  • Koji suggested changing the actuation for CARM from MC2 to the ETMs, and check if the MC OSEMs witness the excess motion at small CARM offsets
    • The ALS transition is scripted, so I had to make a modified version that accommodates this changed actuation scheme.
    • The usual CARM-->MC2 matrix element is -1. 
    • The frequency actuation strength of MC2 is ~3x that of the ETMs. Additionally, ETMX has 5x the series resistance of ETMY. So I used the output matrix elements shown in Attachment #1 so as to get the same loop UGF with the same loop gains elsewhere in the chain. Confirmed the actuation strength is the same using the sensing matrix infrastructure and comparing line heights.
    • Attachment #2 shows the measured UGF - both CARM and DARM look okay to me.
  • With this new ALS output matrix actuation scheme, I was able to make it to PRMI + arms on zero offset a couple of times tonight, but the drifting input alignment makes the PRMI lock not so robust anymore.

TBC. Mercifully at least the shaker stayed still tonight.

Attachment 1: modifiedOutMat.png
Attachment 2: OLTFs.pdf
ELOG V3.1.3-