40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 182 of 335  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  14861   Fri Sep 6 11:56:44 2019 aaronHowToCDSWFS discussion, restarting CDS

Rebooting

I reset c1lsc, c1sus, and c1ioo.

I noticed that the script gives the command 'ssh c1XXX', but we have been getting no route to host using this command. Instead, the machines are currently only reachable as c1XXX.martian. I'm not sure why this is, so I just appended .martian in rebootC1LSC.sh

This time, the script does run. I did get 'no route to host' on c1ioo, so I think I need to reset that machine again. After reset, the script failed to login to c1ioo and c1lsc.

Fri Sep 6 13:09:05 2019

After lunch, I reset the computers again, and try the script again. There is again no route to host for c1ioo. I'm going inside to shutoff the power to c1ioo, since the reset buttom seems to not be working. I still can't login from nodus, so I'm bringing a keyboard and monitor over to plug in directly.

On reset, c1ioo repeatedly reaches the screen in attachment 1, before going black. Holding down shift or ctrl+alt+f1 doesn't get me a command prompt. After waiting/searching the elog for >>3 min, we decided to follow these instructions to cycle the power of c1ioo. The same problem recurred following power up. I found online some instructions that the SunSystems 4600 can hang during reboot if it has become too hot ("reboot during a thermal shutdown"); I did notice that the temperature light was on earlier in this procedure, so perhaps that is the problem. I followed the wiki instructions to shut down the computer again (pressed power button, unplugged 4 power supplies from back of machine), and left it unplugged for 10-30 min (Fri Sep 6 14:46:18 2019 ).

Fri Sep 6 15:03:31 2019

Rana plugged in the power supplies and reset the machine again.

Fri Sep 6 16:30:37 2019

c1ioo is still unreachable! I pressed reset once, and the reset button flashes white. The yellow warning light is still on.

Fri Sep 6 16:54:21 2019

The reset light has stopped flashing, but I still can't access c1ioo. I reset once more, this time watching c1ioo on a monitor directly. I'm still seeing the same boot screen repeatedly. I do see that CPU0 is not clocking, which seems weird.

Troubleshooting CPU module

Following gautam's elog here, I found the Sun Fire X4600 manual for locating faulty CPUs. After the white reset light stopped flashing, I held down the power button to turn off the system. Before shutdown, all of the CPU displayed amber lights; after shutdown, only the leftmost CPU (as viewed from the back, presumably CPU0) displays an amber light. The manual says this is evidence that the CPU or DIMM is faulty. Following the manual, I remove the standby power, then checked out these Instructions for replacing the CPU to remove the CPU; Gautam also has done this before.

Fri Sep 6 20:09:01 2019 Fri Sep 6 20:09:02 2019

I pulled the leftmost CPU module out, following the instructions above. The CPU module matches the physical layout and part number of the Sun Fire X4600 M2 8-DIMM CPU module; pressing the fault reminder light gives amber indicators at the DIMM ejectors, indicating faulty DIMMs (see). The other indicator LEDs did not illuminate.

I located several spare DIMMs in the digital cabinet along Y arm (and a couple with misc computer components in the control room), but didn't find the correct one for this CPU module. The DIMM is Sun PN 371-1764-01; I found it online and ordered eight. Please let me know if this is incorrect.

To protect the CPU module, I've put it in an ESD safe bag with some bubble wrap and a note. It's on the E shop bench.

Conclusion: Need new DIMM, didn't find the correct part but ordered it.

Attachment 1: B26CECF8-FC0D-4348-80DC-574B1E3A4514.jpeg
B26CECF8-FC0D-4348-80DC-574B1E3A4514.jpeg
  14863   Fri Sep 6 16:38:24 2019 aaronUpdateALARMAlarm noise from smart-ups machine under workstation?

There was an alarm sound from the Smart-UPS 2200 sitting under the workstation. I see that the 'replace battery' light is red, and this elog tells me that these batteries are replaced every ~1-4 years; the last replacement was march 2016. Holding down the 'test' button for 2-3 seconds results in the alarm sound and does not clear the replace battery indicator.

  14866   Fri Sep 6 22:03:30 2019 aaronHowToCDSHow to save c1ioo

Saw these slightly delayed.

Q1: Not sure--is it a safe operation for me to remove the DIMM on CPU0, replace CPU0 (with no DIMM), and boot up to try this?

Q2: Specifically, it's this DIMM. The CPU core is compatible with DDR2, clock rate up to 333 MHz (DDR2-667) and 1, 2, or 4 GB of memory.

Q3: Hmm checking on that.
I see a message on megatron that it's currently running MC autolocker and the FSS slow servo, with nothing else listed. It's currently running 30-70% of its available memory on all 8 cores, so seems it's got some to spare. I need to relocate the old c1omc RT machine for myself, but becoming inefficient so I'm off.
 
Quote:

Q1 Can we run the machine with the reduced # of cores?

Q2 We might be able to order them quickly. What's the spec and configuration of the DIMMs (like DDR2-667MHz ECC 4GBx4, and even more specs (like Samsung 2GB DDR2 RAM PC2-6400 240-Pin DIMM M378T5663EH3) so that we are to identify the exact spec).

Q3 Can we scavenge the old OMC RT machine or even megatron to extract the memories?

  14867   Mon Sep 9 11:36:48 2019 aaronHowToCDSHow to save c1ioo

One pair of DIMM cards from the Sunstone box had the same Sun part number as those in c1ioo, so I swapped them in and reinstalled c1ioo's CPU0. c1ioo now boots up an seems ready to go, I'm able to log on from nodus. I also reinstalled optimus' CPU0, and optimus boots up with no problems.


  • old C1OMC RT
  • Megatron
    • I also found that megatron will require a CPU filler board if we remove one of its DIMM (it cannot operate with empty CPU module slots)
  • optimus
    • Rana says I can also consider using two of optimus' DIMM cards. Optimus appears to not be running any scripts currently, and I don't find any recent elog entries or wiki pages mentioning optimus with critical use.
    • I shutdown optimus (from the command line Mon Sep 9 13:17:58 2019).

While opening up optimus, I noticed a box labelled 'SUNSTONE' sitting below the rack--it contains two CPU modules a similar type as in c1ioo! I'm going to try swapping in the DIMM cards from this SUNSTONE box; I didn't find any elogs about sunstone--where are these modules from?

I reset c1lsc and c1sus, then ran rebootC1LSC.sh as before. All models started by the script are running with minimal red lights; c1oaf, c1cal, c1dnn, c1daf, and c1omc are not started by the script. I manually started these in the order c1cal->c1oaf->c1daf->c1dnn. Starting c1dnn crashed the other FE on c1ioo, so I reset all three FE again, and ran the script again (this time, including the startup for c1cal, c1oaf, and c1daf, but excluding c1dnn).

Except for c1dnn and c1omc, all models are started. The status lights are attached.

Attachment 1: reboot.png
reboot.png
  14868   Tue Sep 10 15:41:37 2019 aaronUpdateIOOWFS measurements

[rika, aaron, rana]

We are getting the MC locked in anticipation of making some WFS transfer function measurements.

The PSL screen was all white boxes, so I keyed the PSL crate and burt restored the settings from 11:19am Sep 5 (somewhat earlier than we started rebooting computers). Following this, I ran Milind's unstick.py and then the PSL autolocker script; both worked on the first go, great work Milind!

The modecleaner autolocking script is having substantially more trouble. Rana found that pitch and yaw sliders for all MC optics have been swapped--we think it's because the camera at MC2 has been rotated. Note that for now, sliding pitch gives a change in yaw, and sliding yaw changes pitch.

Improving MC alignment

We noticed that with the WFS servo on, the modecleaner would be well aligned for a while (MC trans ~ 14000), only to lose lock after several minutes. We held the MC2_TRANS_PIT/YAW outputs at 0, so the MC2 QPD does not affect the WFS loop; the beam is well centered on WFS1/2, but not on the MC2 QPD, and with this signal out of the loop MC TRANS recovers to ~15000 counts (consistent with the quiet times over the last 90 days, see attachment 2). Attachment 1 shows the MC lock degrading, followed by some noise where we lost lock, and finally a visible increase in MC trans when we remove the MC2 QPD from the WFS loop.

mode cleaner alignment setting

MC1 Pich 4.4762     Yow 4.4669

MC2 Pich 3.7652     Yow -1.5482

MC3 Pich -0.4159    Yow 1.1477

 

After automatic locking MC, we stopped automatical locking and took alignment to the center of QPD.

And then again did the automatic locking MC. Finaly Rana move to best alignment.

 

Mode cleaner Alignment Setting

MC1 Pich 4.4942   Yow 4.6956

MC2 Pich 3.7652   Yow -1.5600

MC3 Pich -0.3789   Yow 1.1477

 

Measured sine response

We used diaggui to measure the response of WFS1/WFS2/MC2 pitch (yaw) to excitations in MC1/MC2/MC3 pitch (yaw). Seeing fluctuations of amplitude ~1 on the MCX_PIT/YAW_OUT channels, we used an amplitude 0.01 excitation at 20 Hz. We will work on scripting some of this tomorrow.

 

 

Attachment 1: Screenshot_from_2019-09-10_18-51-28.png
Screenshot_from_2019-09-10_18-51-28.png
Attachment 2: mctrend_190910.png
mctrend_190910.png
  14871   Wed Sep 11 10:26:56 2019 aaronUpdateIOOWFS measurements

Gameplan

We should also have a plan for the next couple weeks so we are organized; heavily adapted from. Here's what I'm thinking this morning:

  1. Construct the input/output matrix for the WFS. (basically, what we did yesterday)
    1. Measure a transfer function of MC[1, 2, 3]_[PIT, YAW] to [WFS1, WFS2, MC2_TRANS]_[PIT, YAW]. The transfer function above the loop bandwidth (few seconds BW, so we will excite >~ 10 Hz) characterizes the response of the sensor to the excitation.
    2. Invert the resulting 3x3 matrix and populate the inverted matrix at WFS_OUTMATRIX. This will map the WFS basis to the MC optics' pit/yaw basis.
    3. Script this process. If we make changes (for example, moving the telescoping lenses) to make this matrix more diagonal, we'll want to do these steps many times.
  2. Characterizing the loop
    1. Optimize the demodulation phase -- we want to minimize the signal in Q. This should also be automated. I found documentation in the white Wave Front Sensing binder
      1. Misalign a mirror in pitch or yaw, and rotate the phase to minimize the magnitude of Q (maximize I); this angle is 'R' on the WFSx_SETTINGS screen.
    2. We should measure a step response applied to each angular dof of the MC optics.
    3. Guoy Phase Calibration
  3. Characterizing / Calibrating the WFS heads
    1. The DCC has LIGO test procedures for their WFS RFPD, as does the white binder; the following checks are relevant for our WFS, and this is how I think we should carry them out (not identical to the procedure as written in the document). For many of these, we'll want to set up the JenneAM laser with a network analyzer for RF modulation.
      1. DC path transimpedance
        1. Measure the DC power of JenneAM with a power meter, and direct the beam to each of the QPD quadrants. Make sure the beam fits on a single quadrant.
        2. This will give us the product of the PD efficiency and DC transimpedance gain
        3. Last time this was measured (white WFS binder)
      2. notch tuning -- we are going to measure the TF, but I won't tune it without someone as ancient as the electronics
        1. Using the network analyzer, measure a transfer function from the laser AM to the QPD head's RF output
          1. Is there a pickoff available? The LIGO testing procedures recommend a FET probe
          2. We should do this while measuring the DC transimpedance for each quadrant
      3. notch rejection ratios
        1. While taking the RF transfer function, use the delta marker to record the difference between the notch and the RF operating frequency.
      4. RF transimpedance
        1. Illuminate the PD with white light from an incandescent bulb (a shot-noise limited source)
          1. 6-10 mA of photocurrent should be generated
        2. Use an RF spectrum analyzer and low noise RF pre-amplifier (gain ~20dB) to measure the shot noise limited spectrum
        3. A piece of scotch tape can be used to make the light uniformly illuminate the QPD
        4. Convert this RF PSD to an rms amplitude (voltage) spectral density, and also note the DC photocurrent. This can be used to calculate the RF transimpedance with
          1. Z_\mathrm{RF} = \sqrt{\frac{V_\mathrm{rms}^2I_\mathrm{DC}}{3.2\times 10^{-19}}}
      5. Shot noise limited input sensitivity
        1. Measure the RF PSD with the beam blocked and light off; this is the dark photocurrent, and can be used to calculate the shot noise limited sensitivity.

References:

  • Binders of documents about the 40m WFS
  • LIGO ISC WFS RFPD test procedure (T1200347 is dual frequency, T1200380 is single frequency)
    • The associated datasheet template is in T1200381
  • Wavefront Sensor (T960111). This document even has a calibration protocol with forms to fill in during testing, so I've printed an extra copy of that appendix.

Automation

It would be good to script some of what we did yesterday. I'm checking out some scripts I'd used for Qryo and armloss measurements to remember the best way to do this.

  • Existing WFS scripts (I didn't try these)
    • WFS_DC_offsets -- sets the WFS QPD dark offsets
      • block beam, then run script
    • MC2_TRANS_offsets -- sets the MC2 transmission offset (why isn't this in the same script as WFS_DC_offsets?)
      • MC should be aligned, beams centered on WFS, WFS servo off
    • mcWFSallowOn(Off) -- turns on (off) the ASC filter module outputs
    • mcwfshold -- turns off the input to WFS servos, but holds the current values of MC optic biases
    • mcwfsoff -- turns off the mc wfs loop
      • First, turns off the WFS outputs (eg WFS1_PIT OUTPUT)
      • Turns off the MC WFS input gains
      • Holds the WFS loop outputs

Miscellany

I noticed yesterday that the PSL_shutterqst box is white, and I've seen timeout requests when eg the reboot script tries to open/close the PSL shutter. It seems like a shutter that should open, so I should find the aux machine to restart it.

  14872   Wed Sep 11 14:37:43 2019 aaronUpdateIOOWFS measurements

[aaron, rika]

We identified the Jenne laser and found a long optical fiber that might be able to transport our beam to the AP table.

Now we're searching for documentation on using this laser. Kevin and John measured a TF last year. Koji advised that we needn't worry too much, the current limit is already set correctly and we need only power on the laser.

We moved the breadboard (including a couple PDs, collimating lenses, laser, steering mirrors, etc) over to the AP table, and set it on top of the panel next to the WFS. We mounted the laser on the AP table, and added one lens with f~68 mm after the laser to fit the beam on a single quadrant; the beam was about 1mm diameter (measured by eye) when it entered the QPD. We turned the laser driver on at ~19.4 mA, and directed it to WFS2 via the last two steering mirrors before WFS2.

We monitored the QPD segments' DC level with ndscope on a laptop, and were able to send the beam to each of the four quadrants in turn. We set up the Agilent network analyzer to drive the laser's amplitude modulation and sent the RF signal from the LEMO output on the QPD head directly to the network analyzer. We will take the measurements tomorrow morning.

Attachment 1: 20190911_WFS.jpg
20190911_WFS.jpg
Attachment 2: 20190911_WFS_2.jpg
20190911_WFS_2.jpg
  14874   Thu Sep 12 12:42:31 2019 aaronUpdateIOOWFS measurements

[rika, aaron]

At Seiji and Gautam's suggestion, we added an additional RF photodiode (NewFocus 1611) to the system so we can calibrate our transfer functions. The configuration is now laser -> BS --> lenses -> QPD and BS --> lenses -> RFPD. We added lenses to get the beams focused on the RFPD and QPD heads, and are again set up for TF measurement.

We took the following data. These parameters were consistent across all measurements:

  • 1kHz IF BW
  • log sweep with 801 points
  • 32 averages
  • auto attenuation
  • -10 dBm excitation amplitude
  • 19.2 mA DC current to the laser
  • The DC level of the reference PD is -, and with the beam blocked (dark current) it is
Measurement file parameters
WFS2_SEG1 / RFPD
TFAG4395A_12-09-2019_155901.txt
100 MHz - 500 MHz
WFS2_SEG1 / RFPD TFAG4395A_12-09-2019_160811.txt 10 MHz - 100 MHz
WFS2_SEG1 / RFPD
TFAG4395A_12-09-2019_170234.txt
100 kHz - 10 MHz
WFS2_SEG2 / RFPD AG4395A_12-09-2019_183125.txt 100 MHz - 500 MHz
WFS2_SEG2 / RFPD TFAG4395A_12-09-2019_183614.txt 10 MHz - 100 MHz
WFS2_SEG2 / RFPD TFAG4395A_12-09-2019_183930.txt 100 kHz - 10 MHz
WFS2_SEG3 / RFPD TFAG4395A_12-09-2019_225243.txt 100 MHz - 500 MHz
WFS2_SEG3 / RFPD TFAG4395A_12-09-2019_225601.txt 10 MHz - 100 MHz
WFS2_SEG3 / RFPD TFAG4395A_12-09-2019_225922.txt 100 kHz - 10 MHz
WFS2_SEG4 / RFPD
TFAG4395A_12-09-2019_230758.txt
100 MHz - 500 MHz
WFS2_SEG4 / RFPD TFAG4395A_12-09-2019_232058.txt 10 MHz - 100 MHz
WFS2_SEG4 / RFPD TFAG4395A_12-09-2019_234447.txt 100 kHz - 10 MHz

After taking the data for segment 1, I moved the beam to segment 2. The beam didn't fit on segment 2 without partially illuminating segment 1 (tested by maximizing the signal on segment 2, then blocking the beam. If the beam is entirely on one segment, only that segment should be effected; in this case, we found that segment 1's DC signal also changed when the beam was blocked). We readjusted the telescoping lenses to get the beam a bit smaller, and now the beam fits on segment 2. We know it is entirely on segment 2 because small beam movements do not change the signal on segment 2.

We are trying to take the remaining data, but AGmeasure keeps hanging while sending the data (after taking the measurement, over 10 min). We tried restarting the network analyzer to no avail. I was able to grab the data by cancelling the measurement and running

AGmeasure --getdata -i vanna

I've uploaded the spectrum for segment 1 in the meantime. Zero model is on the way.

When I finished up the measurements on WFS2, I removed the cables from the AP table and closed the cover.

EDIT: I forgot to switch the LEMO connector to measure the other segments, so we measured the RF signal from segment 1 even when the beam was on segments 2-4. We'll have to try again tomorrow.

Attachment 1: WFS2_TFs.pdf
WFS2_TFs.pdf
Attachment 2: D755499D-9FDF-4E2B-BFC1-016B459DD35D.jpeg
D755499D-9FDF-4E2B-BFC1-016B459DD35D.jpeg
  14875   Fri Sep 13 10:36:03 2019 aaronUpdateIOOWFS measurements

[rika, aaron]

We are at it again. Rika is setting up the TF measurement, I'm looking into scripting the WFS sensing matrix measurement we made earlier in the week so we can return to it next week.

 

Measurement file parameters
WFS2_SEG1 / RFPD

 

 
100 MHz - 500 MHz
WFS2_SEG1 / RFPD   10 MHz - 100 MHz
WFS2_SEG1 / RFPD
 
100 kHz - 10 MHz
WFS2_SEG2 / RFPD TFAG4395A_13-09-2019_181415.txt 100 MHz - 500 MHz
WFS2_SEG2 / RFPD TFAG4395A_13-09-2019_180955.txt 10 MHz - 100 MHz
WFS2_SEG2 / RFPD TFAG4395A_13-09-2019_182918.txt 100 kHz - 10 MHz
WFS2_SEG3 / RFPD TFAG4395A_13-09-2019_121533.txt 100 MHz - 500 MHz
WFS2_SEG3 / RFPD TFAG4395A_13-09-2019_123820.txt 10 MHz - 100 MHz
WFS2_SEG3 / RFPD TFAG4395A_13-09-2019_123243.txt 100 kHz - 10 MHz
WFS2_SEG4 / RFPD
TFAG4395A_13-09-2019_161834.txt
100 MHz - 500 MHz
WFS2_SEG4 / RFPD TFAG4395A_13-09-2019_170007.txt 10 MHz - 100 MHz
WFS2_SEG4 / RFPD TFAG4395A_13-09-2019_172001.txt 100 kHz - 10 MHz

 

When we mesuring TF of SEG4, the beam leaking to SEG1 about 1%.

We finished mesurement SEG2-4 and get the figure by running PDH_calibrate.ipynb .

edit: We observed during segment 2 measurements that blocking the beam reduced the DC level of segment 1 by less than 1%, but still clearly observable. As you can see in the plots, something is suspicious about the normalization of these TFs. We took segment 1 data a few days before the other segments, so perhaps we weren't getting the full beam on the reference PD during the later measurements? When I make this measurement for WFS1, I will try to fix some of these problems by choosing different telescoping optics, and I will consider whether removing the QPD heads from their table will improve the measurement.

Attachment 1: TF-.png
TF-.png
Attachment 2: WFS2_TFs.pdf
WFS2_TFs.pdf
  14876   Fri Sep 13 10:53:40 2019 aaronUpdateIOOWFS loop measurements

I'm scripting the WFS sensing matrix measurements. I haven't really scripted DTT before, so I'm trying to find documentation or existing scripts. I came across this elog where Gautam measured a sensing matrix during DRMI lock, and he pointed me to some .xml files used for these measurments.

 

  14881   Mon Sep 16 12:00:16 2019 aaronHowToGeneralMoved some immovable optics

When I put away the lenses we had used for measuring the RF transfer functions of the QPD heads, I saw that I'd removed them from the cabinet containing green endtable optics, but hadn't noticed the sign forbidding their removal. I'll talk with Koji/Gautam about what happened and what should be done.

  14882   Mon Sep 16 12:38:59 2019 aaronUpdateIOOWFS measurements

I wanted to make a zero model of this circuit to get a handle on the results. I couldn't import zero on pianosa, and I tried pip installing zero, but was denied due to not finding version 3.0.3 of matplotlib. I finally got it to install using

pip3 install zero --user

 Oddly, even though I can now import zero when I open a python3 session from the command line, when I open a jupyter notebook and switch to a python3 kernel, the zero module is still unavailable. I think I recall that conda manages the jupyter environment -- is pip managing an entirely separate environment (annoying)?

edit: Yeah, it was something like that. I reminded myself how this works with this article.

  14883   Mon Sep 16 17:53:16 2019 aaronUpdateCamerasMC2 trans camera (?) rotated

We noticed last week that the MC2 trans camera has pitch and yaw swapped; I rotated what I thought is the correct camera by 90 degrees clockwise (as viewed from above, like in the attachment), but I now have doubts. It's the camera on the right in the attachment.

Attachment 1: 47D6ED9C-BF21-4D6E-9947-284FE4A336F4.jpeg
47D6ED9C-BF21-4D6E-9947-284FE4A336F4.jpeg
  14887   Tue Sep 17 10:34:48 2019 aaronUpdateIOOWFS loop measurements

I'm using the notebooks from rana as a starting point, and making a script to measure and fill the WFS sensing matrix. It lives at /users/aaron/WFS/scripts/WFSsensingMatrix.ipynb for now. Here's what it does; what's been tested is in green, untested is goldenrod, uncoded is fire brick.

  1. Sets up an nds connection, listening to the WFS channels and the MC#_PIT/YAW IN1 channels.
  2. Loops over the excitation channels. For now, I'm assuming the user is injecting excitations one at a time in awggui; in principle, we could excite the various MC angular dof at several frequencies and take a single measurement, or use the natural frequencies of the suspensions.
    1. For each excitation, grab the data
    2. Filter the data. I'm using a 30 Hz to 40 Hz cheby filter
    3. Take an FFT, hold on to that for future reference
    4. Generate an LO at the excitation frequency, and demodulate the signals. Strong low pass.
    5. The single-frequency transfer function is now [WFS channel] / [excited MC channel]. Each iteration of this loop generates a column of the sensing matrix.
  3. Invert the sensing matrix
  4. Populate in the appropriate channels of the WFS_OUTMATRIX

Grabbing data with nds

To run these on pianosa, I ran (inside the jupyter notebook)

import sys
!{sys.executable} -m pip install astropy --user

I'm getting an error when starting the nds2 connection

conn = nds2.connection('192.168.113.201', 31200)
Failed to establish a connection[INFO: Request SASL authentication protocol]+

 I didn't find anything on the elog about this error, but I'm looking at the nds user manual. The problem was, I didn't have a valid Kerberos ticket; I opened one on Pianosa with my albert.einstein (note all caps ligo.org).

kinit aaron.markowitz@LIGO.ORG

 I'm now able to run the scripts Rana mentions, but I haven't been able to grab the channels I want (eg C1:SUS-MC1_ASCPIT_IN1_OUT); it says the channel isn't found. When I check how many of the Caltech channels are available (conn.count_channels('C1*')), there are none. I was connecting to nds.ligo.caltech.edu, but this must be the wrong server (it has all the channels for the sites). fb and fb1 (and the IP they point to, 192.168.113.201) cannot be connected to, giving the error 'Error occurred trying to write to socket.'

I recall that in the cryo lab, we need to use port 8088 to get data from cymac1, and indeed substituting 31200 -> 8088 lets me access the C1 channels (I can count the channels), but no matter what time I request, nds tells me there is no data available (gap). Gautam came by and diagnosed that the gaps I'm seeing in the frames' data are real, fb is down (see elog).


WFS Sensing Matrix Script

Saving extra channels

Continuing, I'm going to modify the script to grab live data. I'm using the iterate and next methods. I noticed that the MC2_TRANS pit/yaw channels are not saved to frames, even though WFS1/2 pit/yaw are. Since I expect I'll want to lookback at these channels, I followed the instructions for adding a daq channel, uncommenting the following line in /opt/rtcds/caltech/c1/chans/daq/C1IOO.ini:

[C1:IOO-MC2_TRANS_PIT_OUT_DQ]
acquire=1
datarate=512
chnnum=10186
datatype=4
[C1:IOO-MC2_TRANS_YAW_OUT_DQ]
acquire=1
chnnum=10189
datarate=512
datatype=4

I made a backup of the old version of this .ini file, which can be found in /users/aaron/backups/190917_C1IOO.ini. I did not remake the model, as I couldn't find the c1ioo model in /opt/rtcds/caltech/c1/userapps/trunk or from the matlab command prompt. I restarted the fb via telnet, but didn't restart the model or check the svn (got an error?). The _DQ channels are now reachable on dataviewer, so things seem to be working.

awgpy

I also tried importing cdsutils, so I can control awg in the same script that we read out the sensing matrix, but I'm getting the python3 error when I import cdsutils:

No module name '__version'

I tried pip upgrading cdsutils, but it's already up-to-date. I get the above error even if I switch to a python 2 kernel; cdsutils is installed in the python2.7 directory, so I don't know why pip is finding it when I'm running a python 3 kernel. I can move on from this for now, but it would be useful to be able to script the excitation along with the measurement.


Changes to the user environment

jupyter on donatella

Tangentially related, Rika wanted to be running some jupyter notebooks while working on donatella. I ran, on donatella:

conda install jupyter

 hm, that didn't work. Also jupyter is installed when you install conda, so I'm not sure how there is a version of conda but not of jupyter. I also see that pip and pip3 are not recognized commands on donatella.

scipy on pianosa

I noticed that some of the functions in the scipy signal processing toolbox were out of date on pianosa. The cheby and welch filters now accept additional kwargs (for eg, before you needed to give IIR filter methods a cutoff frequency normalized to the Nyquist rate, but now you can give it the frequencies and sampling rate separately).

I want to update this package, but I hesitate to break everyone's existing scripts.

  14900   Thu Sep 19 15:59:29 2019 aaronHowToCDSHow to save c1ioo

New DIMM cards have arrived. I stored them in the digital cabinet along y arm.

  14913   Mon Sep 30 11:42:36 2019 aaronUpdateComputerscontrol rm wkstns shutdown

I booted Rossa in rescue mode; though I see no errors on bootup, I still see the same error ("a problem has occurred") after boot, and a prompt to logout. I powered rossa off/on (single short press of power button), no change.

Booting in debug mode, I see that the error occurs when mounting /cvs/cds, with the error

[FAILED] Failed to mount /cvs/cds.
See `systemctl status cvs-cds.mount` for details.
[DEPEND] Dependency failed for Remote File System

Which is odd, because when I boot in recovery mode, is mounts /cvs/cds successfully. 

I booted in emergency mode by adding to the boot command

systemd.unit=emergency.target

but didn't have the appropriate root password to troubleshoot further (the usual two didn't work).

  14914   Mon Sep 30 13:20:55 2019 aaronUpdateIOOshot noise measurement

I wanted to measure the RF transimpedance of the WFS heads, as outlined above.

Summary: Measurement is not done.

Details:

  • closed the PSL shutter
  • taped over the WFS 2 opening with frosted scotch tape
  • illuminated the QPD with an incandescent flashlight.
    • All of the D batteries were close to dead, so it seemed dimmer than usual
  • Observed the WFS2 segment 1 RF spectrum on the Agilent, but saw no difference between the spectrum with and without the flashlight. Must need a brighter light, and possibly also better alignment.
  • Needed to skype someone and pass off the IFO to gautam, so I untaped the QPD, returned the appropriate LEMO connector, and opened the PSL shutter.
  14929   Thu Oct 3 11:38:35 2019 aaronUpdateIOOWFS measurements

I set up the spectrum analyzer to make the WFS head RF transfer function measurement (V/W) on WFS1. I placed the Jenne laser on the AP table, along with the reference PD power supply, laptop, and laser power supply. The Agilent output AM modulates the laser; the reference PD is again NewFocus 1611, with its AC output sent to Agilent's R channel and DC output sent to an oscilloscope;

At Koji's suggestion, I've started setting up a small breadboard to hold the fiber collimator, BS, and reference PD. I haven't really used fiber optics before, I'd appreciate another set of eyes before I get too deep.
Gautam showed me the collimator and fiber BS.

I closed the PSL shutter while checking for a location to place the breadboard, and opened it while writing this. Headed back to Cryo to pick up the large incandescent bulb we'd borrowed over the summer.

  14934   Thu Oct 3 21:05:04 2019 aaronUpdateGeneralMake the Jenne-laser setup fiber-coupled

I measured the RF response of the fiber-coupled NewFocus 1611, calibrating out the cable delay. The laser current was set to 20.0 mA, and the RF power going into the splitter was -10 dBm. The DC voltage was 1.87 V, and Gautam and I measured the power from the fiber at 344uW.

Something still looks very wrong -- the PD is supposed to be flat out to 1GHz, and physical units pending, need food.

Attachment 1: PD_response.pdf
PD_response.pdf
  14940   Fri Oct 4 14:25:59 2019 aaronUpdateGeneralMake the Jenne-laser setup fiber-coupled

Summary:

The fiber-coupled PD seems to have a factor of ~1.5 difference in responsivity compared to the free-space PD. There are some differences in the two ways I made the measurement that I don't yet understand.

Details

I measured relative responsivities of the fiber and free coupled NewFocus 1611 PDs (scaled by the Jenne AM transfer function).

I made the measurement in two ways, see attachment threeIn attachment oneI show the response for separately measuring the two PDs relative to a pickoff of the source (two-port thru calibration). In attachment two I measure the relative responses directly, without picking off a reference (three-port calibration). I scaled the transfer functions by their DC voltages; both PDs have transimpedances of 700 V/A.

However, there are some clear differences in the response (overall factor of 0.5dB offset that may be explained by a miscalibrated DC level; apparent periodicity in attachment 1) that I don't yet understand.The free path of the non-fiber PD is ~5-6 inches, which accounts for the ~45 degrees of phase advance of the fiber relative to free coupled PD signal. (12.7cm / (c / 300 MHz) * 360 degrees ~ 45 degrees)

I didn't find Agilent's manual very helpful for learning about the available calibration schemes, and didn't find a resource online that I liked -- is there a good one?
I think I want to characterize the WFS heads treating the DUT as a three-port device (AM in, ref PD, WFS segment PD).
Attachment 1: PD_norm.pdf
PD_norm.pdf
Attachment 2: PD_AB.pdf
PD_AB.pdf
Attachment 3: JenneAM_fiberPD_cals.pdf
JenneAM_fiberPD_cals.pdf
  14945   Mon Oct 7 14:51:20 2019 aaronUpdateElectronicsWFS head RF measurements

Mon Oct 7 14:51:53 2019. I closed the PSL shutter to measure the WFS head responsivity.

I made a thru calibration as in this elog, treating laser, reference PD, and WFS RF output as a three-port device. The DC current supplied to the laser is 20.0 mA in all cases. The Agilent spectrum analyzer supplies a -10 dBm excitation to Jenne laser's AM port, and A/B is measured with 20dB attenuation on each input port. Results are in /users/aaron/WFS/data/191007/. The calibration had 100 averages, all other measurements 32 averages; other parameters found in the yml file, same folder as the data.

Measurement Reference PD DC (V) WFS Segment DC (V) WFS Segment DC, beam blocked (V) File Notes
WFS 1 Segment 1 1.86 0.79 -0.23
TFAG4395A_07-10-2019_154446.txt
 
WFS 1 Segment 2 1.86 0.72 -0.30 TFAG4395A_07-10-2019_155017.txt  
WFS 1 Segment 3 1.86 0.79 -0.21
TFAG4395A_07-10-2019_155645.txt
 
WFS 1 Segment 4 1.86 0.70 -0.30
TFAG4395A_07-10-2019_160334.txt
TFAG4395A_07-10-2019_160847.txt
I noticed the BS-PRM illuminator was on, and turned it off for the second measurement
WFS 2 Segment 1 1.86 0.56 -0.38 TFAG4395A_07-10-2019_162533.txt  
WFS 2 Segment 2 1.86 0.71 -0.21
TFAG4395A_07-10-2019_163402.txt
 
WFS 2 Segment 3 1.86 0.68 -0.28 TFAG4395A_07-10-2019_164152.txt  
WFS 2 Segment 4 1.86 0.57 -0.42 TFAG4395A_07-10-2019_164745.txt  

 

I normalized the result by the difference between the dark and bright DC levels of each segment.

Mon Oct 7 17:29:58 2019 opened PSL shutter.

Attachment 1: WFShead_response.pdf
WFShead_response.pdf
  14951   Tue Oct 8 16:00:06 2019 aaronUpdateElectronicsWFS head RF measurements

I simulated this circuit with zero, but haven't gotten the results to match the measurements above.

Removing the DC readout chain from the circuit does not affect the AC response.
Perhaps something to do with the (currently unmodeled) capacitance of the diode? I think this forms a necessary part of the resonant circuit. The gain is also suspiciously low.
Edit: Indeed, simply adding the 'typical' shunt capacitance (9pF) and a small series resistor (10 Ohm) gives the right qualitative response
The python notebook is in /users/aaron/WFS/electronics.
The DC response flattens off at ~20dB by ~mHz, which also seems longer than the timescales I saw while measuring; I'm not sure I have some of the AD827 parameters correct (eg 'delay')
 
I came across this nice note on photodiodes.
 
 
Attachment 1: WFS_ACresponse.pdf
WFS_ACresponse.pdf
Attachment 2: WFS_DCresponse.pdf
WFS_DCresponse.pdf
  14957   Tue Oct 8 20:39:42 2019 aaronUpdateIOOWFS loop measurements

I installed nds2 on donatello with yum, but still can't import nds2.

  14958   Wed Oct 9 09:37:28 2019 aaronUpdateIOOWFS loop measurements

I installed nds2 again, this time successfully with

conda install -c conda-forge python-nds2-client

 

  375   Thu Mar 13 12:11:58 2008 aivanovUpdateComputer Scripts / Programsrouting PEM -> ASS -> SUS_MCL

on ASS RFM 1 has PEM signals at

float at 0x100000 has c0dcu1 first ICS110B chan 1
float at 0x100004 has chan 2
etc.

ASS sends to RFM 0

float at 0x100000 goes to PRM MCL
0x100004 to BS MCL
0x100008 to IMTX MCL
0x10000c to ITMY MCL
0x100010 to SRM MCL
0x100018 to MC1 MCL
0x10001c to MC3 MCL
0x100020 to ETMX MCL
0x100024 to ETMY MCL
  376   Thu Mar 13 13:15:09 2008 aivanovUpdateComputer Scripts / Programsnew sfotware intall, backup files
New:
op440m:40m>ls -alt /cvs/cds/caltech/target/c1susvme[12]/*.o
-rw-r--r-- 1 controls staff 57920 2008-03-13 13:11 /cvs/cds/caltech/target/c1susvme2/losLinux2.o
-rw-r--r-- 1 controls staff 57976 2008-03-13 13:11 /cvs/cds/caltech/target/c1susvme1/losLinux1.o
op440m:40m>ls -alt /cvs/cds/caltech/target/c1isce[xy]/*.o
-rw-r--r-- 1 controls staff 246861 2008-03-13 13:12 /cvs/cds/caltech/target/c1iscey/losEtmy.o
-rw-r--r-- 1 controls staff 246861 2008-03-13 13:12 /cvs/cds/caltech/target/c1iscex/losEtmx.o
op440m:40m>ls -alt /cvs/cds/caltech/target/c0dcu1/*.o
-rw-r--r-- 1 controls staff 63547 2008-03-12 14:57 /cvs/cds/caltech/target/c0dcu1/dcuDma.o


Backups:
op440m:40m>ls -alt /cvs/cds/caltech/target/c1susvme[12]/*.o.13mar08
-rw-r--r-- 1 controls staff 55960 2005-06-21 13:30 /cvs/cds/caltech/target/c1susvme2/losLinux2.o.13mar08
-rw-r--r-- 1 controls staff 55960 2005-06-21 13:30 /cvs/cds/caltech/target/c1susvme1/losLinux1.o.13mar08
op440m:40m>ls -alt /cvs/cds/caltech/target/c1isce[xy]/*.o.13mar08
-rw-r--r-- 1 controls staff 229793 2007-03-08 11:09 /cvs/cds/caltech/target/c1iscex/losEtmx.o.13mar08
-rw-r--r-- 1 controls staff 229793 2007-03-08 11:09 /cvs/cds/caltech/target/c1iscey/losEtmy.o.13mar08
op440m:40m>ls -alt /cvs/cds/caltech/target/c0dcu1/*.o.12mar08
-rw-r--r-- 1 controls staff 60810 2004-09-08 08:47 /cvs/cds/caltech/target/c0dcu1/dcuDma.o.12mar08
  3   Thu Oct 18 15:03:14 2007 ajwRoutineGeneralthis is only a test

  7   Mon Oct 22 12:02:59 2007 ajwRoutineGeneralSTACIS as microseismic shaker
In case we ever want to use our Stacis systems as shakers, check this:
link
  30   Tue Oct 30 13:58:07 2007 ajwConfigurationIOOMC Ringdowns
Here's a quick fit-by-eye to the latter part of the data from tek00000.xls.

The prediction (blue) is eqn 41 of
http://www.ligo.caltech.edu/docs/P/P000017-A.pdf

T1 = T2 = 0.002. Loss1 = Loss2 = 150 ppm.
MC3 assumed perfectly reflecting.
Velocity = 320 um/s (assumed constant), 2 usec into the ringdown.

OK, there's one little fudge factor in the prediction:
I multiplied D by 2.
Attachment 1: CavityRingdown.png
CavityRingdown.png
Attachment 2: CavityRingdown.m
% CavityRingdown.m
% Eqn 41 of 
% "Doppler-induced dynamics of fields in FabryĖPerot
% cavities with suspended mirrors", Malik Rakhmanov (2000).
% http://www.ligo.caltech.edu/docs/P/P000017-A.pdf

clear all

% read in ringdown timeseries:
at = importdata('tek00000.csv');
... 121 more lines ...
  77   Wed Nov 7 10:55:21 2007 ajwConfigurationComputersbackup script restarted
Following the reboot of computers on 10/31/07, the backup script required restart (which unfortunately "can't" be automated because a password needs to be typed in). I restarted, following the instructions in /cvs/cds/caltech/scripts/backup/000README.txt and verified that it more-or-less worked last night (the rsync sometimes times out; it gets through after a couple of days of trying.)
  144   Fri Nov 30 11:22:22 2007 ajwSummaryCDSGEO DV => LIGO DV

Quote:
Martin Hewitson of GEO600 fame has modified the cool GEO DV
to work with the LIGO NDS system with some NDS advice from Rolf (who's over in Germany this week).

I've moved it onto the 40m CDS system and installed it on the AdhikariLab computer named 'django'. It worked immediately.

I modified the main .m file to include the 40m's NDS server. When you run it you have to include the path to the NDS
client written by Ben Johnson.

The attached is a screenshot of it working on a Mac; it looks as cool on Linux.

Its installed in /cvs/cds/caltech/apps/ligoDV/. In matlab you navigate to that directory and then
type addpath('/cvs/cds/caltech/apps/linux/UNIX_NDS_Client_beta2/') to add the NDS client.
On the Solaris machines, type type addpath('/cvs/cds/caltech/apps/solaris9/UNIX_NDS_Client_beta2/') instead.

Then type ligoDV to start it up. Then click away and have fun.

In the example I've selected
C1:PEM-BS_ACC_EAST_Z
and plotted its specgram.

Big grin


Download and installation instructions, as well as a few examples for use
can be found here (typical lsc username and password):

https://www.gravity.phy.syr.edu/dokuwiki/doku.php?id=ligodv:home
https://www.gravity.phy.syr.edu/dokuwiki/doku.php?id=ligodv:downloading_the_ligodv_software
  453   Sat Apr 26 11:21:15 2008 ajwOmnistructureComputersbackup of /cvs/cds restarted
The backup of /cvs/cds (which runs as a cron job on fb40m; see /cvs/cds/caltech/scripts/backup/000README.txt) 
has been down since fb40m was rebooted on March 3.
I was unable to start it because of conflicting ssh keys in /home/controls/.ssh .
With help from Dan Kozak, we got it to work with both sets of keys
( id_rsa, which allows one to ssh between computers in our 113 network without typing a password,
 and backup2PB which allows the cron job to push the backup files to the archive in Powell-Booth).

It still goes down every time one reboots fb40m, and I don't have a solution.
A simple solution is for the script to send an email whenever it can't connect via ssh keys
(requiring a restart of ssh-agent with a passphrase), but email doesn't seem to work on fb40m.
I'll see if I can get help on how to have sendmail run on fb40m.
  457   Sun Apr 27 22:57:15 2008 ajwDAQComputersbr40m?

Quote:

The testpoint manager (which runs on fb40m) crashed this afternoon. Upon re-starting it, I found there was a rogue dtt process on op440m and also a daqd daemon running on br40m. One or both of these caused the tpman to crash. br40m is the frame broadcaster, which is never used here as we don't run DMT. I killed the daqd process there.

The way to find if there is a rogue process is to watch the output to the console from the tpman when you start it:

Allocate new TP handle 56 by 131.215.113.203
Allocate new TP handle 57 by 131.215.113.203
Allocate new TP handle 58 by 131.215.113.203
Allocate new TP handle 59 by 131.215.113.203
Allocate new TP handle 60 by 131.215.113.203
Allocate new TP handle 61 by 131.215.113.203
Allocate new TP handle 62 by 131.215.113.203
Allocate new TP handle 63 by 131.215.113.203
Allocate new TP handle 64 by 131.215.113.203
Allocate new TP handle 65 by 131.215.113.203
Allocate new TP handle 66 by 131.215.113.203
Allocate new TP handle 67 by 131.215.113.203
Allocate new TP handle 68 by 131.215.113.203


If you see something like this, with a new TP handle being allocated every few seconds, you need to log in to the corresponding host and kill whatever process has run away.


I *think* Alex is responsible for the daqd daemon running on br40m (he set up some new stuff recently, a data concentrator and broadcaster); I'll make sure he sees this post.
  1854   Fri Aug 7 13:42:12 2009 ajwOmnistructureComputersbackup of frames restored

Ever since July 22, the backup script that runs on fb40m has failed to ssh to ldas-cit.ligo.caltech.edu to back up our trend frames and /cvs/cds.

This was a new failure mode which the scripts didn't catch, so I only noticed it when fb40m was rebooted a couple of days ago.

Alex fixed the problem (RAID array was configured with the wrong IP address, conflicting with the outside world), and I modified the script ( /cvs/cds/caltech/scripts/backup/rsync.backup ) to handle the new directory structure Alex made.

Now the backup is current and the automated script should keep it so, at least until the next time fb40m is rebooted...

 

  532   Thu Jun 12 15:09:33 2008 alanUpdateLockingreport
Rob: Awesome figure. As you can imagine, I have lots of questions, and hope that you will consider this figure to be the beginning, leading to ever-more detailed versions. But for now, I just want to ask whether you understand *what* is twitchy, and what the twitchiness does to prevent you from taking this further?
  661   Fri Jul 11 23:55:25 2008 alanUpdateLockingRF common mode at zero offset

Quote:
rob, john, yoichi

Last night we succeeded in reducing the CARM offset to zero.



Congratulations! Well done! I look forward to hearing the details and further progress!
  138   Thu Nov 29 10:36:47 2007 albertoConfigurationComputer Scripts / ProgramsAgilent 82357B GPIB to USB Interface Installation Procedeure
To run the Agilent Automation-Ready CD provided with the interface is only the first step of the installation. Apparently there should be also a second CD with the drivers for Windows XP but I couldn't find it. So, after Installaing the IO Libraries Suite from the CD, I had to install the drivers with an executable downloaded from the Agilent's website at:

http://www.home.agilent.com/agilent/editorial.jspx?cc=US&lc=eng&ckey=1188958&nid=-35199.0.00&id=1188958

and only then I could plug in the interface.
Anyway, I burned a cd with the file and put it together with the other one.
  164   Wed Dec 5 10:57:08 2007 albertoHowToComputersConnecting the GPIBto USB interface to the Dell laptop
The interface works only on one of the USB ports of the laptop (the one on the right, looking at the computer from the back).
  165   Wed Dec 5 13:49:08 2007 albertoUpdateElectronicsRF AM PD lines monitor
In the last weeks Iíve been working on the design of an electronic board to measure directly the power of the main spectral lines on of the RF-AM photodiode from as many independent outputs. The idea is to have eventually a monitor channel in the CDS network for the power of each line.
Looking at at the spectrum from the RF-AM PD (see attached plot), there are 5 main lines:
Frequency
3 fsr = 33 195 439 Hz
4 fsr = 66 390 878 Hz
12 fsr = 132 781 756 Hz
15 fsr = 165 977 195 Hz
18 fsr = 199 172 634 Hz

Two main approaches have been proposed for the circuit depending on the way followed to isolate the lines:
1) Filters: the frequencies are separated by narrow notch filters, then a diode bridge rectifies and a low pass filter extracts the DC component.
2) Mixers: for each frequency there is a mixer driven by a copy of the correspondent modulation frequency provided by the function generators (the Marconi). The mixers automatically give the DC component of the rectified signals.
Because of the phase lags that we should compensate if we used mixers, we would prefer the first approach, if it works.
Starting with a tolerance of about 10% between the channels, the spectrum (see attachment) sets the constraint to the filterís suppression:
Filter central frequency [MHz]******Suppression within 30 Mhz [dB]
33*********************************-7-20 = -27
66**********************************7-20 = -13
133*********************************12-20 = -8
166********************************-12-20 = -32
199*********************************10-20 = 10

So far Iíve tried two kinds of designs for the filters, Butterworth (see attachment) and LC and I'm measuring transfer functions tuning the components to match the central frequency and the bandwdth of the filters with the requirements.

The frequencies weíre dealing with are rather high and several adjustments had to be done to the measurement system in order to shield the circuit from the impedance of the input and the output line (i.e., amplifier turned out to be necessary). Also, an the mixer had to be replaced to an RF one.
It seems I'm now measuring new transfer functions (which look quite different from what I've got with no amplifiers).
To be posted soon.
Attachment 1: alberto.spectrum2.png
alberto.spectrum2.png
Attachment 2: Butterworth.PNG
Butterworth.PNG
  173   Thu Dec 6 15:21:59 2007 albertoFrogsElectronicsRF Transfer Function of Stiff Aluminum Wires
Transfer function of 3cm long Aluminum wires and of 3cm stranded wires
Attachment 1: TF_3cm_stiff_wires.amplitude.png
TF_3cm_stiff_wires.amplitude.png
Attachment 2: DSC_0225compressed.JPG
DSC_0225compressed.JPG
Attachment 3: TF_3cm_stranded_wires.amplitude.png
TF_3cm_stranded_wires.amplitude.png
  188   Wed Dec 12 16:22:22 2007 albertoOmnistructureElectronicsLC filter for the RF-AM monitor circuit
In the LC configuration (see attached schematic) the resonant frequency is tuned to one of the peak of our RF-AM monitor and it is amplified by a factor equal to the Q of the filter. As I wrote in one of the last elog entries, we would like amplifications of about 10-30 dB in order to have negligible couplings. Such values are obtained only with small capacitances (few or less pF). The drawback is relatively large inductance (uH or more) which has inevitably low Self Resonant Frequencies (SRF - the resonant frequencies of the RLC circuit usually associated with an actual inductor - ~ MHz). Even before, one limit is also the input impedance of the RF amplifier. Quality factors > 1 require megaohms, far from the 50 ohms in the MiniCircuit amplifiers Iím using now. So, if we plan to use these even for the final design of the circuit, we have to abandon the LC configuration.
For this same reason the only way I could get the expected responses from my several test boards was with a 10 megaohm input probe (see attachment for the measurement with and without probe). Assuming that impedance, I found these as the best trade-offs between the attenuation requirements and the values of the inductors for respectively the peaks at 33, 66,133, 166,199 MHz:
26uH, 6.6u, 20u, 73u, 16u
If we could find inductor with these values and high SRF the configuration should work. The problem is I couldnít find any. Above a few uH they all seem to have SRF ~ MHz.
That is why I switched to the Butterworth. This should work despite the input impedance of the amplifier and with much smaller inductances. I made a totally new test circuit, with surface mount components. I think I still have to fix some things in the measurements but (this time I got rid of the simulator I was using earlier and designed a new configuration with new values from the Horowitzís tables) it seems I have the expected peaks. More soon.
Attachment 1: TF_LC_filter_10pF_1.8uH_scope_probe.png
TF_LC_filter_10pF_1.8uH_scope_probe.png
Attachment 2: TF_LC_filter_10pF_1.8mH_no_probe.png
TF_LC_filter_10pF_1.8mH_no_probe.png
Attachment 3: LC_filter_schematic.png
LC_filter_schematic.png
  190   Thu Dec 13 12:05:36 2007 albertoOmnistructureElectronicsThe new Butterworth seems to work quite well
It works better probably because of the small inductors I'm using this time.
The peak is at 30 MHz because I didn't have the precise elements to get 33.

The bandwidth and the Q could be improved by adding one or two more order to the filter and trying to better match the low-pass' resonant frequency with the high-pass'.

Also I have to see if it could work at 166 and 199 MHz as well.
Attachment 1: TF_New_Butterworth_12-Nov-2007_TF.png
TF_New_Butterworth_12-Nov-2007_TF.png
Attachment 2: Bultervverth2.png
Bultervverth2.png
  193   Mon Dec 17 11:47:13 2007 albertoUpdateElectronicsan alternative design for the RFAM monitor's filter at 33Mhz
Since the Butterworth turned out o be rather wide-band, I tried an other configuration for the 33 MHz filter. Attached are the simulated transfer function and the measured. As one can see, the measured peak is much broader than expected.
Attachment 1: RFSim99-33MHz.png
RFSim99-33MHz.png
Attachment 2: RF99-SimmButterworthPrototype.png
RF99-SimmButterworthPrototype.png
Attachment 3: RFSim99-33MHz-TFplot.png
RFSim99-33MHz-TFplot.png
  650   Tue Jul 8 21:58:22 2008 albertoUpdateGeneralSecondaty beam aligned to the IFO beam again
Yesterday the alignment of the secondary beam to the IFO was completely lost and today I had to realign all the optics before I was able to match the two spots again. I had to reset the height of the irises and I had also to replace mirror M1 with one with a larger angular motion. Eventually I obtained the beat again. Working on the optics table I inadvertently misaligned the OSA but I didn't make in time to bring it back before the night shift people came. I'll work on that tomorrow morning.
  943   Thu Sep 11 23:28:35 2008 albertoUpdateGeneralabs cavity length experiment
The MC lost lock for some reason not related to either the FSS or the PMC I'm done with my measurement for tonight. I've shut the NPRO beam before leaving.
  1108   Mon Nov 3 19:12:27 2008 albertoUpdateGeneralTransverse mode spacing measurement for the X arm
I know a lot of expectations have been building up on these days in the scientific community at the 40m towards a conclusive elog entry about the g-factor measurement of the X arm cavity.
The reason of the delay is that the results are still under review by the author. It turned out that the measurements of the transverse mode spacing have been performed on the beat
of the TEM02/20 and TEM00 modes between the two laser beams instead of on the beat between 00 and 01/10. However, the results posted on the elog in the last weeks seem likewise correct,
in particular my plot of the HOM of the sidebands.

Anyways, lately I have been trying to repeat the measurement on the beat of TEM01/10 with 00 but, despite all the efforts and the countless configurations tried (on the locking of
the arm, on the tilt of the mirrors, on the injection of the secondary beams, on the chopping with the blade), only the beat of TEM10 has been measured - although quite clearly -
whereas that of TEM01 has so far hidden itself.

The search continues but even if it does not succeeds, a summarizing document is going to be posted soon.

Here I attach a plot that shows the kind of difficulties trying to detect TEM10. The red neat peak is the beat of TEM01 whereas the other curves are some of the resulting
resonances after trying to couple TEM10 with 00 (or vice versa, according to whether I'm locking the cavity to the 00 mode of the main laser or to that of the secondary beam).
Attachment 1: 2008-11-02_summarizingplot.png
2008-11-02_summarizingplot.png
  1830   Tue Aug 4 23:03:56 2009 albertoUpdateLockingIFO Alignment

After the mini boot fest that Jenne did today, I checked whether that fixed the overflow issues we yesterday prevented the alignemnt of the arms. 

I ran the alignment script for the arms getting 0.85 for TRX and 0.75 for TRY: low values.

After I ran the script ,C1SUSVME1 and C1SUSVME2 started having problems with the FE SYNC (counter at 16378). I rebooted those two and fix the sync problem but the transmitted powers didn't improve.

Are we still having problem due to MC misalignment?

  1833   Wed Aug 5 09:48:05 2009 albertoUpdateLockingIFO Alignment

Quote:

After the mini boot fest that Jenne did today, I checked whether that fixed the overflow issues we yesterday prevented the alignemnt of the arms. 

I ran the alignment script for the arms getting 0.85 for TRX and 0.75 for TRY: low values.

After I ran the script ,C1SUSVME1 and C1SUSVME2 started having problems with the FE SYNC (counter at 16378). I rebooted those two and fix the sync problem but the transmitted powers didn't improve.

Are we still having problem due to MC misalignment?

I also noticed that the FSS transmitted power has been constantly decaying for the last 6 months. Only in the last month tt dropped by 15%. The laser power hasn't decayed as much, so it's probably not the cause.
Maybe this is one reason why lately of less power going to the IFO.
 
We call it FSS Transmission, but I guess we mean power transmitted TO the IFO, that is it measures the power reflected from reference cavity, right?
 
Still on the front of the FSS, the reflected power has dropped from -0.5 to -1.2. Here I also wonder about the reason of negative values for that.
 

See attachments

Attachment 1: 2009-08-09_FSStransPD.png
2009-08-09_FSStransPD.png
Attachment 2: 2009-08-09_FSreflPD.png
2009-08-09_FSreflPD.png
  1842   Thu Aug 6 09:33:08 2009 albertoUpdateLockingFSS Transmitted and Reflected Power Trends

 I've now also trended the MOPA output power for the last 200 days to check a possible correlation with the FSS reflected power. See attachment.

The trend shows that the laser power has decayed but it seems that the FSS reflected power has done it even faster: 30% drop in the FSS vs 7% for the MOPA in the last 60 days (attachment n.2).

Attachment 1: 2009-08-06_PSL_trends200days.png
2009-08-06_PSL_trends200days.png
Attachment 2: 2009-08-06_PSL_trends.png
2009-08-06_PSL_trends.png
  2876   Tue May 4 06:32:58 2010 albertoConfigurationPSLRC Temperature Servo Turned OFF temporarily

Quote:

 

 My attempt to passively measure the transfer function of the foam failed fantastically.

As it turns out, the room temperature fluctuations inside the PSL box reach the 1 mK/rHz noise floor of the  AD590 (or maybe the ADC) at ~1-2 mHz. Everything at higher frequencies is noise.

So to see what the foam is doing we will have to do something smarter - we need a volunteer to disable the RC temperature servo from the EPICS screen and then cycle the PSL table lights every hour in the morning.

We'll then use our knowledge of the Laplace transform to get the TF from the step responses.

 more detailed instructions needed....

ELOG V3.1.3-