40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 211 of 339  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  13522   Wed Jan 10 12:24:52 2018 gautamUpdateCDSslow machine bootfest

MC autolocker got stuck (judging by wall StripTool traces, it has been this way for ~7 hours) because c1psl was unresponsive so I power cycled it. Now MC is locked.

  13523   Wed Jan 10 12:42:27 2018 gautamUpdateSUSETMX DC alignment

I've been observing this for a few days: ETMX's DC alignment seems to drift by so much that the previously well aligned X arm cavity is now totally misaligned.

The wall StripTool trace shows that both the X and Y arms were locked with arm transmissions around 1 till c1psl conked out - so in the attached plot, around 1400 UTC, the arm cavity was well aligned. So the sudden jump in the OSEM sensor signals is the time at which LSC control to the ETM was triggered OFF. But as seen in the attached plot, after the lockloss, the Oplev signals seem to show that the mirror alignment drifted by >50urad. This level of drift isn't consistent with the OSEM sensor signals - of course, the Oplev calibration could be off, but the tension in values is almost an order of magnitude. The misalignment seems real - the other Oplev spots have stuck around near the (0,0) points where I recentered them last night, only ETMX seems to have undergone misalignment.

Need to think about what's happening here. Note that this kind of "drift" behaviour seems to be distinct from the infamous ETMX "glitching" problem that was supposed to have been fixed in the 2016 vent.

 

Attachment 1: ETMXdrift.png
ETMXdrift.png
  13527   Wed Jan 10 18:53:31 2018 gautamUpdateSUSETMX DC alignment

I should've put in the SUSPIT and SUSYAW channels in the previous screenshot. I re-aligned ETMX till I could see IR flashes in the arm, and also was able to lock the green beam on a TEM00 mode with reasonable transmission. As I suspected, this brought the Oplev spot back near the center of it's QPD. But the answer to the question "How much did I move the ETM by" still varies by ~1 order of magnitude, depending on if you believe the OSEM SUSPIT and SUSYAW signals, or the Oplev error signals - I don't know which, if any, of these, are calibrated.

Attachment 1: ETMXdrift.png
ETMXdrift.png
  13531   Thu Jan 11 14:22:40 2018 gautamUpdateALSFiber ALS assay

I did a cursory check of the ALS signal chain in preparation for commissioning the IR ALS system. The main elements of this system are shown in my diagram in the previous elog in this thread.

Questions I have:

  1. Does anyone know what exactly is inside the "Delay Line" box? I can't find a diagram anywhere.
    • Jessica's SURF report would suggest that there are just 2 50m cables in there.
    • There are two power splitters taped to the top of this box.
    • It is unclear to me if there are any active components in the box.
    • It is unclear to me if there is any thermal/acoustic insulation in there.
    • For completeness, I'd like to temporarily pull the box out of the LSC rack, open it up, take photos, and make a diagram unless there are any objections.
  2. If you believe the front panel labeling, then currently, the "LO" input of the mixer is being driven by the part of the ALS beat signal that goes through the delay line. The direct (i.e. non delayed) output of the power splitter goes to the "RF" input of the mixer. The mixer used, according to the DCC diagram, is a PE4140. Datasheet suggests the LO power can range from -7dBm to +20dBm. For a -8dBm beat from the IR beat PDs, with +24dB gain from the ZHL3A but -3dB from the power splitter, and assuming 9dB loss in the cable (I don't know what the actual loss is, but according to a Frank Seifert elog, the optimal loss is 8.7dB and I assume our delay line is close to optimal), this means that we have ~4dBm at the "LO" input of the demod board. The schematic says the nominal level the circuit expects is 10dBm. If we use the non-delayed output of the power splitter, we would have, for a -8dBm beat, (-8+24-3)dBm ~13dBm, plus probably some cabling loss along the way which would be closer to 10dBm. So should we use the non-delayed version for the LO signal? Is there any reason why the current wiring is done in this way?

 

  13533   Thu Jan 11 18:50:31 2018 gautamUpdateIOOMCautolocker getting stuck

I've noticed this a couple of times today - when the autolocker runs the mcdown script, sometimes it doesn't seem to actually change the various gain sliders on the PSL FSS. There is no handshaking built in to the autolocker at the moment. So the autolocker thinks that the settings are correct for lock re-acquisition, but they are not. The PCdrive signal is often railing, as is the PZT signal. The autolocker just gets stuck waiting to re-acquire lock. This has happened today ~3 times, and each time, the Autolocker has tried to re-acquire lock unsuccessfully for ~1hour.

Perhaps I'll add a line or two to check that the signal levels are indicative of mcdown being successfully executed.

  13534   Thu Jan 11 20:51:20 2018 gautamUpdateALSFiber ALS assay

After labeling cables I would disconnect, I pulled the box out of the LSC rack. Attachment #1 is a picture of the insides of the box - looks like it is indeed just two lengths of cabling. There was also some foam haphazardly stuck around inside - presumably an attempt at insulation/isolation.

Since I have the box out, I plan to measure the delay in each path, and also the signal attenuation. I'll also try and neaten the foam padding arrangement - Steve was showing me some foam we have, I'll use that. If anyone has comments on other changes that should be made / additional tests that should be done, please let me know.

20180111_2200: I'm running some TF measurements on the delay line box with the Agilent in the control room area (script running in tmux sesh on pianosa). Results will be uploaded later.

Quote:

For completeness, I'd like to temporarily pull the box out of the rack, open it up, take photos, and make a diagram unless there are any objections.

 

Attachment 1: IMG_5112.JPG
IMG_5112.JPG
  13535   Thu Jan 11 20:59:41 2018 gautamUpdateDAQetmx slow daq chassis

Some suggestions of checks to run, based on the rightmost colum in the wiring diagram here - I guess some of these have been done already, just noting them here so that results can be posted.

  1. Oplev quadrant slow readouts should match their fast DAQ counterparts.
  2. Confirm that EX Transmon QPD whitening/gain switching are working as expected, and that quadrant spectra have the correct shape.
  3. Watchdog tripping under different conditions.
  4. Coil driver slow readbacks make sense - we should also confirm which of the slow readbacks we are monitoring (there are multiple on the SOS coil driver board) and update the MEDM screen accordingly.
  5. Confirm that shadow sensor PD whitening is working by looking at spectra.
  6. Confirm de-whitening switching capability - both to engage and disengage - maybe the procedure here can be repeated.
  7. Monitor DC alignment of ETMX - we've seen the optic wander around (as judged by the Oplev QPD spot position) while sitting in the control room, would be useful to rule out that this is because of the DC bias voltage stability (it probably isn't).
  8. Confirm that burt snapshot recording is working as expected - this is not just for c1auxex, but for all channels, since, as Johannes pointed out, the 2018 directory was totally missing and hence no snapshots were being made.
  9. Confirm that systemd restarts IOC processes when the machine currently called c1auxex2 gets restarted for whatever reason.

 

  13536   Thu Jan 11 21:09:33 2018 gautamUpdateCDSrevisiting Acromag

We'd like to setup the recording of the PSL diagnostic connector Acromag channels in a more robust way - the objective is to assess the long term performance of the Acromag DAQ system, glitch rates etc. At the Wednesday meeting, Rana suggested using c1ioo to run the IOC processes - the advantage being that c1ioo has the systemd utility, which seems to be pretty reliable in starting up various processes in the event of the computer being rebooted for whatever reason. Jamie pointed out that this may not be the best approach however - because all the FEs get the list of services to run from their common shared drive mount point, it may be that in the event of a power failure for example, all of them try and start the IOC processes, which is presumably undesirable. Furthermore, Johannes reported the necessity for the procServ utility to be able to run the modbusIOC process in the background - this utility is not available on any of the FEs currently, and I didn't want to futz around with trying to install it.

One alternative is to connect the PSL Acromag also to the Supermicro computer Johannes has set up at the Xend - it currently has systemd setup to run the modbusIOC, so it has all the utilities necessary. Or else, we could use optimus, which has systemd, and all the EPICS dependencies required. I feel less wary of trying to install procServ on optimus too. Thoughts?

 

  13539   Fri Jan 12 12:31:04 2018 gautamConfigurationComputerssendmail troubles on nodus

I'm having trouble getting the sendmail service going on nodus since the Christmas day power failure - for some reason, it seems like the mail server that sendmail uses to send out emails on nodus (mx1.caltech.iphmx.com, IP=68.232.148.132) is on a blacklist! Not sure how exactly to go about remedying this.

Running sudo systemctl status sendmail.service -l also shows a bunch of suspicious lines:

Jan 12 10:15:27 nodus.ligo.caltech.edu sendmail[6958]: STARTTLS=client, relay=cluster6a.us.messagelabs.com., version=TLSv1/SSLv3, verify=FAIL, cipher=DHE-RSA-AES256-GCM-SHA384, bits=256/256
Jan 12 10:15:45 nodus.ligo.caltech.edu sendmail[6958]: w0A7QThE032091: to=<umakant.rapol@iiserpune.ac.in>, ctladdr=<controls@nodus.ligo.caltech.edu> (1001/1001), delay=2+10:49:16, xdelay=00:00:39, mailer=esmtp, pri=5432408, relay=cluster6a.us.messagelabs.com. [216.82.251.230], dsn=4.0.0, stat=Deferred: 421 Service Temporarily Unavailable
Jan 12 11:15:23 nodus.ligo.caltech.edu sendmail[10334]: STARTTLS=client, relay=cluster6a.us.messagelabs.com., version=TLSv1/SSLv3, verify=FAIL, cipher=DHE-RSA-AES256-GCM-SHA384, bits=256/256
Jan 12 11:15:31 nodus.ligo.caltech.edu sendmail[10334]: w0A7QThE032091: to=<umakant.rapol@iiserpune.ac.in>, ctladdr=<controls@nodus.ligo.caltech.edu> (1001/1001), delay=2+11:49:02, xdelay=00:00:27, mailer=esmtp, pri=5522408, relay=cluster6a.us.messagelabs.com. [216.82.251.230], dsn=4.0.0, stat=Deferred: 421 Service Temporarily Unavailable
Jan 12 12:15:25 nodus.ligo.caltech.edu sendmail[13747]: STARTTLS=client, relay=cluster6a.us.messagelabs.com., version=TLSv1/SSLv3, verify=FAIL, cipher=DHE-RSA-AES256-GCM-SHA384, bits=256/256
Jan 12 12:15:42 nodus.ligo.caltech.edu sendmail[13747]: w0A7QThE032091: to=<umakant.rapol@iiserpune.ac.in>, ctladdr=<controls@nodus.ligo.caltech.edu> (1001/1001), delay=2+12:49:13, xdelay=00:00:33, mailer=esmtp, pri=5612408, relay=cluster6a.us.messagelabs.com. [216.82.251.230], dsn=4.0.0, stat=Deferred: 421 Service Temporarily Unavailable

 

Why is nodus attempting to email umakant.rapol@iiserpune.ac.in?

  13541   Fri Jan 12 18:08:55 2018 gautamUpdateGeneralpip installed on nodus

After much googling, I figured out how to install pip on SL7:

sudo easy_install pip

Next, I installed git:

sudo yum install git A

Turns out, actually, pip can be installed via yum using

sudo yum install python-pip
  13542   Fri Jan 12 18:22:09 2018 gautamConfigurationComputerssendmail troubles on nodus

Okay I will port awade's python mailer stuff for this purpose.

gautam 14Jan2018 1730: Python mailer has been implemented: see here for the files. On shared drive, the files are at /opt/rtcds/caltech/c1/scripts/general/pizza/pythonMailer/

gautam 11Feb2018 1730: The python mailer had never once worked successfully in automatically sending the message. I realized this may be because I had put the script on the root user's crontab, but had setup the authentication keyring with the password for the mailer on the controls user. So I have now setup a controls user crontab, which for now just runs the pizza mailing. let's see if this works next Sunday...

Quote:

I personally don't like the idea of having sendmail (or something similar like postfix) on a personal server as it requires a lot of maintenance cost (like security update, configuration, etc). If we can use external mail service (like gmail) via gmail API on python, that would easy our worry, I thought.

 

  13547   Mon Jan 15 11:53:57 2018 gautamUpdateIOOMCautolocker getting stuck

Looks like this problem presisted over the weekend - Attachment #1 is the wall StripTool trace for PSL diagnostics, seems like the control signal to the NPRO PZT and FSS EOM were all over the place, and saturated for the most part.

I traced down the problem to an unresponsive c1iool0. So looks like for the IMC autolocker to work properly (on the software end), we need c1psl, c1iool0 and megatron to all be running smoothly. c1psl controls the FSS box gains through EPICS channels, c1iool0 controls the MC servo board gains through EPICS channels, and megatron runs the various scripts to setup the gains for either lock acquisition or in lock states. In this specific case, the autolocker was being foiled because the mcdown script wasn't running properly - it was unable to set the EPICS channel C1:IOO-MC_VCO_GAIN to its lock acquisition value of -15dB, and was stuck at its in-lock value of +7dB. Curiously, the other EPICS channels on c1iool0 seemed readable and were reset by mcdown. Anyways, keying the c1iool0 crate seems to have fixed the probelm.

Quote:

I've noticed this a couple of times today - when the autolocker runs the mcdown script, sometimes it doesn't seem to actually change the various gain sliders on the PSL FSS. There is no handshaking built in to the autolocker at the moment. So the autolocker thinks that the settings are correct for lock re-acquisition, but they are not. The PCdrive signal is often railing, as is the PZT signal. The autolocker just gets stuck waiting to re-acquire lock. This has happened today ~3 times, and each time, the Autolocker has tried to re-acquire lock unsuccessfully for ~1hour.

Perhaps I'll add a line or two to check that the signal levels are indicative of mcdown being successfully executed.

 

Attachment 1: MCautolkockerStuck.png
MCautolkockerStuck.png
  13548   Mon Jan 15 17:36:03 2018 gautamHowToOptical LeversOplev calibration

Summary:

I checked the calibration of the Oplevs for both ITMs, both ETMs and the BS. The table below summarizes the old and new cts->urad conversion factors, as well as the factor describing the scaling applied. Attachment #1 is a zip file of the fits performed to calculate these calibration factors (GPS times of the sweeps are in the titles of these plots). Attachment #2 is the spectra of the various Oplev error signals (open loop, so a measure of seismic induced angular motion for a given optic, and DoF) after the correction. Loop TF measurements post calibration factor update and loop gain adjustment to be uploaded tomorrow.

Optic, DoF Old calib [urad/ct] New Calib [urad/ct] Correction Factor [new/old]
ETMX, Pitch 200 175 0.88
ETMX, Yaw 222 175 0.79
ITMX, Pitch 122 134 1.1
ITMX, Yaw 147 146 1
BS, Pitch 130 136 1.05
BS, Yaw 170 176 1.04
ITMY, Pitch 239 254 1.06
ITMY, Yaw 226 220 0.97
ETMY, Pitch 140 164 1.17
ETMY, Yaw 143 169 1.18

Motivation:

We'd like for the Oplev calibration to be a reliable readback of the optic alignment. For example, a calibrated Oplev would be a useful diagnostic to analyze the drifting (?) ETMX.

Details:

  1. I locked and dither aligned the individual arms.
  2. I then used a 60 second ramp time to misalign <optic> in {ITMX, ITMY, BS, ETMX, ETMY} one at a time, and looked at the appropriate arm cavity transmission while the misalignment was applied. The amplitude of the misalignment was chosen such that in the maximally misaligned state, the arm cavity was still locked to a TEM00 mode, with arm transmission ~40% of the value when the cavity transmission was maximized using the dither alignment servos. The CDS ramp is not exactly linear, it looks more like a sigmoid near the start and end, but I don't think that really matters for these fits.
  3. I used the script OLcalibFactor.py (located at /opt/rtcds/caltech/c1/scripts/OL) to fit the data and extract calibration factors. This script downloads the arm cavity transmission and the OL error signal during the misalignment period, and fits a Gaussian profile to the data (X=oplev error signal, Y=arm transmission). Using geometry and mode overlap considerations, we can back out the misalignment in physical units (urad).

Comments:

  1. For the most part, the correction was small, of the order of a few percent. The largest corrections were for the ETMs. I believe the last person to do Oplev calibration for the TMs was Yutaro in Dec 2015, and since then, we have certainly changed the HeNes at the X and Y ends (but not for the ITMs), so this seems consistent.
  2. From attachment #2, most of the 1Hz resonances line up quite well (around 1-3urad/rtHz), so gives me some confidence in this calibration.
  3. I haven't done a careful error analysis yet - but the fits are good to the eye, and the residuals look randomly distributed for the most part. I've assumed precision to the level of 1 urad/ct in setting the new calibration factors.
  4. I think the misalignment period of 60 seconds is sufficiently long that the disturbance applied to the Oplev loop is well below the lower loop UGF of ~0.2Hz, and so the in loop Oplev error signal is a good proxy for the angular (mis)alignment of the optic. So no loop correction factor was applied.
  5. I've not yet calibrated the PRM and SRM oplevs.

Now that the ETMX calibration has been updated, let's keep an eye out for a wandering ETMX.

Attachment 1: OLcalib_20180115.tar.bz2
Attachment 2: Oplevs.pdf
Oplevs.pdf Oplevs.pdf
  13549   Tue Jan 16 11:05:51 2018 gautamUpdatePSL PSL shelf - AOM power connection interrupted

While moving the RefCav to facilitate the PSL shelf install, I bumped the power cable to the AOM driver. I will re-solder it in the evening after the shelf installation. PMC and IMC have been re-locked. Judging by the PMC refl camera image, I may also have bumped the camera as the REFL spot is now a little shifted. The fact that the IMC re-locked readily suggests that the input pointing can't have changed significantly because of the RefCav move.

 

  13551   Tue Jan 16 21:46:02 2018 gautamUpdatePSL PSL shelf - AOM power connection interrupted

Johannes informed me that he touched up the PMC REFL camera alignment. I am holding off on re-soldering the AOM driver power as I could use another pair of hands getting the power cable disentangled and removed from the 1X2 rack rails, so that I can bring it out to the lab and solder it back on.

Is anyone aware of a more robust connector solution for the type of power pins we have on the AOM driver?

Quote:

While moving the RefCav to facilitate the PSL shelf install, I bumped the power cable to the AOM driver. I will re-solder it in the evening after the shelf installation. PMC and IMC have been re-locked. Judging by the PMC refl camera image, I may also have bumped the camera as the REFL spot is now a little shifted. The fact that the IMC re-locked readily suggests that the input pointing can't have changed significantly because of the RefCav move.

 

 

  13552   Tue Jan 16 21:50:53 2018 gautamUpdateALSFiber ALS assay

With Johannes' help, I re-installed the box in the LSC electronics rack. In the end, I couldn't find a good solution to thermally insulate the inside of the box with foam - the 2U box is already pretty crowded with ~100m of cabling inside of it. So I just removed all the haphazardly placed foam and closed the box up for now. We can evaluate if thermal stability of the delay line is limiting us anywhere we care about and then think about what to do in this respect. This box is actually rather heavy with ~100m of cabling inside, and is right now mounted just by using the ears on the front - probably should try and implement a more robust mounting solution for the box with some rails for it to sit on.

I then restored all the cabling - but now, the delayed part of the split RF beat signal goes to the "RF in" input of the demod board, and the non-delayed part goes to the back-panel "LO" input. I also re-did the cabling at the PSL table, to connect the two ZHL3-A amplifier inputs to the IR beat PDs in the BeatMouth instead of the green BBPDs.

I didn't measure any power levels today, my plan was to try and get a quick ALS error signal spectrum - but looks like there is too much beat signal power available at the moment, the ADC inputs for both arm beat signals are overflowing often. The flat gain on the AS165 (=ALS X) and POP55 (=ALS Y) channels have been set to 0dB, but still the input signals seem way too large. The signals on the control room spectrum analyzer come from the "RF mon" ports on the demod board, and are marked as -23dBm. I looked at these peak heights with the end green beams locked to the arm cavities, as per the proposed new ALS scheme. Not sure how much cable loss we have from the LSC rack to the network analyzer, but assuming 3dB (which is the Google value for 100ft of RG58), and reading off the peak heights from the control room analyzer, I figure that we have ~0dBm of RF signal in the X arm. => I would expect ~3dBm of signal to the LO input. Both these numbers seem well within range of what the demod board is designed to handle so I'm not sure why we are saturating.

Note that the nominal (differential) I and Q demodulated outputs from the demod board come out of a backplane connector - but we seem to be using the front panel (single-ended) "MON" channels to acquire these signals. I also need to update my Fiber ALS diagram to indicate the power loss in cabling from the PSL table to the LSC electronics rack, expect it to be a couple of dB.

 

Quote:

After labeling cables I would disconnect, I pulled the box out of the LSC rack. Attachment #1 is a picture of the insides of the box - looks like it is indeed just two lengths of cabling. There was also some foam haphazardly stuck around inside - presumably an attempt at insulation/isolation.

Since I have the box out, I plan to measure the delay in each path, and also the signal attenuation. I'll also try and neaten the foam padding arrangement - Steve was showing me some foam we have, I'll use that. If anyone has comments on other changes that should be made / additional tests that should be done, please let me know.

20180111_2200: I'm running some TF measurements on the delay line box with the Agilent in the control room area (script running in tmux sesh on pianosa). Results will be uploaded later.

 

 

  13553   Wed Jan 17 14:32:51 2018 gautamUpdateDAQAcromag checks
  1. I take back what I said about the OSEM PD mon at the meeting - there does seem to be to be some overall calibration factor (Attachment #1) that has scaled the OSEM PD readback channels, by a factor of (20000/2^15), which Johannes informs me is some strange feature of the ADC, which he will explain in a subsequent post.
  2. The coil redback fields on the MEDM screen have a "30Hz HPF" text field below them - I believe this is misleading. Judging by the schematic, we are monitoring, on the backplane (which is what these channels are reading back from), the coil to the voltage with a gain of 0.5. We can reconfirm by checking the ETMX coil driver board, after which we should remove the misleading label on the MEDM screens.
Quote:

Some suggestions of checks to run, based on the rightmost colum in the wiring diagram here - I guess some of these have been done already, just noting them here so that results can be posted.

  1. Oplev quadrant slow readouts should match their fast DAQ counterparts.
  2. Confirm that EX Transmon QPD whitening/gain switching are working as expected, and that quadrant spectra have the correct shape.
  3. Watchdog tripping under different conditions.
  4. Coil driver slow readbacks make sense - we should also confirm which of the slow readbacks we are monitoring (there are multiple on the SOS coil driver board) and update the MEDM screen accordingly.
  5. Confirm that shadow sensor PD whitening is working by looking at spectra.
  6. Confirm de-whitening switching capability - both to engage and disengage - maybe the procedure here can be repeated.
  7. Monitor DC alignment of ETMX - we've seen the optic wander around (as judged by the Oplev QPD spot position) while sitting in the control room, would be useful to rule out that this is because of the DC bias voltage stability (it probably isn't).
  8. Confirm that burt snapshot recording is working as expected - this is not just for c1auxex, but for all channels, since, as Johannes pointed out, the 2018 directory was totally missing and hence no snapshots were being made.
  9. Confirm that systemd restarts IOC processes when the machine currently called c1auxex2 gets restarted for whatever reason.

 

 

 

Attachment 1: OSEMPDmon_Acro.png
OSEMPDmon_Acro.png
  13557   Thu Jan 18 00:35:00 2018 gautamUpdateALSFiber ALS assay

Summary:

I am facing two problems:

  1. The X arm beat seems to be broadband noisier than the Y arm beat - see Attachment #1. The Y-axis calibration is uncertain, but at least the Y beat has the same profile as the reference traces, which are for the green beat from a time when we had ALS running. There is also a rather huge ~5kHz peak, which I confirmed isn't present in the PDH error/control signal spectra (with SR785).
  2. The Y-arm beat amplitude, at times, "breathes" in amplitude (as judged by control room analyzer). Attachment #2 is a time-lapse of this behaviour (left beat is X arm beat, right peak is the Y arm peak) - I caught only part of it, the the beat note basically vanishes into the control room noise floor and then comes back up to almost the same level as the X beat. The scale is 10dB/div. During this time, the green (and IR for that matter) stay stably locked to the arm - you'll have to take my word for it as I have no way to sync my video with StripTool Traces, but I was watching the DC transmission levels the whole time. The whole process happens over a few (1< \tau <5) minutes - I didn't time it exactly. I can't really say this behaviour is periodic either - after the level comes back up, it sometimes stays at a given level almost indefinitely.

More details:

  • Spent some time today trying to figure out losses in various parts of the signal chain, to make sure I wasn't in danger of saturating RF amplifiers. Cabling from PSL table -> LSC rack results in ~2dB loss.
  • I will upload the updated schematic of the Beat-Mouth based ALS - I didn't get a chance to re-measure the optical powers into the Beat Mouth, as someone had left the Fiber Power Meter unplugged, and it had lost all of its charge angry.
  • The Demod boards have a nice "RF/LO power monitor" available at the backplane of the chassis - we should hook these channels up to the DAQ for long term monitoring.
    • The schematic claims "120mV/dBm" into 50ohms at these monitoring pins.
    • I measured the signal levels with a DMM (Teed with 50ohm), but couldn't really make the numbers jive - converting the measured backplane voltage into dBm of input power gives me an inferred power level that is ~5dBm higher than the actual measured power levels (measured with Agilent analyzer in Spectrum Analyzer mode).
  • Looking at the time series of the ALS I and Q inputs, the signals are large, but we are well clear of saturating our 16-bit ADCs.
  • In the brief periods when both beats were stable in amplitude (as judged by control room analyzer), the output of the Q quadrature of the phase tracker servo was ~12,000 cts - the number I am familiar with for the green days is ~2000cts - so naively, I would say we have ~6x the RF beat power from the Beat Mouth compared to green ALS.
  • I didn't characterize the conversion efficiency of the demod boards so I don't have a V (IF)/V (RF) number at the moment.
  • I confirmed that the various peaks seen in the X arm beat spectrum aren't seen in the control signal of the EX Green PDH, by looking at the spectrum on an SR785 (it is also supposedly recorded in the DAQ system, but I can't find the channel and the cable is labelled "GCX-PZT_OUT", which doesn't match any of our current channels).
    Note to self from the future: the relevant channels are: C1:ALS-X_ERR_MON_IN1 (green PDH error signal with x10 gain from an SR560) and C1:ALS-X_SLOW_SERVO_IN1 (green PDH control signal from monitor point - I believe this is DC coupled as this is the error signal to the slow EX laser PZT temp control). I've changed the cable labels at the X end to reflect this reality. At some point I will calibrate these to Hz.
  • The control room analyzer signals come from the "RF mon" outputs on the demod board, which supposedly couple the RF input with gain of -23dBm. These are then routed reverse through a power splitter to combine the X and Y signals, which is then plugged into the HP analyzer. The problem is not local to this path, as during the "breathing" of the Y beat RF amplitude, I can see the Q output of the phase tracker also breathing.

Next steps (that I can think of, ideas welcome!):

  1. For Problem #1 - usual debugging tactic of switching X and Y electronics paths to see if the problem lies in the light or in the electronics. If it is in the electronics, we can swap around at various points in the signal chain to try and isolate the problematic component.
  2. For Problem #2 - hook up the backplane monitor channels to monitor RF amplitudes over time and see if the drifts are correlated with other channels.
  3. There is evidence of some acoustic peaks, which are possibly originating from the fibers - need to track these down, but I think for a first pass to try and get the red ALS going, we shouldn't be bothered by these.

 

 

Attachment 1: IR_ALS_20180118.pdf
IR_ALS_20180118.pdf
Attachment 2: C2B4C1DD-6528-4067-9C13-6BD248629AD6.MOV
  13558   Fri Jan 19 11:13:21 2018 gautamUpdateCDSslow machine bootfest

c1psl, c1susaux, and c1auxey today

Quote:

MC autolocker got stuck (judging by wall StripTool traces, it has been this way for ~7 hours) because c1psl was unresponsive so I power cycled it. Now MC is locked.

 

  13559   Fri Jan 19 11:34:21 2018 gautamUpdateALSFiber ALS assay

I swapped the inputs to the ZHL-3A at the PSL table - so now the X beat RF signals from the beat mouth are going through what was previously the Y arm ALS electronics. From Attachment #1, you can see that the Y arm beat is now noisier than the X. The ~5kHz peak has also vanished.

So I will pursue this strategy of switching to try and isolate where the problem lies...


Somebody had forgotten to turn the HEPA variac on the PSL table downsad. It was set at 70. I set it at 20, and there is already a huge difference in the ALS spectra

Quote:
 
  1. For Problem #1 - usual debugging tactic of switching X and Y electronics paths to see if the problem lies in the light or in the electronics. If it is in the electronics, we can swap around at various points in the signal chain to try and isolate the problematic component.
Attachment 1: IR_ALS_20180119.pdf
IR_ALS_20180119.pdf
  13562   Fri Jan 19 23:04:11 2018 gautamUpdateALSFiber ALS assay

[rana, kevin, udit, gautam]

quick notes of some discussions we had today:

  1. Earlier in the day, Udit and I measured (with a 20dB coupler and AG4395) ~20dBm of RF beat power at input to power splitter (just before delay line box) at the LSC rack. This means that we have ~17dBm going into the LO input of the demod board. The AP1053 can only really handle a max of 16dBm at the input. After discussion with Rana, I put a 3dB attenuator at the input to the power splitter so as to preserve the LO/RF ratio in the demod circuit.
  2. Need to make a detailed optical and RF power budget for both arms.
  3. The demod circuit board is configured to have gain of x100 post demod (conversion loss of the mixer is ~-8dB). This works well for the PDH cavity locking type of demod scheme, where the loop squishes the error signal in lock, so most of the time, the RF signal is tiny, and so a gain of x100 is good. For ALS, the application needs are rather different. So we lowered the gain of the "Audio IF amplifier" stage of the circuit from x100 to x10, by effecting the resistor swaps 10ohms->50ohms, 1kohm->500ohms (more details about this later).
  4. There is some subtlety regarding the usage of the whitening interface boards - I need to look at the circuit again and understand this better, but Rana advised against running with the whitening gain at low values. Point #3 above should have helped with this regard.
  5. I wanted to test the new signal chain (with 3dB attenuation and modified IF gain) but ETMX is not happy now, and is making it impossible to keep the X arm locked. Will try again tomorrow.
  6. Eventually: need to measure the mode of the fiber, and up the MM efficiency to at least 80%, which should be doable without using any fancy lenses/collimators.
  7. Udit and I felt that the back panel RF power monitor wasn't working as expected - I will re-investigate this when I have the board out again to make the IF gain change permanent with the right footprint SMD resistors.

RXA: 0805 size SMD thin film resistors have been ordered from Mouser, to be shipped on Monday. **note that these thin film resistors are black; i.e. it is NOT true that all black SMD resistors are thick film**

  13563   Sat Jan 20 01:20:37 2018 gautamUpdateElectronicsWhitening filter D990694

We use D990694 in various places. Today, Rana alerted me to an important consideration to be kept in mind when we use this board, which I found quite interesting. I still don't understand the problem at the BJT level, but I think one can appreciate the problem without going to the transistor design of the LT1125. I'm attaching an annotated schematic of the whitening section in question. If the following assumptions are valid, then I think my picture is valid.

  1. The switch used to bypass the various whitening gain stages, namely the ADG333ABR, has infinite impedance in the "OFF" state, such that when the 24dB gain stage is bypassed, U28A (or in general one of the 4 quad op-amps) is forced to drive it's output voltage across 1.0665 kohms of resistance.
  2. The individual LT1125 Op Amps can drive a maximum of 30mA of current.

Then, as one can see in the attached schematic, when we set the gain of any input to <24dB, we must ensure that the input voltage is less than approximately 2V. Otherwise, by asking too much of the first stage op-amp in the quad IC LT1125, we may be messign around with all the 4 op amps in the quad! Even the 0dB setting is not immune to this problem, as it uses one of the 4 op amps.

I don't think the usual rules of calculating the gain of a non-inverting amplifier (G = 1 + Rf/Ri) remain valid even when the op-amp is forced to drive more output current than it can, and I don't have a way to quantify the possible interference between the 4 op amps in the quad - but does this seem like a valid conclusion? If so, we must check signal levels of various LSC signals. AS55 signals currently have the 0dB gain setting - I had turned this down from 6dB some months ago, because it seemed like the ADC was saturating at the 6dB gain setting, which suggests that the input voltage is ceratinly > 2V, and AS55_Q is what is used for MICH control in the DRMI. All of my noise budgeting work over the last few months used this setting, I wonder if they are all invalid surprise


Now that I think about this a bit more - this problem shouldn't be significant for the usual LSC degrees of freedom when in lock, as the huge DC gain of the loop should squish large DC values of the error signals, and so there shouldn't be any danger of overloading the LT1125. But I don't know if we are being hurt by this effect when flashing through resonances, when the PDH horn-to-horn voltage can be quite high (which is in principle a good thing?). I don't know if there is any "hysterisis" effect where the overloaded quad IC has some relaxation time before it returns to normal operation, and if we are being limited in our ability to catch lock because if this effect. 

The concerns remain valid for th ALS demodulated error signals though, for which the signals will remain large throughout.

Attachment 1: whiteningBoardLimitations.pdf
whiteningBoardLimitations.pdf
  13568   Tue Jan 23 01:33:23 2018 gautamUpdateElectronicsWhitening filter D990694

After discussing with Koji, we looked at the aLIGO incarnation of this board. Interestingly, it too has a similar topology of 4 switchable gain stages with gains of 24, 12, 6 and 3dB. The main differences are that they use single Op27 ICs instead of the quad LT1125s, and also, they use a different combination of feedback resistors to realize the various gains. 

We considered upping the feedback resistance (R15, R143) on the 24dB gain stage of our boards from (1k, 66.5ohms) to (3k, 200ohms) as on the aLIGO boards - but this doesn't really help? Because KCL demands that the same current flow in R15 and R143, and so the output Vsat of the op amp and its max current driving capabilities in combination determine if the inverting input can follow the non inverting input?

As Hartmut points out in his note, he was able to access the full range of ADC voltages when the gain was set to 3dB, despite the fact that the LT1125 was still getting internally saturated. Operating with minimum 24dB whitening gain doesn't really solve the problem either because the problem just gets shifted to the next gain stage in the chain, and we still have saturation. I also don't have a feeling for how much differential voltage these LT1125s can sustain before they are damaged - I guess the planned THD check will reveal if they are okay or not.

It seems to me like the only way to truly fix this problem of one stage saturating and screwing up the others is to use single Op27s (or equivalent) in place of the quad LT1125s. The aLIGO design also has a series resistance to the non-inverting input - this can help prevent current overdraw from the previous stage (due to a lowered input impedance of the OpAmp - but I wonder how low this can go?).

Quote:

this is the note from Hartmut Grote on this topic from 2004

 

  13569   Tue Jan 23 01:56:18 2018 gautamUpdateElectronicsTeledyne AP1053

I have acquired 5 pieces of the Teledyne AP1053 from Koji - these are now at the 40m. I will determine an appropriate location for storage of these and update. We are also looking to acquire 5 more of these. The combination of high power output (26dBm), low gain (10dB), and low noise figure (1.5dB) are quite uncommon in an amplifier and so these should be used only when such properties are required simultaneously.

*Steve informs me that these amps have been stored in the RF cabinet E6 along the east arm.

Steve's note: Teledyne rf amp product selection guide

                   Teledyne rf low noise amp guide

 

Attachment 1: DSC00022.JPG
DSC00022.JPG
  13571   Wed Jan 24 00:33:31 2018 gautamUpdateALSFiber ALS assay

I did some work on the PSL table today. Main motivations were to get a pickoff for the BeatMouth PSL beam before any RF modulations are imposed on it, and to improve the mode-matching into the fiber. Currently, we use the IR light reflected by the post doubling oven harmonic separator. This has the PMC modulation sideband on it, and also some green leakage. 

So I picked off ~8.5mW of PSL light from the first PBS (pre Faraday rotator), out of the ~40 mW available here, using a BS-80-1064-S. I dumped the 80% reflected light into the large beam dump that was previously being used to dump this PBS reflection. Initially, I used a R=10% BS for S-pol that I found on the SP table, but Koji tipped me off on the fact that these produce multiple reflected beams, so I changed strategy to use the R=80% BS instead.

The transmitted 20% is routed to the West edge of the PSL table via 2 1" Y1-1037-45S optics, towards the rough vicinity of the fiber coupler. For now it is just dumped, tomorrow I will work on the mode matching. We may want to cut the power further - ideally, we want ~2.5mW of power in the fiber - this is then divided by 4 inside the beat mouth before reaching the beat PD, and with other losses, I expect ~500mW of PSL power and comparable AUX light, we will have a strong >0dBm beat.

Attachment #1 is a picture of my modifications. For this work, I

  • Closed PSL shutter, turned HEPA up 
  • Moved HP GHz spec analyzer to the side for ease of access to the table.
  • Moved several optics that look to me as to have once been part of the RefCav setup - I don't think this would have been a useful alignment reference in any case as we moved the RefCav in a non-deterministic way for the PSL secondary shelf install.
  • Used one 1" 45 deg S-pol optic from the optics cabinet - remaining optics were scavenged from PSL table and SP table.
  • Removed an SMA cable connected to an EOM, whose other end wasn't connected to anything.
  • Turned HEPA back down, IMC locks fine now.

 

Attachment 1: IMG_6866.JPG
IMG_6866.JPG
  13572   Wed Jan 24 00:48:47 2018 gautamUpdateElectronicsWhitening filter D990694

I plan to do some characterization of this problem. The plan is to use THD as a metric for whether we are having hidden saturations. Pg 9 of the LT1125 datasheet tells us what fraction of THD to expect. I will use one of the several unused DAC channels available at the LSC rack to drive a 100Hz sine wave into one of the inputs of the whitening chassis, and measure the THD up to a reasonable harmonic number (will probably be set by the ADC noise) for (i) various whitening gain settings and (ii) various input signal amplitudes.

The motivation is to attempt to quantify the problem better:

  1. How bad is it to have one or more of the OpAmps in the quad IC either saturated to its voltage rails, or max output current?
  2. Can we reproduce Hartmut's observations?
  3. Are the OpAmps already irreversibly damaged because of extended abuse?

Then we can decide what, if anything, to do about this issue.

  13573   Wed Jan 24 00:58:59 2018 gautamUpdateALSX Green PDH modulation depth

On Friday, while Udit and I were doing some characterization of the EX+PSL IR beat at the LSC rack, I noticed that there were sidebands around the main beat peak at 20dBm lower level. These were offset from the main peak by ~200kHz - I didn't do a careful characterization but because of the symmetric nature of these sidebands and the fact that they appeared with the same offset from the main peak for various values of the central beat frequency, I hypothesize that these are from the modulation sidebands we use for PDH locking the EX laser to the arm cavity. So we can estimate the modulation depth from the relative powers of the main beat peak and the ~200kHz offset sidebands.

Since the IR light is used for the beat and we directly couple it to the fiber to make the beat, there is no green or IR cavity pole involved here. 20dBm in power means \frac{\beta^2}{4} \approx 10^{\frac{-20}{10}} \approx 0.01. And so the modulation depth, \beta \approx 0.2 \mathrm{rad}. I will do a more careful meaurement of this, but this method of measuring the modulation depth can give us a precise estimate - for what it's worth, this number is in the same ballpark as the measurement I quote in elog12105.

What is the implication of having these sidebands on our ALS noise? I need to think about this, effectively the phase noise of the SR function generators we use to do the phase modulation of the EX laser is getting imprinted on the ALS noise? Is this hurting us in any frequency range that matters?

 

  13574   Wed Jan 24 10:45:14 2018 gautamUpdateALSFiber ALS assay

I was looking into the physics of polarization maintaining fibers, and then I was trying to remember whether the fibers we use are actually polarization maintaining. Looking up the photos I put in the elog of the fibers when I cleaned them some months ago, at least the short length of fiber attached to the PD doesn't show any stress elements that I did see in the Thorlabs fibers. I'm pretty sure the fiber beam splitters also don't have any stress elements (see Attached photo). So at least ~1m of fiber length before the PD sensing element is probably not PM - just something to keep in mind when thinking about mode overlap and how much beat we actually get.  

 

  13583   Thu Jan 25 13:18:41 2018 gautamUpdateALSFiber ALS assay

I was looking at this a little more closely. As I understand it, the purpose of the audio differential IF amplifier is:

  1. To provide desired amplification at DC-audio frequencies
  2. To low pass the 2f component of the mixer output

Attachment #1 shows, the changes to the TF of this stage as a result of changing R19->50ohm, R17->500ohm. For the ALS application, we expect the beat signal to be in the range 20-100MHz, so the 2f frequency component of the mixer output will be between 40-200MHz, where the proposed change preserves >50dB attenuation. The Q of the ~500kHz resonance because of the series LCR at the input is increased as a result of reducing R17, so we have slightly more gain there. 

At the meeting yesterday, Koji suggested incorporating some whitening in the preamp itself, but I don't see a non-hacky way to use the existing PCB footprint and just replace components to get whitening at audio frequencies. I'm going to try and measure the spectrum of the I and Q demodulated outputs with the actual beat signal to see if the lack of whitening is going to limit the ALS noise in some frequency band of interest.

Does this look okay?

Quote:

The demod circuit board is configured to have gain of x100 post demod (conversion loss of the mixer is ~-8dB). This works well for the PDH cavity locking type of demod scheme, where the loop squishes the error signal in lock, so most of the time, the RF signal is tiny, and so a gain of x100 is good. For ALS, the application needs are rather different. So we lowered the gain of the "Audio IF amplifier" stage of the circuit from x100 to x10, by effecting the resistor swaps 10ohms->50ohms, 1kohm->500ohms (more details about this later).

Attachment 1: preampProposed.pdf
preampProposed.pdf
  13586   Thu Jan 25 23:59:14 2018 gautamUpdateALSFiber ALS assay

I tried to couple the PSL pickoff into the fiber today for several hours, but got nowhere really, achieved a maximum coupling efficiency of ~10%. TBC tomorrow... Work done yesterday and today:

  • I changed the collimator from the fixed focal length but adjustable lens position CFC-2X-C to the truly fixed F220-APC-1064 recommended by johannes.
  • Used a pair of irises to level the beam out at 4" with two steering mirrors.
  • Used a connector on the PSL table to couple the EX laser light to the PSL fiber - then measured the mode using the beam-scanner (beam is ~300uW) 
  • Measured the mode of the PSL pickoff beam, also using the beam scanner. 
  • Per specs on the Thorlabs website, the F220-APC-1064 has a divergence angle of 0.032 degrees. So expected waist is ~1200um, and the Rayleigh range is ~4.3m, so this is not a very easy beam to measure and fit. I may be thinking about this wrong?
  • Measured beam 1/e^2 dia over ~0.65m, and found it to be fairly constant around 1800um (so waist of 900um) - beam is also pretty symmetric in x and y directions, but I didn't attempt an M^2 measurement.
  • The pickoff from the PSL also did not yield a very clean beam profile measurement, even though I measured over ~1m z-propagation distance. Nevertheless, this looked more like a Gaussian beam, and I confirmed the fitted waist size/location approximately by placing the beam profiler at the predicted waist location and checking the spot size.
  • Used jammt to calculate a candidate mode-matching solution - the best option seemed to be to use a combination of a f=150mm and f=-75mm lens in front of the collimator. 
  • Despite my best efforts, I couldn't get more than ~500uW of light coupled into the fiber - out of the 8mW available, this is a paltry 12.5% sad
  • Because the mode coming out of the fiber is relatively large, and because I have tons of space available on the PSL table, this shouldn't be a hard mode-matching problem, should be doable without any fast lenses - perhaps I'm doing something stupid and not realizing it. I'm giving up for tonight and will try a fresh assault tomorrow. 
  13587   Fri Jan 26 20:03:09 2018 gautamUpdateALSFiber ALS assay

I think part of the problem was that the rejected beam from the PBS was not really very Gaussian - looking at the spot on the beam profiler, I saw at least 3 local maxima in the intensity profile. So I'm now switching strategies to use a leakage beam from one of the PMC input steering optics- this isn't ideal as it already has the PMC modulation sideband on it, and this field won't be attenuated by the PMC transmission - but at least we can use a pre-doubler pickoff. This beam looks beautifully Gaussian with the beam profiler. Pics to follow shortly...

Quote:

I tried to couple the PSL pickoff into the fiber today for several hours, but got nowhere really, achieved a maximum coupling efficiency of ~10%. TBC tomorrow... Work done yesterday and today

 

  13589   Wed Jan 31 15:27:55 2018 gautamUpdateSUSSUS MEDM master screens updated

I've often gotten confused by the labeling on the SUS MEDM screens about the coil "Vmon" fields - they're labelled as "30 Hz HPF", and indeed this is one of the many readbacks available on the coil driver board. But the actual EPICS channel that is being displayed in this field is from the "EPICS VMON" monitor point on the coil driver board. It has a gain of 1/2, so the actual voltage going to the coil is twice the channel value. Today, I fixed the SUS master screen to avoid this confusion - new labeling is shown in Attachment #1.

Attachment 1: NewSUSmaster.png
NewSUSmaster.png
  13591   Wed Jan 31 15:45:22 2018 gautamUpdateALSFiber ALS assay

Attachment #1 shows the current situation of the PSL table IR pickoff. It isn't the greatest photo but it's hard to get a good one of this setup. Now there is no need to open the Green PSL shutter for there to be an IR beat note.

  • The key to improving the mode-matching was to abandon my "measurements" of the input mode and the mode from the collimator.
  • The best I could do with these measurements was ~25% coupling, whereas now I have ~78%yes (all powers measured with Ophir power meter).
  • Focusing was done using two f=300mm lenses (see attachment).
  • By moving the second (closer to collimator) lens through ~1inch of its current position, I was able to see a clear maximum of the coupled power.
  • By moving the second lens by ~5mm, and touching up the alignment, I couldn't see any improvement.

All this lead me to conclude that I have reached at least some sort of local maximum. The AR coating of the lens has ~0.5% reflection at 8 degrees AOI according to spec, and EricG mentioned today that the fiber itself probably has ~4% reflection at the interface due to there not being any special AR coating. There is also the fact that the mode of the collimator isn't exactly Gaussian. Anyways I think this is a big improvement from what was the situation before, and I am moving on to debugging the ALS electronics.

There is 3.65mW of power coupled into the fiber - our fiber coupled PDs have a damage threshold of 2mW, and this 3.65mW does get split by 4 before reaching the PDs, but good to keep this number in mind. For a quick measurement of the PMC and X end PDH modulation depth measurements, I used an ND=0.5 filter in the beam path.

 

Attachment 1: IMG_6875.JPG
IMG_6875.JPG
  13593   Wed Jan 31 16:29:42 2018 gautamUpdateALSModulation depths

I used the Beat Mouth to make a quick measurement of the PMC and EX modulation depths. They are, respectively, 60mrad and 90mrad. See Attachments #1 and #2 for spectra from the beat photodiode outputs, monitored using the Agilent analyzer, 16 averages, IF bandwidth set to resolve peaks offset from the main beat frequency peak by 33.5MHz for the PMC and by ~230kHz for the EX green PDH.

For this work, I had to re-align the IFO so as to lock the arms to IR. c1susaux was unresponsive and had to be power-cycled. As mentioned in the earlier elog, to avoid saturating the Fiber Coupled beat PDs, I placed a ND=0.5 filter in the fiber collimator path, such that the coupled power was ~1mW, which is well inside the safe regime.

For the EX modulation depth, I could have gotten multiple estimates of the modulation depth using the higher order products that are visible in the spectrum, but I didn't.

Attachment 1: PMCmodDepth.pdf
PMCmodDepth.pdf
Attachment 2: XPDH.pdf
XPDH.pdf
  13594   Wed Jan 31 16:33:53 2018 gautamUpdateALSALS electronics at LSC rack

[steve, gautam]

We installed some rails to mount the 2U chassis containing ~100m of delay line cabling, and the 1U chassis containing the FET demodulators for the ALS signals in the LSC rack. This has made it MUCH easier for a single person to work there and remove/reinstall these chassis. The delay line box has 100m of cable inside it, and so was rather heavy (~8kg) - previously, it was being supported only by a pair of brackets on the front, so the new arrangement is much more robustyes. Steve is looking into acquiring plastic spacers of the appropriate width, so that we can secure the units to the rack using usual rack mount screws (but the material of the newly installed rails and the screw heads holding them in place necessitate this plastic spacer). 

Delay line box has been re-installed, demodulator chassis has been removed by me for characterization. Steve will put up photos once the units are re-installed.

For this work, I had to disconnect a bunch of cabling, but only those connected to ALS. All cables were labelled, and I will re-connect them once I am done with the demod chassis.

Quote:
 

Anyways I think this is a big improvement from what was the situation before, and I am moving on to debugging the ALS electronics.

 

  13595   Wed Jan 31 22:32:11 2018 gautamUpdateALSALS signal chain + power budget

Summary:

I do not have an answer to the question "What is an appropriate gain for the IF amplifier stage in the D0902745 FET demod boards?", because of the following problems.

Deatils:

The plan is to lower the gain of the IF amplifier stage on the FET demodulator board from 100 to 10. As per Attachment #1, this will make the overall gain from RF beatnote from the Beat Mouth to the signal input to the D990694 whitening board +19dB, assuming "typical" values for the conversion loss of the mixer, and the various other passive components on the FET demod board. I've used numbers I measured a couple of weeks ago for the delay line loss and the cabling loss from the PSL table to the LSC rack. This in turn will set a limit on how much RF beat power we can handle, from the Beat Mouth. According to this power budget, if we have -5dBm of beat, we will have an input to the whitening board of ~6Vpp, which is about half its full range. The trouble is, I don't know what the transimpedance gain of the Fiber Beat PDs are. The datasheet suggests a "maximum gain" of 5e4 V/W, which presumably takes into account the InGaAs responsivity and the actual transimpedance gain. However, according to the last power budget I did inside the Beat Mouth, I had -8dBm of beat for a combined 400uW of PSL+EX light, which definitely does not add up. I've emailed the company to ask about the spec, haven't gotten anything useful yet...

The problem is further complicated by the fact that the fiber inside the Beat Mouth is NOT polarization maintaining, and so the actual relative polarizations of the arm IR light and the PSL IR light is unpredictable, and also uncontrolled. I suppose we could simply place a HWP before the fiber collimator at either end, and rotate the polarization until we get a desired amount of beat, but this still does not solve the problem of the polarization being uncontrolled.

I am going to characterize the demod board using E1100114. I am unsure as to the conversion loss of the mixer - the datasheet suggested a number of 8dB, but T1000044 suggests that the conversion loss is actually only 4dB. I figure it's best to just measure it. Would also be good to verify that the overall transfer function and noise of the IF amplifier stage match my expectation from the LISO model.

Option #1: Rana ordered 50ohm and 500ohm SMD resistors of the 0805 package size, I asked Steve to get a few more values just in case we want to twiddle with the gain of this stage further (specifically, I asked for values such that we can set it to x5, x3 and x1). But changing the feedback resistors modifies the overall TF shape - see e.g. Attachment #2. Need to also look at how the noise performance varies.

Another possibility is to turn down the gain of the IF amplifier stage to x10, retire the ZHL-3A, and use a lower gain amplifier in its place. We do have the recently acquired Teledyne amplifiers, but we would have to package it in such a way that it can be integrated into the existing Fiber ALS signal chain. This would allow us to handle significantly larger RF beatnote powers, which I expect we will have if we improve the mode matching into the fibers (provided the aforementioned polarization drift possibility doesn't hurt us too much).

A third possibility is to attenuate the power coupled into the fibers to lower the RF beatnote amplitude. I don't like this option so much because placing an ND filter or a PBS+HWP combo in the beam path is likely to screw up the mode-matching into the fiber collimator, which I have already spent so many hours trying to improve, but if it must be done, it must be done.

The correct option is of course the one that gives us the lowest ALS noise. It is not clear to me which one that is at this point.

Attachment 1: FiberALS_PowerBudget.pdf
FiberALS_PowerBudget.pdf
Attachment 2: preampProposed.pdf
preampProposed.pdf
  13596   Thu Feb 1 01:24:56 2018 gautamUpdateALSD0902745 revamp underway

I effected the change to the Audio IF preamp stage on channels 3 and 4 (Xarm and Yarm respectively) using the resistors Steve ordered (the ones Rana ordered don't have any labeling on them, and I couldn't tell the 50ohm and 500ohm ones apart except by looking at the label on the ziplock bag they came infrown, so I decided against using them). I've started a DCC page to collect photos, characterization data, and marked up schematic etc for this part. Characterization is ongoing, more to follow soon. Note that for the photo-taking, I disconnected all the on-board SMA connectors so that the cabling wouldn't block components. I have since restored them for testing purposes, and was careful to use the torque-limited SMA tightening tool when restoring the connections.

In order to test various things like conversion loss etc, I figured it would be useful to have two RF signal sources, so I scavenged the Fluke RF generator that Johannes was using from under the PSL table. In the process, I accidentally bumped the PSL interlock on the southeast corner of the PSL table. I immediately turned the NPRO back on, and relocked PMC/IMC. Everything looks normal now. Acromag may even have caught my transgression.

Quote:
 

I am going to characterize the demod board using E1100114. I am unsure as to the conversion loss of the mixer - the datasheet suggested a number of 8dB, but T1000044 suggests that the conversion loss is actually only 4dB. I figure it's best to just measure it. Would also be good to verify that the overall transfer function and noise of the IF amplifier stage match my expectation from the LISO model.

 

Attachment 1: PSLinterlock.png
PSLinterlock.png
  13597   Thu Feb 1 15:31:12 2018 gautamUpdateALSALS signal chain + power budget

Summary:

A reasonable level of RF beatnote power for operating within the specs of the demod board is 17dBm arriving at the input to the power splitter just before the delay line.

Details:

Stuff is beginning to look clearer now that I've done some initial characterization of the demod boards. I will upload a more detailed report of the characterization on the DCC page, but important findings are:

  1. The overall conversion factor from RF to IF is ~2.3V IF per volt of RF.
    • 50ohm source connected to RF input of demod board, level = 10dBm on Marconi screen, consistent with inferred value from RF mon output.
    • LO driven at 14dBm by Fluke function generator.
    • The ratio was calculated for IF voltage input into a High-Z load.
    • So let's say we want to run at half the ADC full range of 10Vpp into the whitening board - this means we need to keep the RF input to <=11dBm. 
  2. The Teledyne amplifier has a rated maximum input voltage of 17dBm. If we want to stay 3dB below this, we can send in 14dBm into the LO input of the demod board, which is what my characterizations were done with.

The delay line has a loss of ~3dB. The power splitter has a loss of 3dB. So putting everything together, 17dBm at the input of the power splitter gives us just the right amount of RF power to have the LO input driven at 14dBm, and the IF output be ~5Vpp into a High-Z load, which is about half the ADC full range.

 

  13599   Fri Feb 2 00:26:34 2018 gautamUpdateALSD0902745 revamp underway

I saw some interesting behaviour of the Audio IF amplifier stage on the demod board today, by accident. I was testing the board for I/Q orthogonality and gain balance, when I noticed a large gain imbalance between the I and Q channels for both Board #3 and #4, which are the ones we use for the IR ALS demodulation. This puzzled me for some time, but then I realized that I had only reduced the gain of this stage from x100 to x10 for the I channel, and not for the Q channel! The surprising thing though was that the output waveform still looked like a clean sinusoid on the o'scope, and there was no evidence of the voltage clipping that is characteristic of an op-amp being driven beyond its voltage rails. The conversion factor with a preamp gain on x10 was measured today to be 2V IF / 1V RF. But this means that for a preamp stage gain of x100, we expect 20V IF / 1V RF, which is well in the saturation regime of the AD829, since the Vcc is only +/-15V. I'm guessing the diodes D2 and D3 are for overvoltage protection, but given that the pre-amp gain is x100, the input signal at the inverting input of the AD829 is only 0.2V at DC, which isn't above the forward bias voltage for the switching diode BAV99. Perhaps there is some interaction between the pre-amp and the FET demodulator that I dont understand, or I am missing something about the differential to single-ended topology that would explain this behaviour. 

I found it puzzling why the large preamp stage gain didn't hurt us with the green beat - even though the green optical beat signal was smaller than the current IR beat, a back-of-the-envelope calculation suggested that it would still have saturated the ADC with a x100 gain on the preamp. Perhaps this observation is part of the story, and there is also the unpredictable behaviour of the D990694 board for an input signal with large DC levels...


I did the following tests on this board today:

  • Check +/-15V supplies, power reg board.
  • Check DC offset on I and Q front panel output with LO driven at +10dBm, RF input terminated. Found it to be 0.
  • Checked calibration of back-panel DSUB connector monitors for LO and RF powers. Data to be uploaded, looked quite linear.
  • Checked conversion gain from RF input to IF output for two sets of LO/RF powers.
  • Measured conversion gain as a function of the IF frequency (i.e. frequency offset between LO and RF inputs, out to ~700kHz, 8 datapoints)
  • Checked orthogonality and gain balance of the I and Q outputs.
  • Measured the noise of the I and Q outputs in the audio frequency range using the SR785.

I didn't really measure the transfer function of the preamp stage after the modification because there wasn't a convenient test point and I couldn't find the high impedance FET probe for the Agilent - I wonder if somebody in WB has it? Anyways, all the tests suggested the board is operating as expected, and I now have calibrations for the back panel DSUB for LO/RF power levels, and also the conversion gain from RF to IF. I will put together a python notebook with all my measurements and upload it to the DCC page for this part. I need to double check expected noise levels from LISO to match up to the measurement.

I will now proceed to the next piece (#3?) of this puzzle, which is to understand how the D990694 which receives the signals from this unit reacts to the expected DC voltage level of ~4Vpp.


After discussion with Koji, I have also decided to look into putting together a daughter board for an alternative Audio IF preamp stage. The motivation is that for the ALS application, we expect a high DC signal level all the time (because the loop does not suppress the beat note amplitude). So we would like for the preamp stage to have the usual shape of some zero around 4Hz, a pole around 40Hz, and then the LowPass profile of the existing preamp stage (to cut out the 2f frequency product, but also to minimize the possibility of the fast AD829 going into some unpredictable regime where it oscillates). So, the desired features are:

  • Whitening (z,p) at (4Hz,40Hz) or (15Hz,150Hz) so that we have frequency dependent gain that can handle the large DC signal level expected. Need to measure noise of the actual IR beat signal to determine what the appropriate whitening shape is.
  • Low-pass above a few 100kHz to cut out 2f modulation product
  • Low-passing at input of AD829 (or just use OP27?)
  13600   Fri Feb 2 13:16:55 2018 gautamUpdateALSALS signals whitening switching

While setting up for this measurement, I noticed something odd with the whitening switching for the ALS channels. For the usual LSC channels, the whitening is set up such that switching FM1 on the MEDM screen changes a BIO bit which then enables/disables the analog whitening stage. But this feature doesn't seem to be working for the ALS channels - I terminated all 4 channels at the LSC rack, and measured the spectrum of the IN1 signals with DTT in the two settings, such that I expect to see a difference in the spectra if the whitening is enabled or disabled - FM1 enabled (expected analog whitening to be engaged) and FM1 disabled (expected analog whitening to be bypassed). But I see no difference in the spectra. I confirmed that the BIO bit switching is happening at least on the software level (i.e. the bit indicator MEDM screens indicate state toggling when FM1 is ON/OFF). But I don't know if something is amiss in the signal chain, especially since we are using Hardware channels that were previously used for AS_165 and POP_55 signals.

Is the whitening shape such that we expect the terminated noise level to be below ADC Noise even when the whitening is engaged? I just checked the shape of the de-whitening filter, and it has -40dB gain above 150Hz, so the inverse shape should have +40dB gain. 

Quote:
 

I will now proceed to the next piece (#3?) of this puzzle, which is to understand how the D990694 which receives the signals from this unit reacts to the expected DC voltage level of ~4Vpp


gautam 2.15pm: This was a FALSE ALARM, with the inputs terminated, the electronics noise really is that low such that it is buried under ADC noise even with +40dB gain. I cranked up the flat whitening gain from 0dB to 45dB for the X channels (but left the Y channels at 0dB). Attachment #2 is the comparison. Looks like the switching works just fine.

Attachment 1: ALS_whitening_switching.pdf
ALS_whitening_switching.pdf
Attachment 2: ALS_whitening_switching_works.pdf
ALS_whitening_switching_works.pdf
  13604   Sat Feb 3 13:03:45 2018 gautamUpdateComputer Scripts / Programsnetgpib data missing / PROLOGIX yellow box (crocetta) not working

The netgpibdata scripts are now under git version control at /opt/rtcds/caltech/c1/scripts/general/labutils/netgpibdata. I think the idea was to make this directory a collection of useful utilities that we could then pull at various labs / at the sites.

Quote:

I could not understand why 'netgpibdata' scripts are missing in "scripts/general" folder on pianosa... Where did they go???

  13606   Mon Feb 5 14:11:01 2018 gautamUpdateALSHuge harmonics in ALS channels

I've been trying to setup for the THD measuremetn at the LSC rack for a couple of days now, but am plagued by a problem summarized in Attachment #1: there are huge harmonics present in the channel when I hook up the input to the whitening board D990694 to the output of a spare DAC channel at the LSC rack. Attachment #2 summarizes my setup. I've done the following checks in trying to debug this problem, but am no closer to solving it:

  • The problem is reminiscent of the one I experienced with the SR785 not too long ago - there the culprit was a switching power supply used for the Prologix GPIB-ethernet box.
  • Then I remembered sometime ago rana and i had identified the power supply for the Fibox at the LSC rack as a potential pollutant. But today, I confirmed that this power supply is not to blame, as I unplugged it from its powerstrip and the spectrum didn't change.
  • There are a couple of Sorensens in this LSC rack, from what it looks like, they supply power to a BIO interface box in the LSC rack. I thought we would want to keep this rack free of switching power supplies? Wasn't that the motivation behind keeping the (linear) power supplies for all the LSC rack electronics in a little separate rack along the east arm?
  • I confirmed that when the D990694 input is terminated, these harmonics are no longer present. 
  • I plugged the output of the SOS dewhite board to an oscilloscope - there is a ~20mVpp signal there even when the DAC output is set to 0, but this level seems too small to explain the ~1000 ct-pp signal that I was seeing. The whitening gains for these channels are set to 0dB.
  • I also looked at the signal in the time domain using DTT - indeed the peak-to-peak signal is a few thousand counts.
  • This isn't a problem with the particular input channel either - the behaviour can be reproduced with any of the 4 ALS input channels.

Am I missing something obvious here? I think it is impossible to do a THD measurement with the spectrum in this condition...

Attachment 1: ALSpowerlineHarmonics.pdf
ALSpowerlineHarmonics.pdf
Attachment 2: 2A1B3AC4-4059-416A-AD88-8AB0431D7A55.jpeg
2A1B3AC4-4059-416A-AD88-8AB0431D7A55.jpeg
  13608   Mon Feb 5 22:57:28 2018 gautamUpdateALSHuge harmonics in ALS channels

Did some quick additional checks to figure out what's going on here.

  1. The SOS/dewhite board for which I didn't have a DCC number is D000316. It has a single ended output.
  2. I confirmed that the origin of this noise has to do with the ground of the aforementioned D000316 - as mentioned in my previous elog, having one end of a BNC cable plugged into the whitening board D990694 and the other end terminated in 50ohms yields a clean spectrum. But making the ground of this terminator touch the ground of the SMA connector on the D000316 makes the harmonics show up.
  3. Confirmed that the problem exists when using either the SMA or the LEMO monitor output of these D000316 boards.

So either something is busted on this board (power regulating capacitor perhaps?), or we have some kind of ground loop between electronics in the same chassis (despite the D990694 being differential input receiving). Seems like further investigation is needed. Note that the D000316 just two boards over in the same Eurocrate chassis is responsible for driving our input steering mirror Tip-Tilt suspensions. I wonder if that board too is suffering from a similarly noisy ground?

Quote:
 

Am I missing something obvious here? I think it is impossible to do a THD measurement with the spectrum in this condition...

 

  13609   Tue Feb 6 11:13:26 2018 gautamUpdateALSPossible source of ground loop identified

I think I've narrowed down the source of this ground loop. It originates from the fact that the DAC from which the signals for this board are derived sits in an expansion chassis in 1Y3, whereas the LSC electronics are all in 1Y2.

  • I pulled the board out and looked at the output of Ch8 on the oscilloscope with the board powered by a bench power supply - signal looked clean, no evidence of the noisy ~20mVpp signal I mentioned in my previous elogyes.
  • Put the board back into a different slot in the eurocrate chassis and looked at the signal from Ch8  - looked clean, so the ground of the eurocrate box itself isn't to blameyes.
  • Put the board back in its original slot and looked at the signal from Ch8 - the same noisy signal of ~20mVpp I saw yesterday was evident again no.
  • Disconnected the backplane connector which routes signals from the DAC adaptor box to D000316 board - noisy signal vanished yes.

Looking at Jamie's old elog from the time when this infrastructure was installed, there is a remark that the signal didn't look too noisy - so either this is a new problem, or the characterization back then wasn't done in detail. The main reason why I think this is non-ideal is because the tip-tilt steering mirrors sending the beam into the IFO is controlled by analogous infrastructure - I confirmed using the LEMO monitor points on the D000316 that routes signals to TT1 and TT2 that they look similarly noisy (see e.g. Attachment #1). So we are injecting some amount (about 10% of the DC level) of beam jitter into the IFO because of this noisy signal - seems non-ideal. If I understand correctly, there is no damping loops on these suspensions which would suppress this injection. 

How should we go about eliminating this ground loop?

 

Quote:
 

So either something is busted on this board (power regulating capacitor perhaps?), or we have some kind of ground loop between electronics in the same chassis (despite the D990694 being differential input receiving). Seems like further investigation is needed. Note that the D000316 just two boards over in the same Eurocrate chassis is responsible for driving our input steering mirror Tip-Tilt suspensions. I wonder if that board too is suffering from a similarly noisy ground?

 

Attachment 1: A68AF89C-E8A9-416D-BBD2-A1AD0A51E0B5.jpeg
A68AF89C-E8A9-416D-BBD2-A1AD0A51E0B5.jpeg
  13612   Tue Feb 6 22:55:51 2018 gautamUpdateALSPossible source of ground loop identified

[koji, gautam]

We discussed possible solutions to this ground loop problem. Here's what we came up with:

  1. Option #1 - Configure the DAC card to receive a ground voltage reference from the same source as that which defines the LSC rack ground.
  2. Option #2 - construct an adapter that is differential-to-single ended receiving converter, which we can then tack on to these boards.
  3. Option #3 - use the D000186-revD board as the receiver for the DAC signals - this looks to have differential receiving of the DAC signals (see secret schematic).  We might want to modify the notches on these given the change in digital clock frequency 

Why do we care about this so much anyways? Koji pointed out that the tip tilt suspensions do have passive eddy current damping, but that presumably isn't very effective at frequencies in the 10Hz-1kHz range, which is where I observed the noise injection.

Note that all our SOS suspensions are also possibly being plagued by this problem - the AI board that receives signals is D000186, but not revision D I think. But perhaps for the SOS optics this isn't really a problem, as the expansion chassis and the coil driver electronics may share a common power source? 

gautam 1530 7 Feb: Judging by the footprint of the front panel connectors, I would say that the AI boards that receive signals from the DACs for our SOS suspended optics are of the Rev B variety, and so receive the DAC voltages single ended. Of course, the real test would be to look inside these boards. But they certainly look distinct from the black front panelled RevD variant linked above, which has differential inputs. Rev D uses OP27s, although rana mentioned that the LT1125 isn't the right choice and from what I remember, LT1125 is just Quad OP27...

  13613   Wed Feb 7 10:16:26 2018 gautamUpdateALSALS signal chain + power budget

After emailing the technical team at Menlo, I have uploaded the more detailed information they have given me on our wiki.

Quote:

The trouble is, I don't know what the transimpedance gain of the Fiber Beat PDs are. The datasheet suggests a "maximum gain" of 5e4 V/W, which presumably takes into account the InGaAs responsivity and the actual transimpedance gain.

 

  13616   Wed Feb 7 15:51:15 2018 gautamUpdateALSD0902745 revamp complete

Summary of my tests of the demod boards, post gain modification:

  • DC tests (supply voltage, DC offsets at I and Q outputs, power LEDs etc)
  • RF tests
    • Back panel RF and LO power level monitor calibration
    • Coupling factor from RFinput to RFmon channel
    • Conversion loss as a function of demodulated beat frequency
    • Orthogonality and gain balance test
    • Linearity of unit as a function of RF input level
    • Electronics oise in the 1-10kHz band at the IF outputs.

Everything looks within the typical performance specs outlined in E1100114, except that the measured noise levels don't quite line up with the LISO model predictions. The measurement was made with the scheme shown in Attachment #1. I didn't do a point-by-point debugging of this on the board. I have uploaded the data + notebook summarizing my characterization to the DCC page for this part. I recommend looking at the HTML version for the plots.

*I'd put up the wrong attachment, corrected it now...

Quote:

I will put together a python notebook with all my measurements and upload it to the DCC page for this part. I need to double check expected noise levels from LISO to match up to the measurement.


gautam 9 Feb 2018 9pm: Adding a useful quote here from the LISO manual (pg28). I think if I add the Johnson noise from the output impedance of the mixer (assumed as 50ohms, I get better agreement between the measured and observed noises (although the variance between the 4 channels is still puzzling). The other possible explanation is small variations in the voltage noise at the various mixer output ports. Could we also be seeing the cyclostationary shot noise difference between the I and Q channels? 

For the computation of noise, the distinction between uinput and iinput is ignored, since no input signal is assumed. The source-impedance given in the uinput or iinput instruction is assumed to be connected from the input node to ground. It will affect the gain of noise contributions from their source to the output. The impedance itself is considerednoise-free, i.e. no Johnson noise is computedfor it. If you want to compute the source impedance’s Johnson noise, you must explicitly enter it as a resistor.

In any case, I am happy with this level of agreement, so I am going to stick this 1U chassis back in its rack with the primary aim of measuring a spectrum of the beatnote, so that I have some idea of what kind of whitening filter shape is useful for the ALS signals. May need to pull it out again for actually implementing the daughter board idea though... I have updated DCC page with LISO source, and also the updated python notebooks.

Attachment 1: 6613CD37-5014-44AE-B1FE-6F6A8137DF62.jpeg
6613CD37-5014-44AE-B1FE-6F6A8137DF62.jpeg
  13618   Wed Feb 7 17:01:25 2018 gautamUpdatePEMPID test plan

[kira, gautam]

We did a survey of the lab today to figure out some of the logistics for the PID control test for the seismometer can. Kira will upload sketches/photos from our survey. Kira tells me we need

  • +/- 15V for the temperature sensors
  • +/- 20V, 5A for heater circuit (to be confirmed by Kira after looking at voltage regulator datasheet for dropout voltage)
  • 2 ADC channels for temperature sensing (one inside can and one outside)
  • 1 DAC channel for controlling MOSFET

There are no DAC channels available in the c1ioo rack. In fact, there is a misleading SCSI cable labelled "c1ioo DAC0" that comes into the rack 1X3 - tracing it back to its other end, it goes into the c1ioo expansion chassis - but there are no DAC cards in there, and so this cable is not actually transporting any signals!

So I recommend moving the whole setup to the X end (which is the can's real home anyways). We plan to set it up without the seismometer inside for a start, to make sure we don't accidentally fry it. We have sufficient ADC and DAC channels available there (see Attachments #1 and #2, we also checked hardware), and also Sorensens to power the heater circuit / temperature sensing circuit. Do we want to hook up the Heater part of this setup to the Sorensens, which also power everything else in the rack? Or do we want to use the old RefCav heater power supply instead, to keep this high-current draw path isolated from the rest of our electronics?

If this looks okay (after pics are uploaded), we will implement these changes (hardware + software) tomorrow.

-----

I have attached the sketch of the whole system (attachment 3) with all the connections and inputs that we will need. Attachment 4 is the rack with the ADC and DAC channels labeled. Attachment 5 is the space where we could set up the can and have the wires go over the top and to the rack.

Attachment 1: ADC_EX.png
ADC_EX.png
Attachment 2: DAC_EX.png
DAC_EX.png
Attachment 3: IMG_20180207_170628.jpg
IMG_20180207_170628.jpg
Attachment 4: dac_adc.jpg
dac_adc.jpg
Attachment 5: IMG_20180207_165833.jpg
IMG_20180207_165833.jpg
  13620   Thu Feb 8 00:01:08 2018 gautamUpdateCDSVertex FEs all crashed

I was poking around at the LSC rack to try and set up a temporary arrangement whereby I take the signals from the DAC differentially and route them to the D990694 differentially. The situation is complicated by the fact that, afaik, we don't have any break out boards for the DIN96 connectors on the back of all our Eurocrate cards (or indeed for many of the other funky connecters we have like IDE/IDC 10,50 etc etc). I've asked Steve to look into ordering a few of these. So I tried to put together a hacky solution with an expansion card and an IDC64 connector. I must have accidentally shorted a pair of DAC pins or something, because all models on the c1lsc FE crashedindecision. On attempting to restart them (c1lsc was still ssh-able), the usual issue of all vertex FEs crashing happened. It required several iterations of me walking into the lab to hard-reboot FEs, but everything is back green now, and I see the AS beam on the camera so the input pointing of the TTs is roughly back where it was. Y arm TEM00 flashes are also seen. I'm not going to re-align the IFO tonight. Maybe I'll stick to using a function generator for the THD tests, probably routing non AI-ed signals directly is as bad as any timing asynchronicity between funcGen and DAQ system...

Attachment 1: CDSrecovery_20180207.png
CDSrecovery_20180207.png
  13621   Thu Feb 8 00:33:20 2018 gautamUpdateALSD990694 characterization / THD measurement plan

I decided to try doing the THD measurement with a function generator. Did some quick trials tonight to verify that the measurement plan works. Note that for the test, I turned off the z=15,p=150 whitening filter - I'm driving a signal at ~100Hz and should have plenty of oomph to be seen above ADC noise.

  1. Checked for ground loops - seem to be fine, see black trace on Attachment #1 which was taken with the FnGen hooked up to the input, but not putting out any signal
  2. Spectrum with 1Vpp sine wave @ ~103Hz. The various harmonic peaks are visible, and though I've not paid attention to bin width etc, the largest harmonics are ~1000x smaller than the main peak, and so the THD is ~1ppm, which is in the ballpark of what the datasheet tells us to expect around 100Hz for a gain of ~10 (=20dB). The actual gain was set at 0dB (so all opAmps in the quad bypassed)

I'm going to work on putting together some code that gives me a quick readback on the measured THD, and then do the test for real with different amplitude input signal and whitening gain settings.

**Matlab has a thd function, but to the best of my googling, can't find a scipy.signal analog.


To remind myself of the problem, summarize some of the discussion Koji and I had on the actual problem via email, and in case I've totally misunderstood the problem:

  1. The "Variable Gain" feature on the D990694 boards is achieved by 4 single gain stages cascaded together in series, with the ability to engage/bypass each stage individually.
  2. The 4 gain stages are constructed using the 4 OpAmps in a quad LT1125 IC, each in standard non-inverting configuration.
  3. The switches unfortunately are on the output side of each op-amp. This means that even if a stage is bypassed, the signal reaches the input pin of the OpAmp.
  4. For proper operation, in closed-loop, the differential voltage between the input pins of the OpAmp are 0.
  5. But this may require the OpAmp to source more current than it can (just using Ohms law and the values of the resistors in the feedback path).
  6. As a result, a large differential voltage develops between the input pins of the OpAmp.
  7. The LT1125 is not rated to operate in such conditions (this is what Hartmut was saying in the ilog linked earlier in this thread).
  8. Part of the internal protection mechanism to prevent damage to the IC in such operating conditions is a pair of diodes between the input pins of the OpAmp.
  9. When a large differential voltage develops between the input pins of the OpAmp, the diodes act to short the two to bring them to the same potential (minus whatever small drop there is across the diodes). Actually, according to the datasheet, when the differential voltage between the input pins exceeds 1.4V, the input current must be limited to 25mA, to avoid damaging the protection diodes? If so, we may already have damaged a bunch of these amplifiers.
  10. While the LT1125 IC is protected in this condition, the infinite input impedance of the OpAmp is reduced to the resistance between the inverting input and ground. The output voltage may still be saturated, but the output current draw is within what the IC can supply.
  11. As a result, Ohms law means that the preceeding stage is overdrawn for current. This is clearly not ideal.
  12. Another possible problem is that there is some sort of interaction between the 4 opamps in the quad IC, which means that even if one stage is overdrawn for current, all of them may be affected.
  13. The Advanced LIGO version of this board addresses #11 and #12 by (i) placing a series resistor between the input signal and the non-inverting input of the opamp, and (ii) using single opamp ICs instead of a quad, respectively.

So my question is - should we just cut the PCB trace and add this series resistance for the 4 ALS signal channels, and THEN measure the THD? Since the DC voltage level of the ALS signal is expected to be of the order of a few volts, we know we are going to be in the problematic regime where #11 and #12 become issues.

Attachment 1: D990694THD_trial.pdf
D990694THD_trial.pdf
ELOG V3.1.3-