40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 179 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  1207   Mon Dec 29 21:51:02 2008 YoichiConfigurationComputersWeb server on nodus
The apache on nodus has been solely serving for the svn web access.
I changed the configuration and all files under /cvs/cds/caltech/users/public_html/ can be seen under
https://nodus.ligo.caltech.edu:30889/

The page is not password protected, but you can add a protection by putting an appropriate .htaccess
in your directory.
For the standard LVC password, put the following in your .htaccess
AuthType Basic  
AuthName "LVC password"
AuthUserFile /cvs/cds/caltech/apache/etc/LVC.auth
Require valid-user
  1209   Wed Dec 31 22:59:40 2008 YoichiSummaryEnvironmentParticle counts going crazy
Yes it is a new year's eve, and a lot of crazy people are on Colorado to secure seats for the parade tomorrow.
They are burning woods to warm themselves. So smoky smell is floating around in the campus
and naturally the particle count is going up.

Actually at first I thought some building is on fire and called the security. Then they found
that it is the people on Colorado.

Now C1:PEM-count_half is 28400 and it is still climbing up.
  1210   Thu Jan 1 00:55:39 2009 YoichiUpdateASCAlignment scripts for Linux
A Happy New Year.

The dither alignment scripts did not run on linux machines because tdscntr and ezcademod do not run
on linux. Tobin wrote a perl version of tdscntr and I modified it for 40m some time ago.
Today, I wrote a perl version of ezcademod. The script is called ditherServo.pl and resides in /cvs/cds/caltech/scripts/general/.
It is not meant to be a drop-in replacement, so the command line syntax is different. Usage is explained in the comment of the script.

Using those two scripts, I wrote linux versions of the alignment scripts.
Now when you call, for example, alignX script, it calls alignX.linux or alignX.solaris depending on the OS of
your machine. alignX.solaris is the original script using the compiled ezcademod.
In principle, ezcademod is faster than my ditherServo.pl because my script suffers from the overhead of
calling tdsdmd on each iteration of the servo. But in practice ditherServo.pl is not that bad. At least, as far as
the alignment is concerned, the performances of the both commands are comparable in terms of the final arm power and the convergence.

Now the alignXXX commands from the IFO Configure MEDM screen work for X-arm, Y-arm, PRM and DRM. I did not write a script for Michelson, since
it is optional.
I confirmed that "Align Full IFO" works correctly.
  1211   Thu Jan 1 01:07:03 2009 YoichiSummaryEnvironmentParticle counts going crazy
I increased the fan speed of the PSL HEPA filter to the maximum.


Quote:
Yes it is a new year's eve, and a lot of crazy people are on Colorado to secure seats for the parade tomorrow.
They are burning woods to warm themselves. So smoky smell is floating around in the campus
and naturally the particle count is going up.

Actually at first I thought some building is on fire and called the security. Then they found
that it is the people on Colorado.

Now C1:PEM-count_half is 28400 and it is still climbing up.
  1212   Thu Jan 1 01:15:45 2009 YoichiSummaryVACN2 line leak ?
I've been replacing the N2 bottles recently.
I noticed that the consumption is too high. I had to replace them every two days.
Normally the interval is three or more days.
I suspect there is some leak in the line.

Strangely, it is always the left hand bottle which goes empty. The right hand bottle has been
there for more than a week at about 1000 psi.

We should check it when Steve is back.
  1214   Fri Jan 2 18:49:54 2009 YoichiUpdateLSCLSC modulation frequencies adjusted
I noticed that the IFO did not lock in the MICH configuration.
This was because AS166Q signal was too small.
The demodulation phase seemed not right, i.e. the I-phase signal was larger than Q.
I suspected that the 166MHz modulation frequency was not exactly on the MC FSR, since I just
recovered the number written on the Marconi after the power failure.
I measured the optimal frequency by the method explained in elog:752.
It was 165981500Hz, which is pretty close to the number Rob measured in elog:952, but significantly different from
the label on the Marconi.
I set the frequencies of all the MARCONIs accordingly and updated the labels.

After this, the AS166 demodulation phase was still not good enough (the Q and I signals were about the same).
So I rotated the phase by 45deg. In principle, this should set the demod-phase right for DARM too. Is it correct, Rob ?
I also adjusted the PD offsets. After those adjustments, MICH locks stably with a slightly increased gain (20 as compared to 10 before).
  1223   Mon Jan 12 18:53:03 2009 YoichiUpdateLSCAS CCD centering and ASDD demod phase
After Rob's AS beam work, I centered the beam on the AS CCD.
I also optimized the ASDD demod-phase for the MICH signal.
Rob suggested to me that whenever we restart or change the frequency of the DD Marconis, we have to re-optimize the demod-phase
because the initial phase of the Marconi is random. We had the power failure, so it was time to do so.
I confirmed that MICH hand-off from REFL33Q to AS133DDQ is ok.
I will do the same thing for the PRCL, SRCL hand-offs.
  1231   Fri Jan 16 11:28:54 2009 YoichiUpdateComputersLab. laptop needs wireless lan driver update
One of the lab. laptops (belladonna) cannot connect to the network now.
I guess this was caused by someone clicked the update icon and unknowingly updated the kernel, which resulted in the wireless lan driver malfunctioning.
It was using a Windows driver through ndiswrapper.
Someone has to fix it.
  1234   Fri Jan 16 18:29:08 2009 YoichiUpdateSUSOplevs QPDs centered
Kakeru centered ITMX and BS optical levers with the help of Jenne on the walkie-talkie.
  1235   Fri Jan 16 18:33:54 2009 YoichiSummaryComputersc1lsc rebooted to fix 16Hz glitches
Kakeru, Yoichi

There were 16Hz harmonics in the PD3 and PD4 channels even when there is no light falling on it.
Actually, even when the connection to the ADC was removed, the 16Hz noise was still there.

Rob suggested that this might be digital problem, because data is sent to the daq computer very 1/16 of a second.

We restarted c1lsc and the problem went away.
  1236   Fri Jan 16 18:45:20 2009 YoichiConfigurationIOOMC_L gain increased by a factor of 2
Rana, Yoichi

Since we fixed the FSS AOM double-pass, which used to be a single-pass, the MC_L gain was too low for
making the cross-over at 100Hz.
Rana increased it by a factor of two. Now it seems that the cross over is ok (attachment 1).

We also noticed that the MC_F spectrum is noisier than before (attachment 2).
The reference is from 6/24/2008.
Attachment 1: MC_F-MC_L-xover.pdf
MC_F-MC_L-xover.pdf
Attachment 2: MC_F.pdf
MC_F.pdf
  1237   Mon Jan 19 13:58:53 2009 YoichiUpdateASCBetter ditherServo.pl
Nick Smith (@LHO) tested the ditherServo.pl at Hanford.
He added options to specify exit conditions to the script. Now you can make the script exit when
a condition, such as ArmPower > 1.0, is satisfied, or let it wait until a certain condition is satisfied.

I also modified the script to use ezcastep instead of tdswrite for feedback actuation.
The script now runs ezcastep in the background while the next iteration of the tdsdmd is performed.
Instead of kicking mirrors with a big thrust each time by a single tdswrite command, ezcastep gently moves the mirrors with fine steps.
I also implemented this "background ezcastep" technique in Tobin's tdscntr.pl.

The alignment scripts run smoother now.
  1238   Mon Jan 19 15:10:37 2009 YoichiHowToComputersloadLIGOData a GUI for mDV
I installed loadLIGOData, a product of my weekend project, in /cvs/cds/caltech/apps/loadLIGOData.
This is a Matlab GUI for getting data from nds servers. It uses a modified version of mDV to retrieve data.
You can choose and download LIGO data into Matlab quickly.
I also wrote a GUI to plot the downloaded data easily.
With this GUI, you can plot multiple channel data in a single figure, which is useful to identify the cause for a lock loss etc.
You can change the time axis labels to UTC or Local time in stead of GPS second.

You can run it by typing loadLIGOData in a terminal of a linux machine.
A brief explanation of how to use it is written here:
http://lhocds.ligo-wa.caltech.edu:8000/40m/loadLIGOData

At this moment, data from test points cannot be retrieved properly (of course there is no way to go back to the past for test points.
But still we should be able to get data in real time.). I'll try to find a solution.
Attachment 1: loadLIGOData.png
loadLIGOData.png
Attachment 2: plotLigoData.png
plotLigoData.png
  1240   Tue Jan 20 15:28:42 2009 YoichiUpdateComputersloadLIGOData a GUI for mDV

Quote:
The tool is very nice; I looked at the seismic trend for 16 days (attached).
However, it gives some kind of error when trying to get Hanford or Livingston data.


I fixed it.
You have to click "Load channels" button when you select a new site.
I plotted one minute of MC_F signals from H1, H2, L1 and 40m.
Looks like L1 MC was swinging a lot.
Attachment 1: MC_F.png
MC_F.png
  1250   Fri Jan 23 14:00:02 2009 YoichiUpdatePSLPMC transmission is down

Quote:
The PMC transmission is going down.
I have not relocked the PMC yet.


I tweaked the alignment to the PMC.
The transmission got back to 2.65. But it is still not as good as it was 3 days ago (more than 3).

It is interesting that the PMC transmission is inversely proportional to the NPRO output.
My theory is that the increased NPRO power changed the heat distribution inside the power amplifier.
Thus the output mode shape changed and the coupling into the PMC got worse.
MOPA output shows a peak around Jan-21, whereas the NPRO power was still climbing up.
This could also be caused by the thermal lensing decreasing the amplification efficiency.
Attachment 1: LaserPower.png
LaserPower.png
  1254   Wed Jan 28 12:42:51 2009 YoichiUpdatePSLMOPA dying
Yoichi, Jenne, Peter

As most of you know, the MOPA output power has been declining rapidly since Jan 21. (See the attachment 1)
There was also an increase in the NPRO power observed in LMON, which is an internal power monitor of the NPRO.
Similar trend can be seen in 126MON, which picks up some scattered light from the NPRO but there may be some contributions from the PA output.

The drop in the AMPMON, LMON and CURMON (NPRO current) from the middle of Jan 26 to the end of Jan27 was caused by me.
I tried to decrease the NPRO current to put the NPRO power back to the level when the MOPA output was higher. But it did not bring back the MOPA power.
So I put back the current after an hour. This caused the sharp power drop on Jan26.
By mistake, I did not fully recover the current at that time and left it like that for a day. This accounts for the long power drop period continued until Jan27.

Shortly after I tweaked the current, the MOPA output power started to fluctuate a lot. This drives the ISS crazy.
To see if this was caused by the NPRO or power amplifier,
we decided to fix the 126MON to monitor the real NPRO power.
We opened the MOPA box and installed a mirror to direct a picked off NPRO beam to the outside of the box through an unused hole.
We set up a lens and a PD outside of the MOPA box to receive this beam. The output from the PD is connected to the 126MON cable.
So 126MON is now serving as the real monitor of the NPRO power. It has not yet been calibrated.

The second attachment shows a short time series of the MOPA power and NPRO power. When the beam is blocked, the 126MON goes to -22.
So the RIN of the NPRO is less than 1%, whereas the MOPA power fluctuates about 5%. There is also no clear correlation between the power fluctuation of the MOPA and the NPRO. So probably the MOPA power fluctuation is not caused by NPRO.

At this moment, all the feedback signals (current shunt, slow and fast actuators) are physically disconnected from MOPA box so that we can see the behavior of MOPA itself.
Attachment 1: Recent10Days.png
Recent10Days.png
Attachment 2: 126_MOPA.png
126_MOPA.png
  1255   Wed Jan 28 12:51:32 2009 YoichiUpdateComputersMegatron is dying
For the past three days, Megatron has been making a huge noise. Sounds like a fan is failing.
There is an LED with "!" sign on the front panel. It is now orange. Looks like some kind of warning.
We can login to the machine. "top" shows the CPU load is almost zero.
Shall we try rebooting it ?
  1256   Wed Jan 28 19:08:50 2009 YoichiUpdatePSLLaser is back (sort of)
Yoichi, Peter, Jenne

Summary:
We found that the chiller water is not going to the NPRO base. It was hot whereas it was cold when I touched it a few months ago.
I twisted the needle valve on the water line to the NPRO base. Then we heard gargling noise in the pipe and the water started to flow.
The laser power is now climbing up slowly. The noisiness of the MOPA output is reduced.

I will post more detailed entry explaining my theory of what actually happened later.
Attachment 1: Improving.png
Improving.png
  1257   Thu Jan 29 13:52:34 2009 YoichiUpdatePSLLaser is back (sort of)
Here is what I think has happened to the laser.

After the chiller line to the NPRO base clogged, the FSS slow slider went down to keep the laser frequency constant.
It is evident in the attachment 1 that the behavior of the slow slider and the DTEC (diode temp. stabilization feedback signal) are almost the same except for the direction. This means the slow servo was fighting against the increased heat caused by the lack of the cooling from the bottom.
DTEC was doing the same thing to keep the diode temperature constant.

Even though the slow actuator (a Peltier on the crystal) worked hard to keep the laser frequency constant, one can imagine that there was a large temperature gradient in the crystal and the mode shape may have changed.

Probably this made the coupling of the NPRO beam to the PA worse. It may also have put the NPRO in a mode hopping region, which could be the cause of the noisiness.

Right now, the MOPA power is 2.7W.
The FSS, PMC, MZ are locked. At first, the PMC locked on a sideband. I had to twiddle the phase flip button of the PMC servo to lock the PMC. Probably this is another sticky channel, which needs to be tweaked after a reboot of c1psl. I added a code to do this in /cvs/cds/caltech/scripts/Admin/slider_twiddle.

Currently the ISS is unstable. Kakeru and I are now taking OPLTF of the servo.
Looks like the phase margin at the lower UGF is too small.
Attachment 1: SlowDC.pdf
SlowDC.pdf
  1260   Thu Jan 29 18:10:13 2009 YoichiUpdatePSLISS Bad
Kakeru, Yoichi

As we noted before, the ISS is unstable. You can see the laser power oscillation around 3Hz.
We took the open-loop transfer function of the ISS around the lower UGF.
The phase margin is almost non-existent.
It was measured with the ISS gain slider at 2dB (usually it was set to 7dB).
So if we increase it by 3dB, it is guaranteed to be unstable.

The higher UGF has also a small phase margin (about 12deg.).
With the ISS gain slider at 2dB, the upper UGF is too low, i.e. the UGF is located at the beginning of the 1/f region.
So we if we make the lower UGF stable by lowering the gain, the upper UGF becomes unstable.

We took out the ISS box from the PSL table.
Kakeru and Peter are now trying to modify the filter circuit to give more phase margin at the lower UGF.
Attachment 1: OPLTF1.png
OPLTF1.png
  1267   Mon Feb 2 19:23:53 2009 YoichiUpdateGeneralNew optical layout plan
The attached is a plan of the optical layout in the central part for the upgrade.
I included, the folded recycling cavities, oplevs for the core optics, POX, POY, POB and video views.
I have not worked out how to handle the beams outside the chambers. It should not be that difficult.
I also did not include beam dumps for unwanted beams.

I used pink for main beams, brown for picked off beams, red for oplevs.

Comments, suggestions are welcome.
Attachment 1: 40mUpgradeOpticalLayoutPlan01.pdf.zip
  1269   Tue Feb 3 19:24:14 2009 YoichiUpdateGeneralNew optics layout wiki page
I uploaded a slightly updated version of the new optics layout on the 40m wiki.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_08/Optical_Layout

I also uploaded the Mathematica notebook I used to calculate various parameters of the new recycling cavities, including the lengths, asymmetry, ROCs, PRM reflectivity and TT-mirror loss margin etc.
It would be nice if someone could check if the calculation is reasonable.
There is a PDF version of the document for non-Mathematica users.
  1271   Wed Feb 4 17:45:39 2009 YoichiUpdateGeneralMode matching of the upgraded IFO
I did mode matching calculations for the new optical layout.
For the input mode matching, we have to change the focal length of the second mirror from 687mm to 315mm and the distance between the two MMT mirrors from 137mm to 149.2mm.
For the mode matching to the OMC, we only have to change the distance between the OMMT mirrors from 384mm to 391mm. No need to change the mirrors.

Details of the calculations can be found in
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_08/Optical_Layout?action=AttachFile&do=get&target=NewRecyclingCavities.zip
(Mathematica notebook)
or if you prefer PDF, here
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_08/Optical_Layout?action=AttachFile&do=get&target=NewRecCav.pdf
  1272   Wed Feb 4 19:22:57 2009 YoichiUpdateGeneralDo we need off-axis parabolic mirrors ?
I also estimated the mode matching degradation caused by the astigmatism.
Since the incident angles to the mode matching mirrors are not 0, the effective focal lengths in the incident plane and the perpendicular plane are different.
This effect leads to astigmatism of the beam.
When there is astigmatism, the maximum achievable mode matching rate becomes less than 100%.
According to my calculation, the mode matching cannot be better than 94% for the input beam.
For the output mode matching, we can theoretically achieve more than 99% even with the astigmatism.
The difference comes from the fact that the OMMT is longer, thus the incident angle is smaller.

If we don't like this 94%, we have to use off-axis parabolic mirrors, or modify the IMMT to a longer one.
I prefer to make it longer. Just 5" elongation will increase the mode matching rate to 99.4%.
We have a room for this 5" elongation.

Again, the details of the calculation are added to the Mathematica notebook below.


Quote:
I did mode matching calculations for the new optical layout.
For the input mode matching, we have to change the focal length of the second mirror from 687mm to 315mm and the distance between the two MMT mirrors from 137mm to 149.2mm.
For the mode matching to the OMC, we only have to change the distance between the OMMT mirrors from 384mm to 391mm. No need to change the mirrors.

Details of the calculations can be found in
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_08/Optical_Layout?action=AttachFile&do=get&target=NewRecyclingCavities.zip
(Mathematica notebook)
or if you prefer PDF, here
http://lhocds.ligo-wa.caltech.edu:8000/40m/Upgrade_08/Optical_Layout?action=AttachFile&do=get&target=NewRecCav.pdf
  1274   Thu Feb 5 10:42:33 2009 YoichiUpdateGeneralDo we need off-axis parabolic mirrors ? No way !
I made a mistake in estimating the astigmatism problem.
If we use the current MMT1 as it is, this one is already an off-axis parabolic (OAP) mirror.
In this case, the astigmatism of this mirror is very small (if we use it with the correct angle). I did not include this effect in the previous calculation.
It turned out that the maximum achievable mode matching becomes far smaller (only 77%) if we use the OAP for MMT1 and a spherical mirror for MMT2.
This is not acceptable.
The reason behind this is that when we use spherical mirrors for both MMT mirrors, the astigmatism caused by the MMT1 is somewhat canceled by the astigmatism of MMT2. We don't get this cancellation if we mix OAP and spherical mirrors.

We should either (1) change MMT1 to a spherical mirror and keep the length of the input MMT as it is, or (2) change MMT1 to a spherical mirror and elongate the length of the input MMT.
In the case of (1) the maximum achievable mode matching is 94%. The focal length of MMT2 should be 315.6mm.
If we do (2), the mode matching rate can be as high as 99.8%. The focal lengths are MMT1 = -301.3mm, MMT2=558mm. The distance between the mirrors is 262mm.
We have enough space to do this elongation. But we have to mechanically modify the MMT mount.
I prefer (2).

As usual, the document on the Wiki was updated to include the above calculations.
  1276   Thu Feb 5 21:42:28 2009 YoichiUpdatePSLMy thoughts on ISS

Today, I worked with Kakeru on ISS.

The problem is sort of elusive. Some time, the laser power looks fine, but after a while you may see many sharp drops in the power. Some times, the power drops happen so often that they look almost like an oscillation.

We made several measurements today and Kakeru is now putting the data together. Meanwhile, I will put my speculations on the ISS problem here.

The other day, Kakeru took the transfer function of the ISS feedback filter (he is supposed to post it soon). The filter shape itself has a large phase margin ( more than 50deg ?) at the lower UGF (~3Hz) if we assume the response of the current shunt to be flat. However, when we took the whole open loop transfer function of the ISS loop, the phase margin was only 20deg. This leads to the amplification of the intensity noise around the UGF. The attached plot is the spectrum of the ISS monitor PD. You can see a broad peak around 2.7Hz. In time series, this amplified intensity noise looks like semi-oscillation around this frequency.

Since it is very unlikely that the PD has a large phase advance at low frequencies, the additional phase advance has to be in the current shunt. We measured the response of the current shunt (see Kakeru's coming post). It had a slight high-pass shape below 100Hz (a few dB/dec). This high-pass response produces additional phase advance in the loop.

There seems to be no element to produce such a high-pass response in the current shunt circuit ( http://www.ligo.caltech.edu/docs/D/D040542-A1.pdf )

This Jamie's document shows a similar high-pass response of the current ( http://www.ligo.caltech.edu/docs/G/G030476-00.pdf  page 7 )

Now the question is what causes this high-pass response. Here is my very fishy hypothesis :-)

The PA output depends not only on the pump diode current but also on the mode matching with the NPRO beam, which can be changed by the thermal lensing. If the thermal lensing is in such a condition that an increase in the temperature would reduce the mode matching, then the temperature increase associated with a pump current increase could cancel the power increase. This thermal effect would be bigger at lower frequencies. Therefore, the intensity modulation efficiency decreases at lower frequencies (high-pass behavior). If this model is true, this could explain the elusiveness of the problem, as the cancellation amount depends on the operation point of the PA. 

To test this hypothesis, we can change the pump current level to see if the current shunt response changes. However, the PA current slider on the MEDM screen does not work (Rob told me it's been like this for a while). Also the front panel of the MOPA power supply does not work (Steve told me it's been like this for a while). We tried to connect to the MOPA power supply from a PC through RS-232C port, which did not work neither. We will try to fix the MEDM slider tomorrow.

Attachment 1: INMONPD_Spectrum_1-10Hz.pdf
INMONPD_Spectrum_1-10Hz.pdf
  1281   Fri Feb 6 16:20:52 2009 YoichiUpdatePSLMOPA current slider fixed

I fixed the broken slider to change the current of the PA.

The problem was that the EPICS database assigned a wrong channel of the DAC to the slider.

I found that the PA current adjustment signal lines are connected to the CH3 &CH4 of VMIC4116 #1. However in the database file (/cvs/cds/caltech/target/c1psl/psl.db), the slider channel (C1:PSL-126MOPA_DCAMP) was assigned to CH2. I fixed the database file and rebooted c1psl. Then the PA current started to follow the slider value.

I moved the slider back and forth by +/-0.3V while the ISS loop was on. I observed that the amount of the low frequency fluctuation of the MOPA power changed with the slider position. At some current levels, the ISS instability problem went away.

Kakeru is now taking open-loop TFs and current shunt responses at different slider settings.

  1284   Mon Feb 9 16:02:42 2009 YoichiUpdatePSLPSL relative intensity noise
I attached the relative intensity noise of the PSL.
There is no bump around the lower UGF (~1Hz), but at the higher UGF (~30kHz) there is a clear bump.
When the ISS gain slider was moved up to 21dB, the peak got milder, because there is larger phase margin at higher frequencies with the current filter design.
We may want to optimize the filter later.
Attachment 1: RIN-13dB.png
RIN-13dB.png
Attachment 2: RIN-21dB.png
RIN-21dB.png
  1285   Mon Feb 9 16:05:01 2009 YoichiUpdateLSCDRMI OK

After the ISS work, I aligned the IFO and confirmed that DRMI locks with good SPOB and AS166 values.

  1286   Mon Feb 9 17:09:51 2009 YoichiUpdateComputersA bunch of updates for the network GPIB stuff.
During the work on ISS, we noticed that netgpibdata.py is very unreliable for SR785.
The problem was caused by flakiness of the "DUMP" command of SR785, which dumps the data from the analyzer to the client.
So I decided to use other GPIB commands to download data from SR785. The new method is a bit slower but much more reliable.

I also rewrote netgpibdata.py and related modules using a new class "netGPIB".
This class is provided by netgpib.py module in the netgpibdata directory. If you use this class for your python program, all technical details and dirty tricks are hidden in the class methods. So you can concentrate on your job.
Since python can also be used interactively, you can use this class for a quick communication with an GPIB instrument.

Here is an example.
>ipython #start interactive python
>>import netgpib #Import the module
>>g=netgpib.netGPIB('teofila',10) #Create a netGPIB object. 'teofila' is the hostname of
#the GPIB-Ethernet converter. 10 is the GPIB address.
>>g.command('ACTD0') #Send a GPIB command "ACTD0". This is an SR785 command meaning "Change active display to 0".
>>ans=g.query('DFMT?') #If you expect a response from the instrument, use query command.
#For SR785, "DFMT?" will return the current display format (0 for single, 1 for dual).
>>g.close() #Close the connection when you are done.

Sometimes, SR785 gets stuck to a weird state and netgpibdata.py may not work properly. I wrote resetSR785.py command to reset it remotely.
Wait for 30sec after you issue this command before doing anything.

I wrote two utility commands to perform measurements with SR785 automatically.
TFSR785.py commands SR785 to perform a transfer function measurement.
SPSR785.py will execute spectrum measurements.
You can control various parameters (bandwidth, resolution, window, etc) with command-line options.
Run those commands with '-h' for help.
It is recommended to use those commands even when you are in front of the analyzer, because they save various measurement parameters (input coupling, units, average number, etc) into a parameter file along with the measured data. Those parameters are useful but recording them for each measurement by hand is a pain.
  1287   Mon Feb 9 19:50:48 2009 YoichiConfigurationPSLISS disconnected
We are doing measurements on ISS.
The ISS feedback connector is disconnected and the beam to the MC is blocked.
  1291   Wed Feb 11 07:28:25 2009 YoichiUpdatePSLPA current and laser output
I think we should also plot the laser power at the MOPA output. The horizontal axis should be the absolute current value read from the PA current monitor channel, not the slider value.

This result is consistent with my hypothesis that the thermal effect is canceling the power change at low frequencies (see elog:1276).
But if it is really caused by thermal effect or not is still unknown.

I'd like to see a larger scan into the lower current region.


Quote:
I changed the PA current and measured laser output power (monitor PD signal).
The gain of ISS is 13dB
Attached figure is the relation of PA current and the average and standard diviation of laser output.
The average of output power decreas as current increase. It looks something is wrong with PA.
When current is -0.125, 0, 0.5, ISS become ocsilating. This looks to be changed from previous measurement.

I wrote matlab code for this measurement. The code is
/cvs/cds/caltech/users/kakeru/scripts/CS_evaluate.m
This function uses
/cvs/cds/caltech/users/kakeru/scripts/moveCS.m
  1292   Wed Feb 11 10:52:22 2009 YoichiConfigurationDAQC1:PEM-OSA_APTEMP and C1:PEM-OSA_SPTEMP disconnected

During the cleanup of the lab. Steve found a box with two BNCs going to the ICS DAQ interface and an unconnected D-SUB on the floor under the AP table.  It seemed like a temperature sensor.

The BNCs were connected to C1:PEM-OSA_APTEMP and C1:PEM-OSA_SPTEMP.

Steve removed the box from the floor. These channels can be now used as spare DAQ channels. I labeled those cables.

  1296   Thu Feb 12 11:21:54 2009 YoichiUpdateLSCLocking effort resumed
Last night, I restarted the locking work.
Quite some time was wasted by the disconnected REFL199 by Alberto for the cavity length measurement.
From now on, please put the interferometer back to the original state every day.
If possible, please refrain from changing the IFO settings (cabling, optics, etc).
It is also very important to always restore the full IFO alignment after you are done with your work.

While I was working on the optimization of the DD hand-off, the DRMI alignment got into a strange state.
Even when I did the whole dither alignment procedure from the beginning (from x-arm), the AS166Q did not go above 1000.
PRMI looks ok (SPOB goes above 1100). I could lock the DRMI but the lock position hops to other modes easily.
Manual tweaks of SRM did not help.
After running the whole alignment procedure several times in vain, I was too tired and went home.
I noticed that the single arm lock shows power drops again. There are some offsets in the arm lock loops.
This may have prevented the Michelson alignment from being optimal. I will check this today.
  1298   Thu Feb 12 17:43:33 2009 YoichiUpdateLSCSRC strangeness solved
I found the problem with the DRMI lock I had last night was caused by the zero gain in the PD11_I filter.
I don't know how it happened but putting it back to 1.000 made the DRMI lock far more stable and AS166Q got more than 3000.

I also re-centered POY PD to remove the offset in the y-arm loop. The large power drops while y-arm is locked by itself were eliminated.
  1301   Fri Feb 13 13:35:38 2009 YoichiUpdateLSCLocking status
Yoichi, Jenne, Alberto, Rob

Last night, the locking proceeded until the CARM -> MC_L hand-off.
However, the MC_F gets saturated (as expected) and the IFO loses lock soon after the hand-off.
So we need to offload MC_F.
We ran the offloadMCF script, but it did not work, i.e. just waiting for CARM mode.
Looks like an EPICS flag is not set right.
  1305   Sun Feb 15 09:35:00 2009 YoichiUpdateLSCLocking status

Quote:

I found a '$<' in the offloadMCF script. I don't know precisely what that construct means, but I think it caused the script to wait for input when it shouldn't.


'$<' acts like 'read' in csh. I might have put it in the offloadMCF script to debug the behavior of the script.
Sorry I probably forgot to remove it from the script when I left.
  1309   Mon Feb 16 14:12:21 2009 YoichiUpdateLSCFE system rebooted

Quote:

I can't restart the MC autolocker on c1susvme2 because it doesn't let me ssh in. I tried to reboot it a few times but it didn't work. Once you restart it, it becomes inaccessible and doesn't even respond to pinging. Although the controls for the MC mirrors are on.

The mode cleaner stays unlocked.


MC autolocker runs on op340m, not on c1susvme2.
I restarted it and now MC locks fine.
Before that, I had to reboot c1iool0 and restore the alignment of the MC mirrors (for some reason, burt did not restore the alignment properly, so I used conlog).
  1310   Mon Feb 16 15:54:07 2009 YoichiUpdateComputersmedm directory wiped on nodus

Quote:
I accidentally did an 'rm -rf' on the medm directory in nodus, instead of on my laptop as was intended.

I then did an svn checkout. So everything should be current as of the last update, but I am sure that
we have not done a checkin on all of the latest screen enhancements. So...we may have to revert to the
Sunday morning tar to get the latest changes back.


Indeed, some changes to the medm directory I made were lost.
It was my fault not to check-in those changes.
I asked Alan to restore the directory from the daily rsync backup.
However, the backup job executed this morning have already overwritten the previous (good) backup with the current (bad) medm directory, which Rana restored from the svn. Alan will ask Stuart and Phil if there is still older backup remaining somewhere.

Anyway, I realized that we should stop the backup cron job whenever you think you made a mistake on /cvs/cds/ directory to prevent unwanted overwriting.
The procedure is:
(1) Login to fb40m
(2) Type 'crontab -e'. Emacs will open up in the terminal.
(3) Comment out the backup job (insert # at the beginning of the line containing /cvs/cds/caltech/scripts/backup/rsync.backup ).
(4) Save the file (Ctrl-x Ctrl-s) and exit (Ctrl-x Ctrl-c).

I will post this information on the wiki.
  1316   Tue Feb 17 05:20:11 2009 YoichiUpdateLSCLocking
Since we excluded *.snap and *.req files from the svn control in the medm directory and these were not restored by the svn co, the burt part of the align/mis-align scripts were not working correctly this evening. So I recreated .req files and cooked up some mis-aligned .snap files.
After some cut-and-try work, I was able to run the dither alignment scripts fine.

Due to the above mentioned delay, the locking work started around midnight.

Tonight, the DD hand-off was not robust. I spent sometime to optimize this.
After the optimization, the locking proceeded to the DC CARM/DARM control state stably.
The CARM->MCL hand-off failed because the LSC-MC offset button was off.
I added a line to turn on the button in the ontoMCL script.
Today, the offloadMCF script worked fine.

Next, the cm_step script stumbled on the "ENGAGERIZING" of the AO path.
I got a hunch that the AO path might not be connected to the MC board.
Indeed, OMC_OSC_FM was connected to the IN2 of the MC board. Looks like it was used for the optimization of the modulation frequencies.
Probably I had the hunch because I did it Smile

I was able to increase the arm power up to 3.9.
The script failed when it tried to switch the CARM signal from TR_DC to SPOB_DC.
I haven't tackled on this issue yet.
  1317   Wed Feb 18 03:17:40 2009 YoichiUpdateLSCLocking
Yoichi, Kakeru,

Last night, the cm_step script failed at the hand-off of CARM error signal from TR_DC to PO_DC.
This was fixed by reducing the PO_DC gain by a factor of 2.
Currently the script fails when changing C1:LSC-DEMOD_GAIN to zero.
To be honest, I don't fully understand the purpose of this step.
  1318   Wed Feb 18 03:25:25 2009 YoichiUpdateComputersmedm directory back
I restored the medm directory from the backup on the tape.
The directory had an svn property svn:ignore set and the value of the property included *.snap and *.req.
This resulted in the exclusion of those files from the repository.
I fixed this problem by changing the property of all the directories under /cvs/cds/caltech/medm.
After fixing several other svn problems, the current medm directory contents were checked in to the repository.
  1323   Thu Feb 19 04:16:17 2009 YoichiUpdateLSCLocking status
Rob, Yoichi

We checked the CM-MC cross over just before turning off the moving zero.
There was a slight bump in the gain of the MC_L loop at (I believe) the optical spring freq. (~400Hz) just below 0 dB. The phase margin there was very thin.
Removing the moving zero will increase the bump more and make the loop unstable.
Rob suggested to increase the AO gain a bit more.

To see if the AO path is really working, I connected the OUT2 of the MC board to a spare DAQ channel (C1:PEM-OSA_APTEMP).
I confirmed that the PO_DC signal is actually coming to the AO path input of the MC board.
I also hooked up the SR785 to the A excitation channel of the common mode board, so that we can measure the loop gain of the AO path.
After these preparation, the lock acquisition process became somewhat unstable. The ifo loses lock randomly at various places in the lock acquisition steps.
So, as of 4:00 am, I have not gotten a chance to try Rob's suggestion nor the TF measurement with SR785 yet.
I will continue the work tomorrow (i.e. tonight ??).

  1325   Thu Feb 19 16:29:43 2009 YoichiUpdateComputersMartian wireless router bad
The Martian wireless router is dead.
I rebooted it several times, but it hangs up in a minute.
I will ask steve to buy a new one.
  1329   Fri Feb 20 03:52:23 2009 YoichiUpdateLockingLocking Tonight
Yoichi, Peter

Tonight, we had a problem with the DD hand off.
It failed when the RG filters of MICH for the bounce-roll modes are engaged.
The reason for the failure was that the MICH UGF was too low (~10Hz).
As in the Peter's elog entry, we found that the AS PDs are mis-centered.
Even after we fixed the centering, the MICH UGF was still too low. So we increased the MICH feedback gain by a factor of 10.
The reason for the gain decrease is unknown. It seems almost like the BS coils get weaker.
I checked the UGF of the BS OL loops. These are around 4Hz, so fine. We should check the HWP on the AP table tomorrow.

After the DD hand-off goes ok, the switching of DARM signal from DC to RF failed.
I found that the gain and the polarity of the RF signal were wrong.
AS166 is one of the PDs we found mis-centered (and re-centered). But how can you flip the sign of the signal ?

After this, the cm_step script goes until the activation of the moving zero, but fails when the arm power is increased to 0.7.
Also the ontoMCL script succeeds only 50% of the time.
  1330   Fri Feb 20 19:31:16 2009 YoichiUpdateLSCMICH low gain problem
Last night, we found that MICH UGF was too low. Even after re-aligning the PDs, it was still too low.
Today, I compared the UGFs of MICH and PRC when in the DRMI configuration locked with the single demod. signals.
In this configuration, MICH signal comes from REFL33Q and the PRC signal comes from REFL33I (the same PD).
The PRC UGF was about 100Hz whereas MICH was only ~10Hz.
Since they uses the same PD, the low gain is not caused by the PD.
I checked conlog history and confirmed there is no change in the MICH->BS path in the last few days.
I also checked the svn history of chans directory for changes in filters. Nothing problematic found.

Then I noticed that the susvme computers were overloaded.
This time, I rebooted all the FE computers just in case.

Then the MICH gain was somewhat recovered (by a factor of 3 or so). Don't know why.

I adjusted the DD_handoff script to set the MICH gain to 0.7 before the bounce-roll filter is engaged.
  1334   Tue Feb 24 02:23:40 2009 YoichiUpdateLockingLocking - MC board bad
Rob, Yoichi, Alberto, Kiwamu, Kakeru

We found that the OMC alignment feedback was on for the POS X loop even though the OMC was not locked.
This caused the PZT mirror to be tilted in yaw a lot. This was probably the reason for the mysterious shift in the AS beam last week, because the AS RF beam is picked up after this PZT mirror.
Rob aligned the OMC and we re-centered the AS PDs and the CCD.
This changed the DARM RF gain, so we changed it from 3 to 1. This gain used to be -1. It is still not understood why the polarity was changed.
The MC length was changed ? We should check the sideband transmission.

After this, we reached to the arm power 4. But the IFO loses lock immediately after the moving zero is turned off.
At this stage, the CARM loop bandwidth is supposed to be high enough that the moving zero is no longer necessary.
However, when we measured the MCL loop gain with several different AO path gains, the loop shape did not change at all.
This led us to suspect the AO path may not be connected. The cabling from the common mode board to the MC board seemed ok.
We tested the signal flow in the MC board using a signal generator and an oscilloscope.
Then we found that a signal injected to the IN2 (AO path) does not reach to the TP1A (right after the boost stages), though the signal is visible in the OUT2 (monitor BNC right after the initial amplifier (B-amp) for the AO path). The signal from IN1 (MC REFL) can be observed at TP1A. This means something is broken between the B-amp and the sum-amp in the AO path.
We will check the MC board tomorrow.
  1336   Wed Feb 25 03:10:24 2009 YoichiUpdateLockingLocking status
Rob, Yoichi, Kakeru, Kiwamu

Tonight, CARM -> MCL hand off was not stable. The MCF signal monotonically went up to +2V after CARM and MCL gain was turned down to zero.
This was repeatable and it only goes up (not down).
After a while, we found that putting sleep (~5sec) between the zeroing of CARM gain and MCL gain prevents this problem.

Handing off of CARM error signal from TR to PODC was also not robust.
It seems that the suitable gain changes every time.

tdsavg started to exit with errors. We rebooted fb40m.
When tdsavg returns an error, the cm_step script tries to write NaN into SPOB DC offset.
To prevent this, I put the tdsavg in a while loop which runs until tdsavg returns something other than NaN.

I was able to hand off to PODC several times, but could not proceed further because the IFO lost lock soon.
  1338   Thu Feb 26 00:36:53 2009 YoichiSummaryComputersC1:LSC-TRX_OUT broken (and fixed later).
Today, Kakeru tried to convert C1:LSC-TRX_OUT and C1:LSC-TRY_OUT to DAQ channels.
He edited C1LSC.ini in the chans/daq directory to add the channel but it did not work.
Then he reverted the file back to the original one.
But after we still could not access these channels from dataviewer nor tds tools.
We restarted daqd and tpman on fb40m, but the problem persisted. Even rebooting the whole fb40m did not help.
After inspecting the log file of daqd, it was clear that tpman was failing to create test points for those channels.
I rebooted c1daqawg and then restarted tpman and daqd on fb40m again.
This time, the problem went away.
  1339   Thu Feb 26 01:24:44 2009 YoichiUpdateComputersMartian wireless is back
Today, a new wireless router arrived.
I configured and installed it. Now the martian wireless network is back.
I updated the wiki page about the wireless network.
http://lhocds.ligo-wa.caltech.edu:8000/40m/Network
ELOG V3.1.3-