ID |
Date |
Author |
Type |
Category |
Subject |
12086
|
Thu Apr 21 15:12:38 2016 |
Steve | Update | VAC | RGA is not working |
Quote: |
Steve pointed out that in the aftermath of the Nitrogen running out a couple of times last week, the RGA had shut itself off thinking that there was a leak and so it was not performing the scheduled scans once a day. So the data files from the scheduled scans were empty in the /opt/rtcds/caltech/c1/scripts/RGA/logs directory. The wiki page for getting it up and running again is up-to-date, but the script RGAset.py did not exist on the c0rga machine, which the RGA is communicating with via serial port. I copied over the script RGAset.py from rossa to c0rga and ran the script on that machine - but the error flags it returned were not all 0 (indicating some error according to the manual) - so I edited the script to send just the initialize command ('IN0') and commented out the other commands, after which I got error flags which were all 0. After this, I ran a manual scan using 'RGAlogger.py', and it appears that the RGA is now able to take scans again - I'm attaching a plot of the scan results. We've saved this scan as a reference to compare against after a few days.
|
Our last RGA scan is from February 14, 2016 We had a power outage on the 15th
Gautom has not succeded reseting it. The old c0rga computer looks dead. Q may resurrect it, if he can? |
12087
|
Fri Apr 22 13:58:13 2016 |
Steve | Update | PEM | leaky roof is fixed |
Dan sealed the leak today.
|
Attachment 1: leakyRoof_(2).jpg
|
|
12088
|
Mon Apr 25 11:07:06 2016 |
Steve | Update | SUS | spare SOS tower |
Earth quake stops need viton tips.
Wirestandoffs are still aluminum. |
Attachment 1: ETMXreplacment.jpg
|
|
12089
|
Tue Apr 26 15:22:35 2016 |
Steve | Update | endtable upgrade | Cleaning ETMX vacuum dirty window |
Gautom is progressing with the layout nicely. The X-arm transmission window have not seen cleaning for decades. This should be the time to do it. Here is picture of dirtiness.
It is not that simple... How much effort should we put in it? The hole table with 1W inno laser plus... set up now about ~500 lbs We can pull it off carefully, but it is not risk free.
We should look at our other signal port windows! Gautom's long reach able him to do the first contact cleaning without moving anything. It is great!
|
Attachment 1: ETMX-Tvp.jpg
|
|
Attachment 2: ETMX-TvpDetail.jpg
|
|
12090
|
Tue Apr 26 23:19:42 2016 |
gautam | Update | endtable upgrade | Green aligned to arm - high order mode flashes seen |
Attachment #1
Layout as of today. Most of the green path is done. The Green REFL PD + PZT mirrors have not been hooked up to their respective power sources yet (I wonder if it's okay to start laying cables through the feedthroughs on either end of the table already, or if we want to put whatever it is that makes it airtight eventually in first?). A rough power budget has been included (with no harmonic separator just before the window), though some optimization can be done once the table is completely repopulated.
Attachment #2
A zoomed-in version of the REFL path.
Some general notes:
- I've tried to use the custom 3/4" O.D. posts + baseplate arrangement wherever possible (only 1 steering mirror is on a 1" post clamped with a fork to the table because of space constraints). Where the baseplates could not be bolted onto the table directly, I've used Newport SS Dogs to do the job.
- I checked for continuity between the PZT outer case and the table top with a multimeter, and found none. So I chose to leave the Thorlabs baseplates in place. For the REFL PD, I've used an insulating baseplate given to me by Steve.
- I've used some custom length 3/4" O.D. posts to get the beam up to the right height (~4.75") just before sending the green beam in. The beam height is 4" elsewhere.
- I was playing around with positioning the harmonic separator immediately before the vacuum chamber window - I found that there is a substantial amount of green light that is reflected, though there doesn't seem to be any IR leaking through. The mirror was labelled Y1-1037-45P, which is a code for CVI mirrors, though I believe it is a LaserOptik product and that we have a couple of other such mirrors in the optics cabinet - though they are all 1". This document suggests that from the back side, there should be <0.1% reflection of green while on the front side it should be < 3%. I will have to hunt a little more for the specs, and measure the powers to see if they match the previously quoted numbers. In any case, I'll have to think of how to separate the (unwanted) reflected green and the transmitted IR from the cavity in the IR transmon path.
- There are some minor changes to the planned layout posted here - I will update these in due course once the Transmon path and Oplev have been set up.
I am closing the PSL shutter and the EX laser shutters for the night as I have applied a layer of first contact to the window for cleaning purposes, and we don't want any laser light incident on it. It may be that the window is so dirty that we may need multiple F.C. cleaning rounds, we will see how the window looks tomorrow...
|
Attachment 1: IMG_2219.JPG
|
|
Attachment 2: IMG_2220.JPG
|
|
12091
|
Wed Apr 27 09:05:10 2016 |
Steve | Update | General | AP viewport |
Sad situation
The anti-symmetric port
spider webs fly in the wind |
Attachment 1: APg.jpg
|
|
Attachment 2: AP.jpg
|
|
Attachment 3: APspiderWebs.jpg
|
|
12092
|
Wed Apr 27 09:45:56 2016 |
rana | Update | SUS | spare SOS tower |
Bah, we need ruby slippers for all future suspensions. Prism with curved backside and smooth grooves.
No aluminum, no cry.
Quote: |
Earth quake stops need viton tips.
Wirestandoffs are still aluminum.
|
|
12094
|
Wed Apr 27 15:04:47 2016 |
Steve | Update | endtable upgrade | Cleaning ETMX vacuum dirty window |
It looks very promising.
|
Attachment 1: 1cETMX-Tcmp.jpg
|
|
12095
|
Thu Apr 28 00:41:08 2016 |
gautam | Update | endtable upgrade | more progress - Transmon PD installed |
The IR Transmon system is almost completely laid out, only the QPD remains to be installed. Some notes:
- The "problem" with excessive green power reflected from the harmonic separator has been resolved. It is just very sensitive to the angle of incidence. In the present configuration, there is ~10uW of green power reflected from either side, which shouldn't be too worrisome. But this light needs to be dumped. Given the tiny amount, I think a black glass + sticky tape solution is best suited, given the space constraints. This does not reach the Transmon PDs because there is a filter in the path that is transmissive to IR only.
- I aligned the transmitted beam onto the Thorlabs PD, and reconnected the signal BNC cable (the existing cable wasn't long enough so I had to use a barrel connector and a short extension cable). I then reverted the LSC trigger for the X arm back to TRX DC and also recompiled c1ass to revert to TRX for the dither alignment. At the moment, both arms are stably locked, although the X arm transmission is saturated at ~0.7 after running the dither alignment. I'm not sure if this is just a normalization issue given the new beam path or if there is something else going on. Further investigations tomorrow.
- It remains to dump some of the unwanted green light from the addition of the harmonic separator...
- We may want to redesign some (or all) of the Transmon path - the lens currently in use seems to have been chosen arbitrarily. Moreover, it is quite stubbornly dirty, there are some markings which persist after repeated first contact cleaning...
I feel like once the above are resolved, the next step would be to PDH lock the green to the arm and see what sort of transmission we get on the PSL table. It may be the polarization or just alignment, but for some reason, the transmitted green light from the X arm is showing up at GTRY now (up to 0.5, which is the level we are used to when the Y arm has green locked!). So a rough plan of action:
- Install transmon QPD
- PDH lock green to X arm
- Fix the window situation - as Steve mentioned in an earlier elog, the F.C. cleaning seems to have worked well, but a little remains stuck on the window (though away from where any laser radiation is incident). This is resolved easily enough if we apply one more layer of F.C., but the bottle-neck right now is we are out of PEEK which is what we use to remove the F.C. once dried. Steve thinks a fresh stock should be here in the next couple of days...
- Once 3 is resolved, we can go ahead and install the Oplev.
- Which leaves the lst subsystem, coupling to the fiber and a power monitor for the NPRO. I have resolved to do both these using the 1% transmitted beam after the beamsplitter immediately after the NPRO rather than pick off at the harmonic separator after the doubling oven. I need to do the mode-matching calculation for coupling into the fiber and also adjust the collimating lens...
- Clean-up: make sure cables are tied down, strain-relieved and hooked up to whatever they are supposed to be hooked up to...
|
12096
|
Thu Apr 28 08:49:47 2016 |
Steve | Update | PEM | possible noise sources schedule |
Building: Campus (see attached Map)
Date: Manhole 1 - May 3 through May 5
Manhole 2 – May 6 through May 10
Manhole 2 - May 16 through May 19
Manhole 3 – May 11 through May 19
Time: Noise: 7:00 a.m. To 5:00 p.m.
Access: 24 Hours a day
Interruption: Noise/Vehicular & Pedestrian Access
Storm Drain Manholes
*In order to repair 3 manholes associated with a large storm drain that runs north-south through the campus, work will take place at the
3 manholes shown on the map. This work will interrupt vehicular and pedestrian access on the paths adjacent to the manholes. Though the work at Manholes 1 and 2 will allow vehicular and pedestrian access around the manholes, the work at Manhole 3 will completely block the driveway running south from the southeast corner of Parking Lot 11. Noise will also be created by the repair
|
Attachment 1: Campus_B&W_Map-2.pdf
|
|
12097
|
Thu Apr 28 15:23:11 2016 |
ericq | Update | LSC | Green PDH demod lowpass |
The 2F product out of the mixer is a natural concern when demodulating. However, I think this isn't so big of a deal in our green PDH servos; 420kHz isn't so high of a frequency that the servo amplifiers are bandwidth or slew-rate limited. Furthermore, the amplitude of this line is supressed by the loop somewhat, since it arises from the same field product that the loop is acting on. Measuring the Y end mixer output with a high impedance probe and the AG4395 shows it to be something like -50dBm.
In fact, the main thing that the pomona LPFs are accomplishing right now is filtering the 1F content of the mixer output that arises from the second order sideband creating a signal at 2F, and beating with the LO at (2F-1F)=1F. This line is something like -30dBm (5mVrms) at the mixer output; I can reproduce this amplitude with a back-of-the envelope calculation using a modulation depth of 0.3, 8V out of the PD at DC when unlocked, the mixer datasheet, and the nominal cavity parameters.
The nice thing about this is that we don't need to filter this after the mixer, we can use a [bandpass/lowpass/notch] filter before the mixer (as is done in the LSC demod boards) to filter out the 2F (420kHz) content of the PD signal, which will only introduce some small amount of linear time delay to the PDH loop, instead of the wicked phase loss from the current post-mixer LPF. We can then replace that 70kHz filter with something of lower order or higher corner frequency to win a good deal of phase in the PDH loop. |
12098
|
Thu Apr 28 18:53:05 2016 |
rana | Update | LSC | Green PDH demod lowpass |
OK - but give us a circuit diagram and the expected before/after loop plots. Got to make sure we keep the right impedance from PD to mixer. Some of the Thorlabs PDs have a 50 Ohm instead of 0 Ohm source impedance. Maybe you can try it out now since the green arm is ready. |
12099
|
Fri Apr 29 00:55:46 2016 |
gautam | Update | endtable upgrade | green PDH locked to Xarm |
Using the modulation frequency suggested here, I hooked up the PDH setup at the X-end and succeeded in locking the green to the X arm. I then rotated the HWP after the green Faraday to maximize TRX output, which after a cursory alignment optimization is ~0.2 (I believe we were used to seeing ~0.3 before the end laser went wonky). Obviously much optimization/characterization remains to be done. But for tonight, I am closing the PSL and EX laser shutters and applying first contact to the window once more courtesy more PEEK from Koji's lab in W Bridge. Once this is taken care of, I can install the Oplev tomorrow, and then set about optimizing various things in a systematic way.. MC autolocker has also been disabled...
Side note: for the IR Transmon QPD, we'd like a post that is ~0.75" taller given the difference in beam height from the arm cavity and on the endtable. I will put together a drawing for Steve tomorrow.. |
12100
|
Fri Apr 29 16:05:23 2016 |
gautam | Update | endtable upgrade | Cleaning ETMX vacuum dirty window |
After a second round of F.C. application, I think the window is clean enough and there are no residual F.C. pieces anywhere near the central parts of the window (indeed I think we got most of it off). So I am going to go ahead and install the Oplev.
Quote: |
It looks very promising.
|
|
Attachment 1: IMG_0755.JPG
|
|
12101
|
Fri Apr 29 16:13:36 2016 |
ericq | Update | LSC | Green PDH demod lowpass |
We can get as much, if not more, attenuation of the 1F line in the mixer output that we get from the post-mixer LPF from using the following passive filter between the PD and mixer RF input:

There should still be some kind of LPF after the mixer, but I haven't yet determined what it should be; this will determine how much phase the PDH loop wins. At most, this should win around 25 degrees at 10kHz.
The filter was designed by referencing the "Handbook of Filter Synthesis" by Zverev, looking for an elliptic filter for matched source and load impedences, 40dB min attenuation in the stopband, a stopband frequency that starts at twice the corner frequency, and minimizing the VSWR between the PD and filter in the passband.
In terms of the tables in the book, this means: n=5, rho=2%, theta=30deg, K**2 = 1.0. The dimensionless component values were scaled by the corner frequency of 200kHz, and reference impedence of 50 Ohm. (The corner is a little lower than the real modulation frequency, since the nonzero resistance of the inductors pushes the frequency up a bit)
The ideal capactior values do not correspond to things we have in hand, so I checked our stock and chose the closest value to each one.Unsurprisingly, due to these component substitutions, and the fact that the coilcraft inductors have a resistance of about 7 Ohms, the predicted TF of the realizable filter does not match the design filter exactly. However, the predicition still looks like it will meet the requirement of 40dB of supression of the 2F line in the PD signal. (Since we have tunable inductors, I've used the ideal inductor values in generating the TF. In practice I'll inspect the TF while I tune them)
|
Desired |
Realizable |
C1 |
8.28 nF |
10 nF |
C2 |
1.39 nF |
1.5 nF |
C3 |
19.6 nF |
22 nF |
C4 |
4.22 nF |
4.7 nF |
C5 |
6.08 nF |
6.8 nF |
L2 |
43.1 nH |
32-48 nH + 7 Ohm |
L4 |
34.4 nH |
32-48 nH + 7 Ohm |

[In this TF plot, I've multiplied the real response by 2 to account for the voltage division that occurs with ideal 50 Ohm impedance matching, to make 0dB the reference for proper matching]
The filter's phase delay at the modulation frequency is just about 180, which as a time delay of 5usec works out to 9 degrees of phase loss at 10kHz in the PDH loop. According to some old measurements, the current LPF costs something like 35 degrees at 10k, so this wins at most around 25 degrees, depedent on what LPF we put after the mixer.
LISO source both traces is attached! |
Attachment 3: elp_liso.zip
|
12103
|
Mon May 2 17:11:55 2016 |
rana | Update | COC | RC folding mirrors |
Antonio/Gautam are now developing a more up to date Finesse model of our recycling cavities to see what we can have there before our power recycling gain or cavity geometric stability is compromised. Expect that we will here a progress report on the model on Wednesday.
Some thoughts:
- RC folding mirrors need to be dichroic to allow green beams to get out.
- We should look at the specs Jamie used to get the RC folding mirrors last time and figure out what went wrong / what specs to change.
- T_1064 < 100 ppm. Hopefully < 50 ppm.
- On the AR side, we mainly want low AR for green, but nothing special for 1064, since that's taken care of by the HR.
- How much should we wedge these things?
- Should the wedge be horizontal?
- Can we get someone in Downs to update the optical layout?
- What microroughness do we need?
- The mirrors must be flat, with the 500 m < RoC < 100 km. Part of the Finesse modeling is to figure out what happens if the RoC is in the 300 - 1000 m range. Better stability?
|
12104
|
Mon May 2 19:14:18 2016 |
gautam | Update | endtable upgrade | Optical layout almost complete |
With Steve's help, I installed the Oplev earlier today. I adjusted the positions of the two lenses until I deemed the spot size on the QPD satisfactory by eye. As a quick check, I verified using the DTT template that the UGF is ~5Hz for both pitch and yaw. There is ~300uW of power incident on the QPD (out of ~2mW from the HeNe). In terms of ADC counts, this is ~13,000 counts which is about what we had prior to taking the endtable apart. There are a couple of spots from reflections off the black glass plate in the vacuum chamber, but in general, I think the overall setup is acceptable.
This completes the bulk of the optical layout. The only bits remaining are to couple the IR into the fiber and to install a power monitoring PD. Pictures to follow shortly.
Now that the layout is complete, it remains to optimize various things. My immediate plan is to do the following:
- Maximize green transmission by tweaking alignment. I should also do a quick check using mirror specs to see that the measured transmitted green power compares favourably to what is expected.
- Check the green PDH loop transfer function at the X end - this will allow me to set the gain on the uPDH box systematically.
- Re-establish green beats, check noise performance.
- There are possibly multiple beam dumps that have to be installed. For now, I've made sure that no high power IR beams are incident on the enclosure. But there are a couple of red and green beams that have to be accounted for.
I will also need to upload the layout drawing to reflect the layout finally implemented.
Not directly related:
The ETMx oplev servo is now on. I then wanted to see if I could lock both arms to IR. I've managed to do this successfully - BUT I think there is something wrong with the X arm dither alignment servo. By manually tweaking the alignment sliders on the IFOalign MEDM screen, I can get the IR transmission up to ~0.95. But when I run the dither, it drives the transmission back down to ~0.6, where it plateaus. I will need to investigate further.
GV Edit: There was some confusion while aligning the Oplev input beam as to how the wedge of the ETM is oriented. We believe the wedge is horizontal, but its orientation (i.e. thicker side on the right or left?) was still ambiguous. I've made a roughly-to-scale sketch (attachment #1) of what I think is the correct orientation - which turns out to be in the opposite sense of the schematic pinned up in the office area.. Does this make sense? Is there some schematic/drawing where the wedge orientation is explicitly indicated? My search of the elog/wiki did not yield any.. |
Attachment 1: ETMX_wedge.pdf
|
|
12105
|
Thu May 5 03:05:37 2016 |
gautam | Update | endtable upgrade | ALS status update |
[ericQ, gautam]
Today we spent some time looking into the PDH situation at the X end. A summary of our findings.
- There is something that I don't understand with regards to the modulation signal being sent to the laser PZT via the sum+HPF pomona box - it used to be that with 2Vpp signal from the function generator, we got ~5mVpp signal at the PZT, which with the old specs resulted in a modulation of ~0.12rad. Now, however, I found that there was a need to place a 20dB attenuator after the splitter from the function generator in order to realize a modulation depth of ~0.25 (which is what we aim for, measured by locking to the TEM00 modes of the carrier and sidebands and comparing the ratio of powers). It could be that the PZT capacitance has changed dramatically after the repair. Nevertheless, I still cant reconcile the numbers. We measured the transfer function from the LO input of the pomona box to the output with the PZT connected, and figure there should be ~70dB of attentuation (with the 20dB additional attenuator in place). But this means 1Vpp*0.0003*70rad/V = 0.02rad which is an order of magnitude away from what the ratio of powers suggest. Maybe the measurement technique was not valid. In any case, this setup appears to work, and I'm also able to send +7dBm to the mixer which is what it wants (function generator output is 3Vpp).
- In addition to the above, I found that the demodulated error signal had a peak-to-peak of a few volts. But the PDH servo is designed to have tens of mV at the input. Hence, it was necessary to turn down the gain of the REFL PD to 10dB and add a 20dB attenuator between mixer output and servo input.
- While Johannes and I were investigating this earlier in the afternoon, we found that the waveform going to the laser PZT was weirdly distorted (still kind of sinusoidal in shape, but more rounded, I will put up a picture shortly). This may not be the biggest problem, but perhaps there is a better way to pipe the LO signal to the PZT and mixer than what is currently done.
- We then looked at loop transfer function and spectrum of the control signal. Plots to follow. They look okay.
- I measured the green power coming onto the PSL table. It is ~400uW. After optimizing alignment, the green transmission is ~0.4 according to whatever old normalization we are using.
- We then recovered the X green beatnote and looked at the ALS noise spectrum. Beatnote amplitude at the beat PD is ~ -27dBm. The coherence in the region of a few hundred Hz suggests that some improvements can be made to the PDH situation (the gain of the PDH servo is maxed out at the X end at the moment...). But the bottom line is this is probably good enough to get back to locking...
|
Attachment 1: ALS_noiseSpec_5May2016_2.pdf
|
|
Attachment 2: Coherence_5May2016.pdf
|
|
Attachment 3: image.jpeg
|
|
12106
|
Thu May 5 04:05:03 2016 |
ericq | Update | LSC | Aux X PDH checks |
We took an OLG measurement of the green PDH loop. It seems consistent with past measurements. I've added a trace for the the post-mixer lowpass, to show its contribution to the phase loss. (EDIT: updated with measured LPF TF)

I used this measured OLG and the datasheet laser PZT conversion factor to calibrate the control signal monitor into the AUX laser frequency noise, it looks consistent with the frequency noise measured via the PSL PLL (300 Hz/rtHz @ 100Hz). Above a few tens of kHz, the control signal measurement is all analyzer noise floor, due to the fourth order 70kHz lowpass after the mixer (the peaks change height significantly depending on the analyzer input range, so I don't think they're on the laser). Gautam will follow up with more detailed measurements of both the error and control signals as he noisebudgets, this was just intended as a quick consistency check.

|
12107
|
Thu May 5 14:03:52 2016 |
ericq | Update | LSC | Further Aux X PDH tweaks |
This morning I poked around with the green layout a bit. I found that the iris immediately preceding the viewport was clipping the ingoing green beam too much, opening it up allowed for better coupling to the arm. I also tweaked the positions of the mode matching lenses and did some alignment, and have since been able to achieve GTRX values of around 0.5.
I also removed the 20db attenuator after the mixer, and turned the servo gain way down and was able to lock easily. I then adjusted the gain while measuring the CLG, and set it where the maximum gain peaking was 6dB, which worked out to be a UGF of around 8kHz. On the input monitor, the PDH horn-to-horn voltage going into the VGA is 2.44V, which shouldn't saturate the G=4 preamp stage of the AD8336, which seems ok.
The ALS sensitivity is now approaching the good nominal state:

There remains some things to be done, including comprehensive dumping of all beams at the end table (especially the reflections off of the viewport) and the new filters to replace the current post-mixer LPF, but things look pretty good. |
Attachment 1: 2016-05-05_newals.pdf
|
|
12108
|
Thu May 5 14:05:01 2016 |
rana | Update | endtable upgrade | ALS status update |
All seems very fishy. Its not good to put attenuators and filters in nilly-willy.
- Once the post-PD bandpass has been designed and constructed, you should be able to use whatever PD gain setting gives you the best SNR. There's no need to use more PD gain than necessary; it just reduces the PD bandwidth. What is the input referred current noise of the PD at the different gain settings?
- The open loop mixer output *should* be very large. It should be reduced to mV only when the loop is closed.
- The better way to estimate the modulation depth is to lock the arm on red as usual and then scan the EX laser and look at the green transmission. The FSR is 3.7 MHz, so the SBs should show up well in a narrow scan around the carrier.
- I guess its going to be tough to impedance match the splitter box to the NPRO PZT, since its impedance is all over the place at 200-300 kHz, but you could put a 50 Ohm in-line terminator in there somewhere?
- The Bode plot seems to indicate that we could easily get a 10 kHz UGF and then switch on a Boost. Is the remote Boost switch disabled or always ON? I am suspicious of the plot and think that the coarse trace is probably missing some sharp resonances which will sneakily bite you.
|
12109
|
Thu May 5 21:28:44 2016 |
gautam | Update | endtable upgrade | Innolight PZT capacitance |
I suggested in an earlier elog that after the repair of the NPRO, the PZT capacitance may have changed dramatically. This seems unlikely - I measured the PZT capacitance with the BK Precision LCR meter and found it to be 2.62 nF, which is in excellent agreement with the numbers from elogs 3640 and 4354 - but this makes me wonder how the old setup ever worked. If the PZT capacitance were indeed that value, then for the Pomona box design in elog 4354, and assuming the PM at ~216kHz which was the old modulation frequency was ~30rad/V as suggested by the data in this elog, we would have had a modulation depth of 0.75 if the Function Generator were set to output a Signal at 2Vpp (2Vpp * 0.5 * 0.05 * 30rad/V = 1.5rad pp)! Am I missing something here?
Instead of using an attenuator, we could instead change the capacitor in the pomona box from 47pF mica to 5pF mica to realize a modulation depth of ~0.2 at the new modulation frequency of 231.25 kHz. In any case, as elog 4354 suggests, the phase introduced by this high-pass filter is non-zero at the modulation frequency, so we may also want to install an all-pass filter which will allow us to control the demodulation phase. This should be easy enough to implement with an Op27 and passive components we have in hand...
|
12110
|
Fri May 6 16:42:12 2016 |
ericq | Update | LSC | Green PDH demod lowpass |
I've build the filter, and it seems to have the desired TF shape.

I also re-purposed the 70k lowass to a ~120k lowpass by changing the 68nF caps to 22nF caps, since we still want some post-mixer rolloff.
However, putting the ELPF in the chain caused some weird shapes in the OLG. I still need to get to the bottom of it. However, just with the post-mixer LPF modification, here's what the OLG looks like:

As Rana surmises, we definitely still add a boost and maintain a 10k UGF. I still need to look into the state of the remote boost.... |
12111
|
Fri May 6 19:08:52 2016 |
rana | Update | LSC | Green PDH demod lowpass |
Seems weird to design a PD lowpass with a corner at the modulation frequency. Recall what our strategy is with the other photodetectors we use for PDH servos: bandpass, not low-pass, and the band has to be wide enough to not effect the phase of the servo. |
12112
|
Sat May 7 09:40:40 2016 |
ericq | Update | LSC | Green PDH demod lowpass |
As I was looking at filter designs, it seemed difficult to get 40dB of supression at 2F with a bandpass without going to a pretty high order, which would mean a fair number of lossy inductors.
I'll keep working on it. Maybe we don't need 40dB... |
12113
|
Sun May 8 08:39:21 2016 |
rana | Update | LSC | Green PDH demod lowpass |
Indeed. This is why the LSC PDs have a 2f notch in addition to the 1f resonance. In recent versions, we also put a 2f notch in the feedback of the preamp which comes after the diode but before the mixer. The overall 1f to 2f ratio that we get is in the 50-60 dB region. I don't think we have to go that far with this thing; having a double LC already seems like it should be pretty good, or we could have a single LC bandpass with a 2f notch all in one Pomona box. |
12114
|
Tue May 10 03:44:59 2016 |
ericq | Update | LSC | Relocked |
ALSX noise is solidly within past acceptable performance levels. The DRFPMI was locked on four out of six attempts.
Some housekeeping was done:
- PMC aligned
- Static alignment voltages of X end PZT mirrors offloaded by turning mount screws
- Rough comissioning of AUX X dither alignment
- Locking scripts reverted to AUX X Innolight voltage/temperature sign convention
The recombination of the QPD signals to common / differential is imperfect, and limited how well we could keep the interferometer aligned, since the QPD at X has changed. This needs some daytime work.
Some sensing matrix measurements were made, to be meditated upon for how to 1F the DRMI.
Other to-dos:
- Bandpass + notch combo for green refl PDs
- SRCL, and to a lesser extant, MICH feedforward subtraction (See DARM vs. other length DOF coherence plot below)
- Fiber couple AUX X light
- Make IFO work good

As an aside, Gautam and I noticed numerous green beams coming from inside the vacuum system onto the PSL table. They exist only when green is locked to the arms. Some of them come out at very non-level angles and shine in many places. This doesn't make me feel very happy; I suppose we've been living with it for some time. |
Attachment 1: 2016-05-10_DARMcoherence.pdf
|
|
12115
|
Wed May 11 16:39:01 2016 |
ericq | Update | VAC | c0rga alive, output wonky |
Quote: |
Our last RGA scan is from February 14, 2016 We had a power outage on the 15th
Gautom has not succeded reseting it. The old c0rga computer looks dead. Q may resurrect it, if he can?
|
The c0rga computer was off, I turned it on via front panel button. After running RGAset.py, RGAlogger.py seems to run. However, there are error messages in the output of the plotrgascan MATLAB script; evidiently there are some negative/bogus values in the output.
I'll look into it more tomorrow. |
12116
|
Thu May 12 14:29:58 2016 |
gautam | Update | VAC | RGA back up and running |
It looks like the hardware reset did the trick. Previously, I had just tried ssh-ing into c0rga and rebooting it. At the time, however, Steve and I noticed that the various LEDs on the RGA unit weren't on, as they are supposed to be in the nominal operating state. Today, Steve reported that all LEDs except the RS232 one were on today, so I just tried following the steps in this elog again, looks like things are back up and running. I'm attaching a plot of the scan generated using plotrgascan MATLAB script, it looks comparable to the plot in elog 11697, which if I remember right, was acceptable.
Unless there is some reason we want to keep this c0rga machine, I will recommission one of the spare Raspberry Pis lying around to interface with the RGA scanner when I get the time...
Quote: |
Quote: |
Our last RGA scan is from February 14, 2016 We had a power outage on the 15th
Gautom has not succeded reseting it. The old c0rga computer looks dead. Q may resurrect it, if he can?
|
The c0rga computer was off, I turned it on via front panel button. After running RGAset.py, RGAlogger.py seems to run. However, there are error messages in the output of the plotrgascan MATLAB script; evidiently there are some negative/bogus values in the output.
I'll look into it more tomorrow.
|
This is a cold scan. |
Attachment 1: RGAscan_12May2016.png
|
|
12117
|
Sun May 15 19:48:08 2016 |
Steve | Update | VAC | run out of N2 |
3-4 hrs ago we run out of nitrogen. We are back to Vacuum Normal
|
Attachment 1: noN2.png
|
|
12118
|
Tue May 17 05:50:43 2016 |
Varun Kelkar | Update | General | SURF 2016 |
Hello, I am Varun Kelkar. I will be working at the 40m lab as a SURF student this summer with Eric Quintero on Audio processing for real time control system signals. This week I will mostly be working on implementing basic DSP C-code offline. Currently I am trying to write a code for noise whitening.
-Varun |
12119
|
Tue May 17 14:46:51 2016 |
Steve | Update | VAC | RGA scan at day 595 |
We have good RGA scan now. There was no scan for 3 months. |
Attachment 1: RGAscan595d.png
|
|
Attachment 2: pd78-560Hz-d600.png
|
|
12120
|
Wed May 18 01:10:22 2016 |
gautam | Update | COC | Finesse modelling |
I've been working on putting together a Finesse model for the current 40m configuration. The idea was to see if I could reproduce a model that is in agreement with what we have been seeing during the recent DRFPMI locks. With Antonio and EricQs help, I've been making slow progress in my forays into Finesse and pyKat. Here is a summary of what I have so far.
- Arm lengths were taken from some recent measurements done by yutaro and me
- Recycling cavity lengths were taken from Gabriele's elog 9590 - it is likely that the lengths I used have errors ~1cm - more on this later. Furthermore, I've tried to incorporate the flipped RC folding mirrors - the point being to see if I can recover, for example, a power recycling gain of ~7 which is what was observed for the recent DRFPMI locks.
- I used Yutaro's most recent arm loss numbers, and distributed it equally between ITM and ETM for modeling purposes.
- For all other optics, I assumed a generic loss number of 25ppm for each surface
Having put together the .kat file (code attached, but this is probably useless, the new model with RC folding mirrors the right way will be what is relevant), I was able to recover a power recycling gain of ~7.5. The arm transmission at full lock also matches the expected value (125*80uW ~ 10mW) based on a recent measurement I did while putting the X endtable together. I also tuned the arm losses to see (qualitatively) that the power recycling gain tracked this curve by Yutaro. EricQ suggested I do a few more checks:
- Set PRM reflectivity to 0, scan ETMs and look at the transmission - attachment #1 suggests the linewidth is as we expect
- Set ETM reflectivity to 0, scan PRM - attachment #2 suggests a Finesse of ~60 for the PRC which sounds about right
- Set ETM reflectivity to 0, scan SRM and verify that only the 55 MHz sidebands resonate - Attachment #3
Conclusion: It doesn't look like I've done anything crazy. So unless anyone thinks there are any further checks I should do on this "toy" model, I will start putting together the "correct" model - using RC folding mirrors that are oriented the right way, and using the "ideal" RC cavity lengths as detailed on this wiki page. The plan of action then is
- Evaluating the mode-matching integrals between the PRC and the arm cavities as a function of the radius of curvature of PR2 and PR3
- Same as above for the SRC
- PRC gain as a function of RoC of folding mirrors
- Mode overlap between the modes from the two arm cavities as a function of the RoC of the two ETMs (actually I guess we can fix RoC of ETMy and just vary RoC of ETMx).
Sidenote to self: It would be nice to consolidate the most recent cavity length measurements in one place sometime... |
Attachment 1: arms.pdf
|
|
Attachment 2: PRC.pdf
|
|
Attachment 3: SRC.pdf
|
|
Attachment 4: Finesse_model.zip
|
12121
|
Wed May 18 17:42:52 2016 |
Varun | Update | General | SURF 2016 |
Finished writing the code on whitening. I have to still test it. uploaded on github noise cancellation repo. @eric could you give me some data of noise power spectral density for testing the code?
-Varun
Quote: |
Hello, I am Varun Kelkar. I will be working at the 40m lab as a SURF student this summer with Eric Quintero on Audio processing for real time control system signals. This week I will mostly be working on implementing basic DSP C-code offline. Currently I am trying to write a code for noise whitening.
-Varun
|
|
12122
|
Thu May 19 16:29:20 2016 |
Steve | Update | endtable upgrade | Optical layout almost complete |
|
Attachment 1: ETMX_4x3_closed.jpg
|
|
Attachment 2: sealedETMXenclosure.jpg
|
|
12123
|
Fri May 20 00:06:19 2016 |
Varun | Update | General | SURF 2016 |
I have written a basic version of AGC, and have done some tests with a data file. will do tests on whitening and agc today. Also, today I have to go to the SSN office. Hence will be late.
-Varun
Quote: |
Finished writing the code on whitening. I have to still test it. uploaded on github noise cancellation repo. @eric could you give me some data of noise power spectral density for testing the code?
-Varun
Quote: |
Hello, I am Varun Kelkar. I will be working at the 40m lab as a SURF student this summer with Eric Quintero on Audio processing for real time control system signals. This week I will mostly be working on implementing basic DSP C-code offline. Currently I am trying to write a code for noise whitening.
-Varun
|
|
|
12124
|
Fri May 20 17:36:06 2016 |
gautam | Update | LSC | New stands for TransMon/Oplev QPDs |
As we realized during the EX table switch, the transmitted beam height from the arm is not exactly 4" relative to the endtable, it is more like 4.75" at the X-end (yet to be investigated at the Y-end). As a result, the present configuration involves the steering optics immediately before the Oplev and TransMon QPDs sending the beam downwards at about 5 degrees. Although this isn't an extremely large angle, we would like to have things more level. For this purpose, Steve has ordered some Aluminium I-beams (1/2 " thick) which we can cut to size as we require. The idea is to have the QPD enclosures mounted on these beams and then clamped to the table. One concern was electrical isolation - but Steve thinks Delrin washers between the QPD enclosure and the mount will suffice. We will move ahead with getting these machined once I investigate the situation at the Y end as well.. The I beams should be here sometime next week... |
12127
|
Mon May 23 17:47:51 2016 |
Varun | Update | General | SURF 2016 |
Tested the AGC today with LSC cavity transmission signal and error signal. Not in real time still.
Key to attachments:
cav_tr-eps-converted-to.pdf: LSC cavity transmission signal input
cav_tr_out-eps-converted-to.pdf: LSC cavity transmission signal, output of the AGC. |
Attachment 1: cav_tr-eps-converted-to.pdf
|
|
Attachment 2: cav_tr_out-eps-converted-to.pdf
|
|
Attachment 3: err-eps-converted-to.pdf
|
|
Attachment 4: err_out-eps-converted-to.pdf
|
|
12129
|
Tue May 24 17:55:17 2016 |
Varun | Update | Electronics | Using Altium |
Contacted Charles regarding use of Altium. Got to know that Altium is installed on cit40m iMac in Win7 on VirtualBox. Had to update Virtualbox to get it working. Altium now works for sometime, but then fails, saying that it is unlicensed. |
12130
|
Tue May 24 22:49:02 2016 |
gautam | Update | COC | Finesse modelling - mode overlap scans |
Summary:
Having played around with a toy finesse model, I went about setting up a model in which the RC folding mirrors are not flipped. I then repeated the low-level tests detailed in the earlier elog, after which I ran a few spatial mode overlap analyses, the results of which are presented here. It remains to do a stability analysis.
Overview of model parameters (more details to follow):
- PRC length = 6.7727m (chosen using
, N=0 - I adjusted the position of the PRM to realize this length in the model, while leaving all the other vertex optics in the same positions as in elog 9590
- SRC length = 5.4182 (chosen using
but not , M and N being integers, for M=2 - as above, I adjusted the position of the SRM to realize this in the model, while leaving all other vertex optics in the same positions as in elog 9590. It remains to be verified if it is physically possible to realize these dimensions in vacuum without any beam clipping etc but I think it should be possible seeing as the PRM and SRM had to be moved by less than 2cm from their current positions..
- For the losses, I used the most recent numbers we have where applicable, and put in generic 25ppm loss for all the folding mirrors/BS/AR surfaces of arm cavity mirrors/PRM/SRM. Arm round trip loss was equally distributed between ITMs and ETMs
- Arm lengths used: L_X = 37.79m, L_Y = 37.81m
- To set the "tunings" of the various mirrors, I played around with a few configurations to see where the various fields resonated - it turns out that for PRM, ITMX, ITMY, ETMX and ETMY, the "phase" in the .kat file can be set as 0. while that for the SRM can be set as 90. In the full L1/H1 interferometer .kat files, these are tuned even further to the (tenth?!) decimal place, but I think these values suffice for out purposes.
Results (general note: positive RoC in these plots mean a concave surface as seen by the beam):
- Attachments #1, #2 and #3 reproduce the low-level tests performed earlier for this updated model - i.e. I look at the arm transmission with no PRM/SRM, circulating PRC power with no ETMs, and circulating SRC power with no ETMs. Everything looks consistent here... In Attachment #2, there is no legend, but the (almost overlapping) red and green lines are meant to denote the +f1 and +f2 sidebands.
- Attachments #4 and #5 are a summary of the mode-overlap scans for the PRC and SRC. What I did was to vary the radius of curvature of the RC mirrors (finesse only allows you to vary Rcx and Rcy, so I varied both simultaneously) and calculate the mode overlap between the appropriate pairs of cavities (e.g. PRX and XARM) in the tangential and saggital planes. The take-away here is that there is ~5% mode-mismatch going from an RoC of 1000m to 300m. I've also indicated the sag corresponding to a given RoC - these are pretty tiny, I wonder if it is possible to realize a sag of 1um? I suppose it is given that I've regularly seen specs of surface roughness of lambda/10?
- Attachment #6 shows the PRC gain (calculated as T_PRC * (transmitted arm power with PRM / transmitted arm power without PRM) as a function of the RoC of PR2 and PR3. As a sanity check, I repeated this calculation with lossless HR surfaces (but with nominal 25ppm losses for AR surfaces of ITMs, and BS etc), shown in Attachment #7. I think these make sense too...
- Attachment #8 - in order to investigate possible mode mismatch between the arm modes due to different radii of curvature of the ETMs, I kept the ETMY RoC fixed at 57.6m and varied the ETMY RoC between 50m and 70m (here, I've plotted the mode matching efficiency as a function of the RoC of the ETM in the X and Y directions separately - the mode overlap is computed as
where x and y denote the overlap in the tangential and saggital planes respectively. It would seem that we only lose at most a couple of percent even if the RoCs are mismatched by up to 10m...
- Attachment #9 - .kat file and the various pykat scripts used to generate these plots...
Next step is to carry out a stability analysis... |
Attachment 1: armTransmission.pdf
|
|
Attachment 2: prcFSR.pdf
|
|
Attachment 3: srcTransmission.pdf
|
|
Attachment 4: modeMatchPRX.pdf
|
|
Attachment 5: modeMatchSRX.pdf
|
|
Attachment 6: PRCgainScan.pdf
|
|
Attachment 7: PRCgainLossless.pdf
|
|
Attachment 8: armModeMatchScan.pdf
|
|
Attachment 9: Finesse_files.zip
|
12131
|
Tue May 24 23:17:37 2016 |
ericq | Update | COC | Finesse modelling - mode overlap scans |
I think you should use the current actual PRC & SRC cavity lengths as measured, as it would be simplest to simply replace the folding mirror optics without changing the macroscopic lengths / optic positions. (EDIT: Gautam rightly points out that we have to move things around regardless, since our current lengths include propagation through the folding mirror subtrates)
Moreover, the recycling cavity lengths you posted are not the right "ideal" lengths to use, as they do not account for the complex reflectivities of the sidebands off of the arm cavities (I have made this mistake myself). See this 40m wiki page for details.
In short, given our current modulation frequency, the ideal lengths to use would be:
- Ideal arm length of 37.795 m
- Ideal PRC length of 6.753 m
- Ideal SRC length of 5.399 m
These are the lengths that the recycling cavity optics were positioned for (though we did not achieve them perfectly). If you do a finer PRC/SRC length scan around the DRFPMI resonance of your model, you would presumably see some undesired sideband splitting. |
12132
|
Wed May 25 02:54:09 2016 |
ericq | Update | General | Odds and ends |
WFS locking point seemed degraded; I hand aligned and reset the WFS offsets as usual.
ITMX oplev recentered. While doing so, I noticed an ETMX excursion rear its head for the first time in a long while :
There was no active length control on ETMX, only OSEM damping + oplevs. Afterwards, its still moving around with only local damping on. I'm leaving the oplevs off for now. |
12133
|
Wed May 25 08:32:55 2016 |
Steve | Update | SUS | local EQ 3.5m |
Local EQ 3.5 mag at 2:28 UTC May 24, 2016 Rancho Cucamonga, Ca.....no damage
|
Attachment 1: 3.5Cucam.png
|
|
Attachment 2: local3.5cucam.png
|
|
12134
|
Wed May 25 11:51:40 2016 |
Steve | Update | safety | SURF 2016 safety |
Quote: |
Hello, I am Varun Kelkar. I will be working at the 40m lab as a SURF student this summer with Eric Quintero on Audio processing for real time control system signals. This week I will mostly be working on implementing basic DSP C-code offline. Currently I am trying to write a code for noise whitening.
-Varun
|
Varun has received 40m specific basic safety training today. |
12135
|
Wed May 25 14:21:29 2016 |
Max Isi | Update | General | Summary page configuration |
I have modified the c1summary.ini and c1lsc.ini configuration files slightly to avoid overloading the system and remove the errors that were preventing plots from being updated after certain time in the day.
The changes made are the following:
1- all high-resolution spectra from the Summary and LSC tabs are now computed for each state (X-arm locked, Y-arm locked, IFO locked, all);
2- I've removed MICH, PRCL & SRCL from the summary spectrum (those can still be found in the LSC tab);
3- I've split LSC into two subtabs.
The reason for these changes is that having high resolution (raw channels, 16kHz) spectra for multiple (>3) channels on a single tab requires a *lot* of memory to process. As a result, those jobs were failing in a way that blocked the queue, so even other "healthy" tabs could not be updated.
My changes, reflected from May 25 on, should hopefully fix this. As always, feel free to re organize the ini files to make the pages more useful to you, but keep in mind that we cannot support multiple high resolution spectra on a single tab, as explained above. |
12136
|
Wed May 25 14:29:31 2016 |
Varun | Update | General | SURF 2016 |
Edited the AGC to include overlapping frames yesterday. forgot to put an elog on it!
Quote: |
Tested the AGC today with LSC cavity transmission signal and error signal. Not in real time still.
Key to attachments:
cav_tr-eps-converted-to.pdf: LSC cavity transmission signal input
cav_tr_out-eps-converted-to.pdf: LSC cavity transmission signal, output of the AGC.
|
|
12137
|
Thu May 26 18:10:48 2016 |
Varun | Update | General | SURF 2016 |
Wrote and tested a function for downconversion. It contains a mixer with a sinusoidal input for modulation with the desired frequency and a 2nd order butterworth low pass filter to remove the higher frequency-shifted part of the modulated signal. I have tested this with input of 2kHz giving a good output of 200 Hz on the speaker. Codes are uploaded on github, will update the real time document tomorrow.
-Varun
Quote: |
Edited the AGC to include overlapping frames yesterday. forgot to put an elog on it!
Quote: |
Tested the AGC today with LSC cavity transmission signal and error signal. Not in real time still.
Key to attachments:
cav_tr-eps-converted-to.pdf: LSC cavity transmission signal input
cav_tr_out-eps-converted-to.pdf: LSC cavity transmission signal, output of the AGC.
|
|
|
Attachment 1: input.png
|
|
Attachment 2: output.png
|
|
12138
|
Fri May 27 02:52:53 2016 |
ericq | Update | LSC | Restoring high BW single arm control |
I've been futzing with the common mode servo, trying to engage the AO path with POY for high bandwidth control of a single arm lock. I'm able to pull in the crossover and get a nice loop shape, but keep getting tripped up by the offset glitches from the CM board gain steps, so can't get much more than a 1kHz UGF.
As yutaro measured, these can be especially nasty at the major carrier transitions (i.e. something like 0111->1000). This happens at the +15->+16dB input gain step; the offset step is ~200x larger than the in-loop error signal RMS, so obviously there is no hope of keeping the loop engaged when recieving this kind of kick. Neither of the CM board inputs are immune from this, as I have empirically discovered. I can turn down the initial input gain to try and avoid this step occuring anywhere in the sequence, but then the SNR at high frequencies get terrible and I inject all kinds of crud into the mode cleaner, making the PC drive furious.
I think we're able to escape this when locking the full IFO because the voltages coming out of REFL11 are so much larger than the puny POY signals so the input-referred glitches aren't as bad. I think in the past, we used AS55 with a misaligned ITMX for this kind of single arm thing, which probably gives better SNR, but the whole point of this is to keep the X arm aligned and lock it to the Y-arm stabilized PSL. |
12139
|
Fri May 27 11:54:22 2016 |
Varun | Update | General | Package delivery |
A package labelled 'UPS Ground' has arrived.
-Varun |
12140
|
Mon May 30 18:19:50 2016 |
Johannes | Update | CDS | ASS medm screen update |
I noticed that the TRY button in the ASS main screen was linking to LSC_TRX instead of LSC_TRY. Gautam fixed it. |