40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 221 of 341  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  11921   Fri Jan 8 14:47:33 2016 ericqUpdateLSCAUX Y Freq Noise measured

Here are some results from measuring the PSL / AUX Y beat. 

With the Y end laser, I was able to lock the PLL with a lower actuation range (1.6MHz/V), and with the PSL in both the free-running and MCL locked configurations. (In the latter, I had to do a bit of human-turning-knob servo to keep the control signal from running away). I also took a spectrum with the marconi detuned from the beat frequency, to estimate the noise from the PD+mixer+SR560. 

It looks like the AUX X laser is about 3 times noisier than the Y, though the Y laser looks more like a 10^5 noise-frequency product, whereas I thought we needed 10^4. 

Gautam is investigating the PSL / AUX PSL beat with Koji's setup now. 

Attachment 1: AUX_freqnoises.pdf
AUX_freqnoises.pdf
Attachment 2: AUXY_Jan8.zip
  11922   Fri Jan 8 20:02:49 2016 ranaUpdateLSCAUX Y Freq Noise measured

Unless this is the limit from the way you guys set up the PLL, it seems like there's no difference between the two lasers that's of any import. So then the locking problem has been something else all along - perhaps its noise in the X-PDF lock somehow? PDH box oscillations?

  11924   Sat Jan 9 00:39:15 2016 gautamUpdateLSCAUX Y Freq Noise re-measured
Quote:

With the Y end laser, I was able to lock the PLL with a lower actuation range (1.6MHz/V), and with the PSL in both the free-running and MCL locked configurations.

I took spectra (attached) with the same actuation range (3.2 MHz/V) for the AUX X+PSL and AUX Y+PSL combinations (PSL shutter closed) just to keep things consistent. It looks like there is hardly any difference between the two combinations - could the apparent factor of 3 worse performance of the X end laser have been due to different actuation ranges on the Marconi? 

I've not managed to take a spectrum for the proposed replacement Lightwave laser on the PSL table, though with Eric's help, I've managed to find the beatnote (at a temperature of 53.0195 degrees). I had to do some minor alignment tweaking for this purpose on the PSL table - the only optics I touched were the ones in the pink beam path in attachments 1 and 2 in this elog (the setup used to make the measurement is also qualitatively similar to attachment 3 in the same elog, except for the fact that we are feeding back to the Marconi and not the laser - a detailed sketch with specific components used will be put up later). I'll try and measure the frequency noise of this laser as well over the weekend and put up some spectra. 

With regards to possibly switching out the Lightwave on the PSL table for the (faulty?) Innolight at the X end, I've verified the following:

  • The beam-height from the Lightwave on the mount it is currently sitting on is the same as that from the Innolight on the X end table.
  • There is sufficient space on the X end table to house the Lightwave laser+mount

It remains to characterize the beam coming out from the Lightwave laser and do a mode matching calculation to see if we can use the same optics currently in place (with slight rearrangement) to realize a satisfactory mode-matching solution - I've obtained a beam profiler to do this from Liyuan and have the software setup, but have yet to do the beam scan - the plan is to do this on the SP table, but we've put off moving the Lightwave laser off the PSL table until we (i) establish conclusively that the X end laser is malfunctioning and (ii) check the frequency nosie of the Lightwave relative to the Aux lasers currently at the ends. 

The area around the Marconi is in a little disarray at the moment with a bunch of cables, SR560s, analyzers etc - I didn't want to disconnect the measurement setup till we're done with it. I have however turned both IR beat PDs on the PSL table off, and have reconnected the Marconi output to the Frequency Generation Unit and have set the carrier back to 11.066209MHz, +13dBm. 

Attachment 1: AuxPLL.pdf
AuxPLL.pdf
  11925   Mon Jan 11 19:01:56 2016 gautamUpdateLSCPLL Marconi Investigation

EDIT 01/12/2016 6PM: I've updated the plots of the in-loop spectra such that they are calibrated throughout the entire domain now. I did so by inferring the closed-loop transfer function (G/(1-G)) from the measured open-loop transfer function (G), and then fitting the inferred TF using vectfit4 (2 poles). The spectra were calibrated by multiplying the measured spectra by the magnitude of the fitted analytic TF at the frequency of interest.

EricQ brought back one of the Marconis that was borrowed by the Cryo lab to the 40m today (it is a 2023B - the Marconi used for all previous measurements in this thread was 2023A). Koji had suggested investigating the frequency noise injected into the PLL by the Marconi, and I spent some time investigating this today. We tried to mimic the measurement setup used for the earlier measurements as closely as possible. One Marconi was used as a signal source, the other as the LO for the PLL loop. All measurements were done with the carrier on the signal Marconi set to 310MHz (since all our previous measurements were done around this value). We synced the two Marconis by means of the "Frequency Standard" BNC connector on the rear panel (having selected the appropriate In/Out configurations digitally first). Two combinations were investigated - with either Marconi as LO and signal source. For each combination, I adjusted the FM gain on the Marconi (D in the plot legends) and the overall control gain on the SR560 (G in the plot legends) such that their product remained approximately constant. I measured the PLL OLG at each pair to make sure the loop shape was the same throughout all trials. Here are the descriptions of the attached plots:

Attachment #1: 2023A as LO, 2023B as source, measured OLGs

Measured OLG for the various combinations of FM gain and SR560 gain tested. The UGF is approximately 30kHz for all combinations - the exceptions being D 1.6MHz, G=1e4 and D=3.2MHz, G=1e4. I took the latter two measurements just because these end up being the limiting values of D for different carrier frequencies on the Marconi.

Attachment #2: 2023A as LO, 2023B as source, measured spectra of control signal (uncalibrated above 30kHz)

I took the spectra down to 2Hz, in two ranges, and these are the stitched versions. 

Attachment #3: 2023B as LO, 2023A as source, measured OLGs

Attachment #4: 2023B as LO, 2023A as source, measured spectra of control signal (uncalibrated above 30kHz)

So it appears that there is some difference between the two Marconis? Also, if the frequency noise ASD-frequency product is 10^4 for a healthy NPRO, these plots suggest that we should perhaps operate at a lower value of D than the 3.2MHz/V we have been using thus far? 

As a quick trial, I also took quick spectra of the PLL control signals for the PSL+Aux X and PSL+Aux Y beat signals, with the 2023B as the LO (Attachment #5). The other difference is that I have plotted the spectrum down to 1 Hz (they are uncalibrated above 30Hz). The PSL+Y combination actually looks like what I would expect for an NPRO (for example, see page 2 of the datasheet of the Innolight Mephisto) particularly at lower frequencies - not sure what to make of the PSL+X combination. Also, I noticed that the amplitude of the PSL+Y beatnote was going through some large-amplitude (beat-note fluctuates between -8dBm and -20dBm) but low frequency (period ~10mins) oscillations. This has been observed before, not sure why its happening though. 

More investigations to be done later tonight.

Attachment 1: 2023ALockedto2023B.pdf
2023ALockedto2023B.pdf
Attachment 2: 2023ALockedto2023B_spectra.pdf
2023ALockedto2023B_spectra.pdf
Attachment 3: 2023BLockedto2023A.pdf
2023BLockedto2023A.pdf
Attachment 4: 2023BLockedto2023A_spectra.pdf
2023BLockedto2023A_spectra.pdf
Attachment 5: TestSpectra.pdf
TestSpectra.pdf
Attachment 6: 2016_01_AUXLaser.tar.gz
  11926   Tue Jan 12 03:03:55 2016 ericqUpdateLSCFrequently making noise

Gautam will soon follow up with detailed analysis, but here is a brief summary of some of our activities and findings.

  • Two Marconis were beat together in various ways, we figured the noise added by turning on external modulation didn't make us happy. 
  • I locked the AUX X laser to the PSL via PZT. I'm more likely to believe we're seeing real broadband laser noise in this configuration; locking the the PSL laser to the IMC brought the noise down in a reasonable way. The PLL bandwidth was a smidge over 100k.
  • We saw a factor ~6 increase in noise when changing the diode current from 1.8 to 1.96A. We'll be following this up at more temperatures and currents soon. 
  • Gautam will verify the AUX X laser PZT calibration tomorrow, and post calibrated spectra of this increase. 

Please note that there is a long BNC cable still laid out from the IOO rack area to the X end table; watch your step!

  11929   Tue Jan 12 19:38:31 2016 gautamUpdateLSCFrequently making noise

EDITS 15Jan:

  1. Schematic of test setup added (Attachment #5). Note that the UGF measurements were made with the LPF and gain on the 'wrong' SR560, in a way defeating the purpose of having 2 SR560s in the setup. I only realised this after taking the measuements. But having done the loop algebra, I believe we can extract the necessary information, which is what has been done in subsequent plots...
  2. Koji pointed out that UGFs of ~100kHz was probably too high - this is when I took a closer look at the setup and realised the remarks made above in point 1. I realised we were in fact measuring the 'Process' open-loop TF. We can recover the loop TF by measuring the controller TF (which I did, see Attachment #3). The UGF for the PSL+X PLL loop is ~7.5kHz while that for PSL+Y is ~22kHz (both with a 1Hz LP on the SR560 and gain of x200).
  3. During the above investigations, I found that the measured TF for a 1Hz LP on the SR560 is weird - there seems to be a zero around 5kHz which gives some phase lead where one would expect a uniformly decaying gain and phase to be -90 degrees. Eric and I confirmed this behavioud on another SR560. Low-pass at 10kHz and high-pass at 1kHz seem to work fine. I will investigate this further when I get the time. Anyhow I don't think this affects anything as long as we measure the correct OLTF. It is still not clear to me why we even need this to lock the PLL...
  4. All the spectra (Attachment #4 and #5) are now calibrated taking into account the loop TF. I've added another panel with the spectra in V/rtHz as measured on the SR785, along with the SR560 output noise. I don't think any of the conclusions below are affected by these edits.

Summary:

I took several measurements today using the revised PLL scheme of using the Marconi just as an LO, and actuating on the Laser PZT to keep the PLL locked (I will put up a sketch soon). On the evidence of the attached plots (spectra of PLL control signal), I guess we can conclude the following:

  1. The AUX X laser's frequency noise performance is consistent with the levels expected from 'typical' NPRO numbers (and the datasheet), and is more or less consistent across different diode currents/crystal temperatures (? see below...).
  2. The diode current should be set to something less than 2.00 A
  3. Qualitatively, there is a difference in the shape of the spectra between the PSL+X and PSL+Y combinations above a couple of kHz. I don't know why we see this.

Attachment #2: Measured OLG of PLL for the PSL+X and PSL+Y combinations. The UGF in both cases looks to be above 100 kHz, so I didn't do any calibration for the spectra attached. The gain on the SR560 was set to 200 for all measurements.

Attachment #3: Measured spectra of PLL control signal for various diode currents, with one reading from the PSL+Y combination plotted for comparison. When we took some data last night, Eric noted that there was a factor of ~6 increase in the overall frequency spectrum level at higher currents, I will update the plots with last night's data as well shortly. I found it hardest to keep the PLL locked at a diode current of 2.00 A across all measurements.

Attachment #4: Measured spectra of PLL control signal at two different crystal temperatures. There does not seem to be any significant dependance on temperature, although I did only do the measurement at two temperatures.

Attachment #4 Attachment #1All the data used to make these plots (plus some that have yet to be added to the plots, I will update them).

Misc notes:

  • All measurements taken with two free-running lasers (PSL shutter closed)
  • The SR560 noise was measured with the input on the SR560 set to ground. 
  • In order to go from V/rtHz to Hz/rtHz on the plots, I used 1MHz/V for the X-end laser (which I verified by a quick measurement today to be approximately correct) and 4.6 MHz/V for the Y-end laser, based on an earlier measurement. 
  • I re-routed the long BNC cable to the Y-end, have yet to remove it. The BNC from the PDH setup at the X-end has been re-attached to the X-end NPRO.

Unrelated to this work:

When I came in this afternoon, I noticed that the PMC was unlocked. The usual procedure of turning the servo gain to -10dB and playing around with the DC output adjust slider on the MEDM screen did not work. Eric toggled a few buttons on the MEDM screen after which we were able to relock the PMC using the DC output adjust slider.

Attachment 1: 2016_01_AUXLaser.tar.gz
Attachment 2: OLGs.pdf
OLGs.pdf
Attachment 3: variedCurrent.pdf
variedCurrent.pdf
Attachment 4: variedTemp.pdf
variedTemp.pdf
Attachment 5: PLL_setup.pdf
PLL_setup.pdf
  11930   Wed Jan 13 18:36:00 2016 gautamUpdateLSCrestoration of green beat electronics

In preparation for tonight's work, I did the following:

On the PSL table:

  • Powered the RF amplifiers for the green beat signal on
  • Reconnected the outputs of the Green beat PDs to the RF amplifiers
  • Restored wiring in the fiber box such that both IR beats go to the frequency counter.

At the IOO Rack area:

  • Restored wiring to the frequency counter module such that the IR beats from both arms go to the respective channels
  • Partially cleaned up the setup used for measuring AUX laser frequency noise - moved the SR785 to the X end along with one SR560 so that we can measure the end PDH OLTF
  • Brought the HP network analyzer back to the control room so that we can view the green beatnotes.

At the X-end:

  • Turned the function generator used for PDH locking back on
  • Checked that the AUX laser diode current is 1.90 A, and the crystal temperature is ~47.5 degrees, both of which I think are "good" values from our AUX laser frequency noise measurements
  • Did some minor manual alignment of the PZT mirrors

At the Y-end:

  • Restored the BNC connection from the PDH box to the laser's "FAST" control input. The long BNC cable used for the PLL is still running along the Y-arm, I will clean this up later.

Having done all this, I checked the green transmission levels for both arms (PSL green shutter closed, after running ASS to maximize IR transmission). GTRY is close to what I remember (~0.40) while the best I could get GTRX to is ~0.12 (I seem to remember it being almost double this value - maybe the alignment onto the beat PD has to be improved?). Also, the amplitudes of the beatnotes on the network analyzer are ~-50dBm, and I seem to remember it being more like -25dBm, so maybe the alignment on the PD is the issue? I will investigate further in the evening. It remains to measure the OLTF of the X-end PDH as well.

  11931   Thu Jan 14 02:33:37 2016 ericqUpdateLSCALSX Noise still anomalously high

[ericq, Gautam]

We checked the UGF of the AUX X PDH servo, found a ~6kHz UGF with ~45 degree phase margin, with the gain dial maxed out at 10.0. Laser current is at 1.90, direct IR output is ~300mW.

We recovered ALS readout of IR-locked arms. While the GTRX seemed low, after touching up the beam alignment, the DFD was reporting a healthy amount of signal. ALSY was perfectly nominal. 

ALSX was a good deal higher than usual. Furthermore, there's a weird shape around ~1kHz that I can't explain at this point. It's present in both the IR and green beats. I don't suspect the DFD electronics, because the Y beat came through fine. The peak has moderate coherence with the AUX X PDH error signal (0.5 or so), but the shape of the PDH error signal is mostly smooth in the band in which the phase tracker output is wonky, but a hint of the bump is present. 

Turning the PDH loop gain down increases the power spectrum of the error signal, obviously, but also smoothens out the phase tracker output. The PDH error signal spectrum in the G=10 case via DTT is drowning in ADC noise a bit, so we grabbed it's spectrum with the SR785 (attachment #2, ASD in V/rtHz), to show the smoothness thereof.

Finally, we took the X PDH box to the Y end to see how ALSY would perform, to see if the box was to blame. Right off the bat, when examining the spectrum of error signal with the X box, we see many large peaks in the tens of kHz, which are not present at the same gain with the Y PDH box. Some opamp oscillation shenanigans may be afoot... BUUUUUT: when swapping the Y PDH box into the X PDH setup, the ~1kHz bump is identical. ugh

Attachment 1: 2016-01-14_ALSXspectra.pdf
2016-01-14_ALSXspectra.pdf
Attachment 2: PDHsig.pdf
PDHsig.pdf
  11937   Tue Jan 19 17:54:39 2016 gautamUpdateLSCALSX Noise still anomalously high

While carrying out my end-table power investigations, I decided to take a quick look at the out-of-loop ALSX noise - see the attached plot. The feature at ~1kHz seems less prominent (factor of 2?) now, though its still present, and the overall noise above a few tens of Hz is still much higher than the reference. The green transmission was maximized to ~0.19 before this spectrum was taken.

EDIT 1130pm: 

We managed to access the trends for the green reflected and transmitted powers from a couple of months back when things were in their nominal state - see Attachment #2 for the situation then. For the X arm, the green reflected power has gone down from ~1300 counts (November 2015) to ~600 counts (january 2016) when locked to the arm and alignment is optimized. The corresponding numbers for the green transmitted powers (PSL + End Laser) are 0.47 (November 2015) and ~0.18 (January 2016). This seems to be a pretty dramatic change over just two months. For the Y-arm, the numbers are: ~3500 counts (Green REFL, Nov 2015), ~3500 counts (Green REFL, Jan 2016) ~1.3 (Green Trans, Nov 2015), ~1 (Green Trans, Jan 2016). So it definitely looks like something has changed dramatically with the X-end setup, while the Y-end seems consistent with what we had a couple of months ago...

Attachment 1: 2016_01_19_ALS_OutOfLoop.pdf
2016_01_19_ALS_OutOfLoop.pdf
Attachment 2: Green_Locking_Trends.png
Green_Locking_Trends.png
  11938   Wed Jan 20 02:53:18 2016 ericqUpdateLSCHopeful signs

[ericq, Gautam]

We gave DRFPMI locking a shot, with the ALS out-of-loop noises as attached. I figured the ALSX noise might be tolerable. 

After the usual alignment pains, we got to DRMI holding while buzzing around resonance. Recall that we have not locked since Koji's repair of the LO levels in the IMC loop, so the proper AO gains are a little up in the air right now. There were hopeful indications of arm powers stabilizing, but we were not able to make it stick yet. This is perhaps consistent with the ALSX noise making things harder, but not neccesarily impossible; we assuredly still want to fix the current situation but perhaps we can still lock.

On a brighter note, I've only noticed one brief EPICS freeze all night. In addition, the wall StripTools seem totally contiuous since ~4pm, whereas I'm used to seeing some blocky shapes particularly in the seismic rainbow. Could this possibly mean that the old WiFi router was somehow involved in all this? 

Attachment 1: 2016-01-20_ALSOOL.pdf
2016-01-20_ALSOOL.pdf
  11940   Wed Jan 20 23:26:10 2016 gautam, ranaUpdateLSCPSL and AUX-X temperatures changed

Earlier today, we did a bunch of stuff to see if we could improve the situation with the excess ALS-X noise. Long story short, here are the parameters that were changed, and their initial and final values:

X-end laser diode temperature:     28.5 degrees ---> 31.3 degrees

X-end laser diode current:             1.900 A ---> 1.942 A

X-end laser crystal temperature:   47.43 degrees ---> 42.6 degrees

PSL crystal temperature:              33.43 degrees ---> 29.41 degrees

PSL Diode A temperature:           21.52 degrees ---> 20.75 degrees

PSL Diode B temperature:           22.04 degrees ---> 21.3 degrees 

The Y-end laser temperature has not yet been adjusted - this will have to be done to find the Y-beatnote.

Unfortunately, this does not seem to have fixed the problem - I was able to find the beatnote, with amplitude on the network analyzer in the control room consistent with what we've been seeing over the last few days, but as is clear from Attachment 1, the problem persists...

 


Details:

  • PSL shutter was closed and FSS servo input was turned off. 
  • As I had mentioned in this elog, the beat can now only be found at 47.41 degress +/- 1 deg, which is a shift of almost 5 degrees from the value set sometime last year, ~42.6 degrees. Rana thought it's not a good idea to keep operating the laser at such a high crystal temperature, so we decided to lower the X-end laser temperature back to 42.6 degrees, and then adjust the PSL temperature appropriately such that we found a beat. The diode temperature was also tweaked (this requires using a small screwdriver to twist the little knob inset to the front panel of the laser controller) - for the end laser, we did not have a dedicated power monitor to optimize the diode temperature by maximizing the current, and so we were just doing this by looking at the beat note amplitude on the network analyzer (which wasn't changing by much). So after playing around a little, Rana decided to leave it at 31.3 degrees.
  • We then went to the PSL table and swept through the temperature till a beat was found. The PMC wouldn't stay locked throughout the sweep, so we first did a coarse scan, and saw weak (due to the PMC being locked to some weird mode) beatnotes at some temperatures. We then went back to 29.41 degrees, and ran the PMC autolocker script to lock the PMC - a nice large beatnote was found. 
  • Finally, Rana tweaked the temperatures of the two diodes on the PSL laser controller - here, the optimization was done more systematically, by looking at the PMC transmitted power on the oscilloscope (and also the MEDM screen) as a function of the diode temperature.
  • I took a quick look at the ALS out of loop noise - and unfortunately, our efforts today does not seem to have noticeably improved anything (although the bump at ~1kHz is no longer there). 

Some details not directly related to this work:​ 

  • There are long cables (routed via cable tray) suitable for RF signals that are running from the vertex to either end-table - these are labelled. We slightly re-routed the one running to the X-end, sending it to the IOO rack via the overhead cable tray so that we could send the beat signal from the frequency counter module to the X-end, where we could look at it using an analyzer while also twiddling laser parameters.
  • A webcam (that also claims to have two-way audio!) has been (re?)installed on the PSL table. The ethernet connection to the webcam currently goes to the network switch on the IOO rack (though it is unlabelled at the moment)
  • The X-end area is due for a clean-up, I will try and do some of this tomorrow. 
Attachment 1: 2016_01_20_ALS_OutOfLoop_1.pdf
2016_01_20_ALS_OutOfLoop_1.pdf
  11941   Thu Jan 21 00:02:11 2016 KojiUpdateLSCHopeful signs

That's a good news. Only quantitative analysis will tell us if it is true or not.

Also we still want to analyze the traffic with the new switch.

Quote:

On a brighter note, I've only noticed one brief EPICS freeze all night. In addition, the wall StripTools seem totally contiuous since ~4pm, whereas I'm used to seeing some blocky shapes particularly in the seismic rainbow. Could this possibly mean that the old WiFi router was somehow involved in all this? 

 

  11942   Thu Jan 21 18:34:04 2016 ranaUpdateLSCPSL and AUX-X temperatures changed

Is the black ref spectrum from this year or from May of 2015 or ?

I wonder if the noise is a bunch of fast spikes or if its a true broadband rumble. Maybe we can tell by looking at the analog DFD or PLL outputs?

  11943   Fri Jan 22 01:56:01 2016 ericqUpdateLSCAudio ALSX

I hooked up the ALSX DFD output to the fibox, and used the adjustable delay line to set the phase properly. I recorded the noise on pianosa, and have attached it. Of course, this doesn't really capture the low frequency behavior. 

Unrelated to this: I found the MC WFS turned off, and the loops ran away when turning them on. I tweaked the alignment, and reset the WFS offsets. Seems stable for now. 

Attachment 1: ALSX.wav
  11957   Thu Jan 28 14:54:49 2016 ericqUpdateLSCStatus of the green PDH circuits

Yesterday, I uploaded some EAGLE schematic files and a LISO source file for the green PDH servo electronics to the 40m LISO git repository. In doing so, I realized that the DCC document for the X box (D1400293) was not updated at the end of the electronics work we did in Aug/Sep 2014. This is entirely my fault. 

The Y box document (D1400294) is currently accurate. 

The missing information is that, as I posted In ELOG 10457, I ended up destroying our original X box, and replaced it with a spare from the ATF. It was restuffed to match the Y end box pretty much exactly. We will update the X circuit DCC page with an accurate schematic and photo. 

Gautam tells me that he and Rana were looking at the outdated schematic and thinking about improvements, but at least some of this was already done back in 2014 (specifically, the resistors used to specify the AD8336 preamp gain were changed).

  11958   Thu Jan 28 19:10:16 2016 gautamUpdateLSCStatus of the green PDH circuits

 

Quote:

We will update the X circuit DCC page with an accurate schematic and photo. 

I've uploaded reasonably high-resolution photographs of the uPDH box for the X-end and Y-end on their respective wiki pages. I've uploaded two photos for each box, one of the circuit board (I checked that these photos are clear enough that we can zoom in and read off component values if necessary), and one of the box with the peripherals not integrated into the circuit board (i.e. the minicircuits mixer ZAD-8+ and the little Pomona box that is an LP filter for the output from the mixer). Since I pulled the boxes out, I thought it might not be a bad idea to measure the TFs of these Pomona boxes and make sure nothing weird is going on, I'll put up some plots later. 

Rana and I discussed some things to look at earlier today:

  • Check the voltages at test-points 1,7 and 9, and make sure they are as expected
  • Change the gain of the pre-amp from x2 to x4 - as Eric mentioned in the previous elog, these had already been swapped out. Right now a 600 ohm and 200 ohm resistor pair are being used, so the preamp gain is x4, which should be okay as per the datasheet of the AD8336 VGA amplifier (although the "recommended" resistor pairing is 301 ohm and 100 ohm, but I don't think this is critical?
  • Track down the reason for the difference in Gain settings at the X and Y ends - typically, the X-end PDH box "Gain" knob is set to 10, while that for the Y-end is set to ~4. The fact that the PZT actuator gain for the Y-end is ~5 times larger than for the X-end doesn't seem to account for all of this. As per the attached plot, the difference in gain between the ends is ~35 dB, which is a factor of 50!

I also did a quick check of the behaviour of the Servo Gain potentiometer by checking the resistance at various positions of the knob - we had suspected that the potentiometer may be logarithmic, but I found that it was in fact linear. I'll put up a plot of the gain as a function of the Servo Gain knob position soon,(plot added) along with results from the other checks.

While disassembling the setup at the X-end to get the PDH box out, I noticed that the signal from the LO is going to the mixer through a Pomona box (no such Pomona box is used at the Y-end). I opened it up and found that it contains just a pair of capacitors in parallel, so it's a phase shifter?. The LO signal also goes through an attenuator. The mixer in both boxes is a ZAD-8+, so why is this part of the setup different?

Both PDH boxes are not hooked up at the moment, I will restore the setups at both ends after running a few more checks on the boxes...

Attachment 1: Servo_gain_calibration.pdf
Servo_gain_calibration.pdf
  12028   Thu Mar 10 03:03:11 2016 ericqUpdateLSCDRFPMI Power stable, but no RF handoff

[ericq, Gautam]

We worked on getting the DRFPMI back up and running, hoping the ALS performance was good enough. 

We did succeed in bringing in enough of the AO path to stabilize arm powers > 100, but failed at the full RF DARM handoff. 

REFL165 angle was adjusted to -86 to minimize PRCL in the Q signal. 

The AS110 signals are mysteriously huger than they used to be. Whitening gain reduced to 15dB from 27dB. Old trigger thresholds are still fine.

The new AUX X laser has a different sign for the temperature-> frequency coupling, so our usual convention of "beatnote goes up when temp slider goes up" meant the ALSX input matrix elements had to change sign.

We think the POPDC PD (which I think is the POP2F PD) may be miscentered, since in PRMI configuration, its maximum does not coincide with the REFLDC minimum, and leaves a sizeable TEM10 lobe on the REFL camera. This was a pain. 

  12053   Tue Mar 29 03:16:21 2016 ericqUpdateLSCDRFPMI Locked Once More

[ericq, Gautam]

Three RF-only locks longer than a minute tonight, out of 5 total attempts. 

Last week, I determined that the beam spot on the RF POP PD is too large. This still needs to be fixed. I updated the ASS model to use REFLDC as a PRCL dither error signal; it works. 

There seems to be some excess angular motion of ETMY tonight. This is evident in the oplev spectra (as compared to ETMX), and the GTRY camera, and even the retroreflected beam from a misalgined ETMY on the ITMY face when the PRC is carrier locked.

Gautam and I mostly focused on setting up the CAL-DARM_CINV block to produce this (mostly) calibrated spectrum starting from GPS 1143274087. [Darm on unwhitened AS55, DRMI on 3F, one CARM boost]

Here are the control and error signal spectra:

[DTT files attached]

Note to self: archive some of this data 

Attachment 1: 2016-03-29_calibdarm.pdf
2016-03-29_calibdarm.pdf
Attachment 2: 2016-03-29_DRFPMI_errctrl.pdf
2016-03-29_DRFPMI_errctrl.pdf
Attachment 3: DRFPMI_DTT.zip
  12055   Wed Mar 30 16:40:24 2016 ericqUpdateLSC2016 vs 2010

I haven't found any data files for the DARM spectrum of the previous generation of 40m, but with some GIMP-fu, I have plotted Monday's spectrum (green) on top of one of the figures from Rob's thesis.

  12069   Mon Apr 11 16:06:30 2016 ericqUpdateLSCDRFPMI Data Archived

I have copied over the complete frame files from two DRFPMI lock acquisitions + locks to /frames/archive. The data should be safe from the wiper script here.

One, under the subfolder DRFPMI_Mar29_cal is the lock where the CAL-DARM channel is properly calibrated at GPS time 1143274087.

The other lock, under DRFPMI_MAR29_nocal, does not have the calibration set up yet, but was a much quicker acquistion (<2 min from ALS acquisition to DRFPMI) and longer lock (~8min).

  12097   Thu Apr 28 15:23:11 2016 ericqUpdateLSCGreen PDH demod lowpass

The 2F product out of the mixer is a natural concern when demodulating. However, I think this isn't so big of a deal in our green PDH servos; 420kHz isn't so high of a frequency that the servo amplifiers are bandwidth or slew-rate limited. Furthermore, the amplitude of this line is supressed by the loop somewhat, since it arises from the same field product that the loop is acting on. Measuring the Y end mixer output with a high impedance probe and the AG4395 shows it to be something like -50dBm. 

In fact, the main thing that the pomona LPFs are accomplishing right now is filtering the 1F content of the mixer output that arises from the second order sideband creating a signal at 2F, and beating with the LO at (2F-1F)=1F. This line is something like -30dBm (5mVrms) at the mixer output; I can reproduce this amplitude with a back-of-the envelope calculation using a modulation depth of 0.3, 8V out of the PD at DC when unlocked, the mixer datasheet, and the nominal cavity parameters. 

The nice thing about this is that we don't need to filter this after the mixer, we can use a [bandpass/lowpass/notch] filter before the mixer (as is done in the LSC demod boards) to filter out the 2F (420kHz) content of the PD signal, which will only introduce some small amount of linear time delay to the PDH loop, instead of the wicked phase loss from the current post-mixer LPF. We can then replace that 70kHz filter with something of lower order or higher corner frequency to win a good deal of phase in the PDH loop. 

  12098   Thu Apr 28 18:53:05 2016 ranaUpdateLSCGreen PDH demod lowpass

OK - but give us a circuit diagram and the expected before/after loop plots. Got to make sure we keep the right impedance from PD to mixer. Some of the Thorlabs PDs have a 50 Ohm instead of 0 Ohm source impedance. Maybe you can try it out now since the green arm is ready.

  12101   Fri Apr 29 16:13:36 2016 ericqUpdateLSCGreen PDH demod lowpass

We can get as much, if not more, attenuation of the 1F line in the mixer output that we get from the post-mixer LPF from using the following passive filter between the PD and mixer RF input:

There should still be some kind of LPF after the mixer, but I haven't yet determined what it should be; this will determine how much phase the PDH loop wins. At most, this should win around 25 degrees at 10kHz.


The filter was designed by referencing the "Handbook of Filter Synthesis" by Zverev, looking for an elliptic filter for matched source and load impedences, 40dB min attenuation in the stopband, a stopband frequency that starts at twice the corner frequency, and minimizing the VSWR between the PD and filter in the passband.

In terms of the tables in the book, this means: n=5, rho=2%, theta=30deg, K**2 = 1.0. The dimensionless component values were scaled by the corner frequency of 200kHz, and reference impedence of 50 Ohm. (The corner is a little lower than the real modulation frequency, since the nonzero resistance of the inductors pushes the frequency up a bit)

The ideal capactior values do not correspond to things we have in hand, so I checked our stock and chose the closest value to each one.Unsurprisingly, due to these component substitutions, and the fact that the coilcraft inductors have a resistance of about 7 Ohms, the predicted TF of the realizable filter does not match the design filter exactly. However, the predicition still looks like it will meet the requirement of 40dB of supression of the 2F line in the PD signal. (Since we have tunable inductors, I've used the ideal inductor values in generating the TF. In practice I'll inspect the TF while I tune them)

  Desired Realizable
C1 8.28 nF 10 nF
C2 1.39 nF 1.5 nF
C3 19.6 nF 22 nF
C4 4.22 nF 4.7 nF
C5 6.08 nF 6.8 nF
L2 43.1 nH 32-48 nH + 7 Ohm
L4 34.4 nH 32-48 nH + 7 Ohm

[In this TF plot, I've multiplied the real response by 2 to account for the voltage division that occurs with ideal 50 Ohm impedance matching, to make 0dB the reference for proper matching]

The filter's phase delay at the modulation frequency is just about 180, which as a time delay of 5usec works out to 9 degrees of phase loss at 10kHz in the PDH loop. According to some old measurements, the current LPF costs something like 35 degrees at 10k, so this wins at most around 25 degrees, depedent on what LPF we put after the mixer.

LISO source both traces is attached!

Attachment 3: elp_liso.zip
  12106   Thu May 5 04:05:03 2016 ericqUpdateLSCAux X PDH checks

We took an OLG measurement of the green PDH loop. It seems consistent with past measurements. I've added a trace for the the post-mixer lowpass, to show its contribution to the phase loss. (EDIT: updated with measured LPF TF)

I used this measured OLG and the datasheet laser PZT conversion factor to calibrate the control signal monitor into the AUX laser frequency noise, it looks consistent with the frequency noise measured via the PSL PLL (300 Hz/rtHz @ 100Hz). Above a few tens of kHz, the control signal measurement is all analyzer noise floor, due to the fourth order 70kHz lowpass after the mixer (the peaks change height significantly depending on the analyzer input range, so I don't think they're on the laser). Gautam will follow up with more detailed measurements of both the error and control signals as he noisebudgets, this was just intended as a quick consistency check.

  12107   Thu May 5 14:03:52 2016 ericqUpdateLSCFurther Aux X PDH tweaks

This morning I poked around with the green layout a bit. I found that the iris immediately preceding the viewport was clipping the ingoing green beam too much, opening it up allowed for better coupling to the arm. I also tweaked the positions of the mode matching lenses and did some alignment, and have since been able to achieve GTRX values of around 0.5.

I also removed the 20db attenuator after the mixer, and turned the servo gain way down and was able to lock easily. I then adjusted the gain while measuring the CLG, and set it where the maximum gain peaking was 6dB, which worked out to be a UGF of around 8kHz. On the input monitor, the PDH horn-to-horn voltage going into the VGA is 2.44V, which shouldn't saturate the G=4 preamp stage of the AD8336, which seems ok.

The ALS sensitivity is now approaching the good nominal state:

There remains some things to be done, including comprehensive dumping of all beams at the end table (especially the reflections off of the viewport) and the new filters to replace the current post-mixer LPF, but things look pretty good.

Attachment 1: 2016-05-05_newals.pdf
2016-05-05_newals.pdf
  12110   Fri May 6 16:42:12 2016 ericqUpdateLSCGreen PDH demod lowpass

I've build the filter, and it seems to have the desired TF shape.

I also re-purposed the 70k lowass to a ~120k lowpass by changing the 68nF caps to 22nF caps, since we still want some post-mixer rolloff. 

However, putting the ELPF in the chain caused some weird shapes in the OLG. I still need to get to the bottom of it. However, just with the post-mixer LPF modification, here's what the OLG looks like:

As Rana surmises, we definitely still add a boost and maintain a 10k UGF. I still need to look into the state of the remote boost....

  12111   Fri May 6 19:08:52 2016 ranaUpdateLSCGreen PDH demod lowpass

Seems weird to design a PD lowpass with a corner at the modulation frequency. Recall what our strategy is with the other photodetectors we use for PDH servos: bandpass, not low-pass, and the band has to be wide enough to not effect the phase of the servo.

  12112   Sat May 7 09:40:40 2016 ericqUpdateLSCGreen PDH demod lowpass

As I was looking at filter designs, it seemed difficult to get 40dB of supression at 2F with a bandpass without going to a pretty high order, which would mean a fair number of lossy inductors.

I'll keep working on it. Maybe we don't need 40dB...

  12113   Sun May 8 08:39:21 2016 ranaUpdateLSCGreen PDH demod lowpass

Indeed. This is why the LSC PDs have a 2f notch in addition to the 1f resonance. In recent versions, we also put a 2f notch in the feedback of the preamp which comes after the diode but before the mixer. The overall 1f to 2f ratio that we get is in the 50-60 dB region. I don't think we have to go that far with this thing; having a double LC already seems like it should be pretty good, or we could have a single LC bandpass with a 2f notch all in one Pomona box.

  12114   Tue May 10 03:44:59 2016 ericqUpdateLSCRelocked

ALSX noise is solidly within past acceptable performance levels. The DRFPMI was locked on four out of six attempts. 

Some housekeeping was done:

  • PMC aligned
  • Static alignment voltages of X end PZT mirrors offloaded by turning mount screws
  • Rough comissioning of AUX X dither alignment
  • Locking scripts reverted to AUX X Innolight voltage/temperature sign convention

The recombination of the QPD signals to common / differential is imperfect, and limited how well we could keep the interferometer aligned, since the QPD at X has changed. This needs some daytime work. 

Some sensing matrix measurements were made, to be meditated upon for how to 1F the DRMI.

Other to-dos:

  • Bandpass + notch combo for green refl PDs
  • SRCL, and to a lesser extant, MICH feedforward subtraction (See DARM vs. other length DOF coherence plot below)
  • Fiber couple AUX X light
  • Make IFO work good


As an aside, Gautam and I noticed numerous green beams coming from inside the vacuum system onto the PSL table. They exist only when green is locked to the arms. Some of them come out at very non-level angles and shine in many places. This doesn't make me feel very happy; I suppose we've been living with it for some time. 

Attachment 1: 2016-05-10_DARMcoherence.pdf
2016-05-10_DARMcoherence.pdf
  12124   Fri May 20 17:36:06 2016 gautamUpdateLSCNew stands for TransMon/Oplev QPDs

As we realized during the EX table switch, the transmitted beam height from the arm is not exactly 4" relative to the endtable, it is more like 4.75" at the X-end (yet to be investigated at the Y-end). As a result, the present configuration involves the steering optics immediately before the Oplev and TransMon QPDs sending the beam downwards at about 5 degrees. Although this isn't an extremely large angle, we would like to have things more level. For this purpose, Steve has ordered some Aluminium I-beams (1/2 " thick) which we can cut to size as we require. The idea is to have the QPD enclosures mounted on these beams and then clamped to the table. One concern was electrical isolation - but Steve thinks Delrin washers between the QPD enclosure and the mount will suffice. We will move ahead with getting these machined once I investigate the situation at the Y end as well.. The I beams should be here sometime next week...

  12138   Fri May 27 02:52:53 2016 ericqUpdateLSCRestoring high BW single arm control

I've been futzing with the common mode servo, trying to engage the AO path with POY for high bandwidth control of a single arm lock. I'm able to pull in the crossover and get a nice loop shape, but keep getting tripped up by the offset glitches from the CM board gain steps, so can't get much more than a 1kHz UGF.

As yutaro measured, these can be especially nasty at the major carrier transitions (i.e. something like 0111->1000). This happens at the +15->+16dB input gain step; the offset step is ~200x larger than the in-loop error signal RMS, so obviously there is no hope of keeping the loop engaged when recieving this kind of kick. Neither of the CM board inputs are immune from this, as I have empirically discovered. I can turn down the initial input gain to try and avoid this step occuring anywhere in the sequence, but then the SNR at high frequencies get terrible and I inject all kinds of crud into the mode cleaner, making the PC drive furious.

I think we're able to escape this when locking the full IFO because the voltages coming out of REFL11 are so much larger than the puny POY signals so the input-referred glitches aren't as bad. I think in the past, we used AS55 with a misaligned ITMX for this kind of single arm thing, which probably gives better SNR, but the whole point of this is to keep the X arm aligned and lock it to the Y-arm stabilized PSL. 

  12142   Wed Jun 1 09:06:38 2016 SteveUpdateLSCNew stands for TransMon/Oplev QPDs

Machined from I-beam 6061 T6 Aluminum 5" x 0.5 x 3.25

Quote:

As we realized during the EX table switch, the transmitted beam height from the arm is not exactly 4" relative to the endtable, it is more like 4.75" at the X-end (yet to be investigated at the Y-end). As a result, the present configuration involves the steering optics immediately before the Oplev and TransMon QPDs sending the beam downwards at about 5 degrees. Although this isn't an extremely large angle, we would like to have things more level. For this purpose, Steve has ordered some Aluminium I-beams (1/2 " thick) which we can cut to size as we require. The idea is to have the QPD enclosures mounted on these beams and then clamped to the table. One concern was electrical isolation - but Steve thinks Delrin washers between the QPD enclosure and the mount will suffice. We will move ahead with getting these machined once I investigate the situation at the Y end as well.. The I beams should be here sometime next week...

Atm2, version 2 "pdstand" will allow you to clamp from any direction ( Koji was right )

Attachment 1: pdIb.PDF
pdIb.PDF pdIb.PDF
Attachment 2: pdstand.pdf
pdstand.pdf
  12188   Thu Jun 16 11:25:00 2016 JohannesUpdateLSCY-Arm round-trip loss measurement with ALS

Using the ALS green beat and armlength feedback I mapped an IR resonance of the Y-Arm by stepping through a ramp of offset values.

First I optimized the IR alignment with the dither scripts while LSC kept the arm on resonance, and then transitioned the length control to ALS. The beat frequency I obtained between the Y-arm green and the PSL was about 25 MHz. Then I applied a controlled ramp signal (stepping through small offset increments applied to LSC-ALSY_OFFSET, while logging the readback from channels LSC-TRY_OUT16 and ALS-Y_FC_SERVO_INMON with an averaging time of 1s.

The plots show the acquired data with fits to  T(x)=\frac{T_0}{1+\frac{(x-x_0)^2}{\mathrm{HWHM}^2}}+\mathrm{offset} and f(x)=mx+b, respectively.

 

The fits, weighted with inverse rms uncertainty of the data points as reported by the cds system, returned HWHM = 0.6663 ± 0.0013 [offset units] and m = -0.007666 ± 0.000023 [MHz/offset unit], which gives a combined FWHM = 10,215 ± 36 Hz. The error is based purely on the fit and does not reflect uncertainties in the calibration of the phase tracker.

This yields a finesse of 388.4 ± 1.4, corresponding to a total loss (including transmissivities) of 16178 ± 58 ppm. These uncertainties include the reported accuracies of FSR and phase tracker calibration from elog 9804 and elog 11761.

The resulting loss is a little lower than that of elog 11712, which was done before the phase tracker re-calibration. Need to check for consistency.

Attachment 1: T_vs_steps.pdf
T_vs_steps.pdf
Attachment 2: f_vs_steps.pdf
f_vs_steps.pdf
  12189   Thu Jun 16 12:06:59 2016 ericqUpdateLSCRF Amp installed at POY11 RF output

I have installed a ZFL-500LN on the RF output of POY11. This should reduce the effect of the CM board voltage offsets by increasing the size of the error signal coming into the board. Checking with an oscilloscope at the LSC rack, the single arm PDH peak to peak voltage was something like 4mV, now it is something like 80mVyes

The setup is similar to the REFL165 situation, but with the amplifier in proximity with the PD, instead of at the end of a long cable at the LSC rack. 

The PD RF output is T'd between an 11MHz minicircuits bandpass filter and a 50 Ohm terminator (which makes sure that signals outside of the filter's passband don't get reflected back into the PD). The output of the filter is connected directly to the input of the ZFL-500LN, which is powered (temporarily) by picking off the +15V from the PD interface cable via Dsub15 breakout. (I say temporarily, as Koji is going to pick out some fancy pi-filter feedthrough which we can use to make a permanent power terminal on the PD housing.)

The max current draw of this amplifier is 60mA. Gazing at the LSC interface (D990543), I think the +15V on the DSUB cable is being passed from the eurocard crate; I don't see any 15V regulator, so maybe this is ok...

The free swinging PDH signal looked clean enough on a scope. Jamie is doing stuff with the framebuilder, so I can't look at spectra right now. However, turning the POY whitening gain down to +18dB from +45dB lets the Y arm lock on POY with all other settings nominal, which is about what we expect from the nominal +23dB gain of the amplifier.

I would see CM board offsets of ~5mV before, which was more a little more than a linewidth before this change. Now it will be 5% of that, and hopefully more manageable.

  12205   Tue Jun 21 04:01:09 2016 ericqUpdateLSCY arm @ 30kHz UGF w/POY, AO

With the newly amplified POY signal, locking the mode cleaner to the Y arm at ~30kHz bandwidth was quite straightforward. The offset jumps still happen, and are visible in POY11_I_ERR, but are never big enough to cause much power degradation in TRY (except when turning on CM board boosts, but its still not enough to lose lock). The script which accomplishes this is at scripts/YARM, and is in the svn. The MC2/AO crossover is at about 150Hz with 40deg margin.

For now, I'm using IN1 of the CM board, because I haven't removed the op27s that I put into IN2's gain stages. I believe the slew rate limitations of these prevent them from working completely during the offset jumps. I'll put AD829s back soon. 

At first, I had ITMX misalgined to use AS55 as an out of loop sensor, then I aligned and locked the X arm on POX to compare.

Weirdly enough, locking the mode cleaner to the Y arm with 30kHz UGF and two boosts on make no real visible difference in the X arm control signal. This is strange, as the whole point of this affair was to remove the presumably large influence of frequency noise on the X arm signals... Maybe this is injecting too much POY sensor noise?

 

Attachment 1: inloop_outloop.pdf
inloop_outloop.pdf
Attachment 2: xarm.pdf
xarm.pdf
  12210   Wed Jun 22 08:40:42 2016 ranaUpdateLSCY arm @ 30kHz UGF w/POY, AO

Below 100 Hz, I suppose this means that the X arm is now limited by the quadrature sum of the X and Y arm seismic noise.

  12535   Thu Oct 6 03:56:43 2016 ericqUpdateLSCRevival Attempt

[ericq, Gautam, Lydia]

We spent some time tonight trying to revive the PRFPMI. (Why PR instead of DR? Not having to deal with SRM alignment and potentially get a better idea of our best-case PRG). After the usual set up and warm up, we found ourselves unable to hold on to the PRMI while the arms flash. In the past, this was generally solved through clever trigger matrix manipulations, but this didn't really work tonight. We will meditate on the solution.

  12547   Tue Oct 11 02:48:43 2016 ericqUpdateLSCRevival Attempts

Still no luck relocking, but got a little further. I disabled the output of the problematic PRM OSEM, it seems to work ok. Looking at the sensing of the PRMI with the arms held off, REFL165 has better MICH SNR due to its larger seperation in demod angle. So, I tried the slightly odd arrangement of 33I for PRCL and 165Q for MICH. This can indefinitely hold through the buzzing resonance. However, I haven't been able to find the sweet spot for turning on the CARM_B (CM_SLOW) integrator, which is neccesary for turning up the AO and overall CARM gain. This is a familiar problem, usually solved by looking at the value far from resonance on either side, and taking the midpoint as the filter module offset, but this didn't work tonight. Tried different gains and signs to no avail.

  12587   Fri Oct 28 15:46:29 2016 gautamSummaryLSCX/Y green beat mode overlap measurement redone

I've been meaning to do this analysis ever since putting in the new laser at the X-end, and finally got down to getting all the required measurements. Here is a summary of my results, in the style of the preceeding elogs in this thread. I dither aligned the arms and maximized the green transmission DC levels, and also the alignment on the PSL table to maximize the beat note amplitude (both near and far field alignment was done), before taking these measurements. I measured the beat amplitude in a few ways, and have reported all of them below...

             XARM   YARM 
o BBPD DC output (mV), all measured with Fluke DMM
 V_DARK:     +1.0    +3.0
 V_PSL:      +8.0    +14.0
 V_ARM:      +175.0  +11.0


o BBPD DC photocurrent (uA)
I_DC = V_DC / R_DC ... R_DC: DC transimpedance (2kOhm)

 I_PSL:       3.5    5.5
 I_ARM:      87.0    4.0


o Expected beat note amplitude
I_beat_full = I1 + I2 + 2 sqrt(e I1 I2) cos(w t) ... e: mode overlap (in power)

I_beat_RF = 2 sqrt(e I1 I2)

V_RF = 2 R sqrt(e I1 I2) ... R: RF transimpedance (2kOhm)

P_RF = V_RF^2/2/50 [Watt]
     = 10 log10(V_RF^2/2/50*1000) [dBm]

     = 10 log10(e I1 I2) + 82.0412 [dBm]
     = 10 log10(e) +10 log10(I1 I2) + 82.0412 [dBm]

for e=1, the expected RF power at the PDs [dBm]
 P_RF:      -13.1  -24.5


o Measured beat note power (measured with oscilloscope, 50 ohm input impedance)      
 P_RF:      -17.8dBm (81.4mVpp)  -29.8dBm (20.5mVpp)   (38.3MHz and 34.4MHz)  
    e:        34                    30  [%]                          
o Measured beat note power (measured with Agilent RF spectrum analyzer)       
 P_RF:      -19.2  -33.5  [dBm] (33.2MHz and 40.9MHz)  
    e:       25     13    [%]                          

I also measured the various green powers with the Ophir power meter: 

o Green light power (uW) [measured just before PD, does not consider reflection off the PD]
 P_PSL:       16.3    27.2
 P_ARM:       380     19.1

Measured beat note power at the RF analyzer in the control room
 P_CR:      -36    -40.5    [dBm] (at the time of measurement with oscilloscope)
Expected    -17    - 9    [dBm] (TO BE UPDATED)

Expected Power: (TO BE UPDATED)
Pin + External Amp Gain (25dB for X, Y from ZHL-3A-S)
    - Isolation trans (1dB)
    + GAV81 amp (10dB)
    - Coupler (10.5dB)


The expected numbers for the control room analyzer in red have to be updated. 

The main difference seems to be that the PSL power on the Y broadband PD has gone down by about 50% from what it used to be. In either measurement, it looks like the mode matching is only 25-30%, which is pretty abysmal. I will investigate the situation further - I have been wanting to fiddle around with the PSL green path in any case so as to facilitate having an IR beat even when the PSL green shutter is closed, I will try and optimize the mode matching as well... I should point out that at this point, the poor mode-matching on the PSL table isn't limiting the ALS noise performance as we are able to lock reliably...

  12611   Sat Nov 12 01:09:56 2016 gautamUpdateLSCRecovering DRMI locking

Now that we have all Satellite boxes working again, I've been working on trying to recover the DRMI 1f locking over the last couple of days, in preparation for getting back to DRFPMI locking. Given that the AS light levels have changed, I had to change the whitening gains on the AS55 and AS110 channels to take this into account. I found that I also had to tune a number of demod phases to get the lock going. I had some success with the locks tonight, but noticed that the lock would be lost when the MICH/SRCL boosts were triggered ON - when I turned off the triggering for these, the lock would hold for ~1min, but I couldn't get a loop shape measurement in tonight.


As an aside, we have noticed in the last couple of months glitchy behaviour in the ITMY UL shadow sensor PD output - qualitatively, these were similar to what was seen in the PRM sat. box, and since I was able to get that working again, I did a similar analysis on the ITMY sat. box today with the help of Ben's tester box. However, I found nothing obviously wrong, as I did for the PRM sat. box. Looking back at the trend, the glitchy behaviour seems to have stopped some days ago, the UL channel has been well behaved over the last week. Not sure what has changed, but we should keep an eye on this...

  12619   Wed Nov 16 03:10:01 2016 gautamUpdateLSCDRMI locked on 1f and 3f signals

After much trial and error with whitening gains, demod phases and overall loop gains, I was finally able to lock the DRMI on both 1f and 3f signals! I went through things in the following order tonight:

  1. Lock the arms, dither align
  2. Lock the PRMI on carrier and dither align the PRM to get good alignment
  3. Tried to lock the DRMI on 1f signals - this took a while. I realized the reason I had little to no success with this over the last few days was because I did not turn off the automatic unwhitening filter triggering on the demod screens. I had to tweak the SRM alignment while looking at the AS camera, and also adjust the demod phases for AS55 (MICH is on AS55Q) and REFL55 (SRCL is on REFL55I). Once I was able to get locks of a few seconds, I used the UGF servos to set the overall loop gain for MICH, PRCL and SRCL, after which I was able to revert the filter triggering to the usual settings
  4. Once I adjusted the overall gains and demod phases, the DRMI locks were very stable - I left a lock alone for ~20mins, and then took loop shape measurements for all 3 loops
  5. Then I decided to try transfering to 3f signals - I first averaged the IN1s to the 'B' channels for the 3 vertex DOFs using cds avg while locked on the 1f signals. I then set a ramp time of 5 seconds and turned the gain of the 'A' channels to 0 and 'B' channels to 1. The transition wasn't smooth in that the lock was broken but was reacquired in a couple of seconds.
  6. The lock on 3f signals was also pretty stable, the current one has been going for >10 minutes and even when it loses lock, it is able to reacquire in a few seconds

I have noted all the settings I used tonight, I will post them tomorrow. I was planning to try a DRFPMI lock if I was successful with the DRMI earlier tonight, but I'm calling it a night for now. But I think the DRMI locking is now back to a reliable level, and we can push ahead with the full IFO lock...

It remains to update the auto-configure scripts to restore the optimized settings from tonight, I am leaving this to tomorrow as well...


Updated 16 Nov 2016 1130am

Settings used were as follows:

1f/3f DOF Error signal Whitening gain (dB) Demod phase (deg) Loop gain Trigger
DRMI Locking 16 Nov 2016
1f MICH (A) AS55Q 0 -42 -0.026 POP22I=1
1f PRCL (A) REFL11I 18 18 -0.0029 POP22I=1
1f SRCL (A) REFL55I 18 -175 -0.035 POP22I=10
3f MICH (B) REFL165Q 24 -86 -0.026 POP22I=1
3f PRCL (B) REFL33I 30 136 -0.0029 POP22I=1
3f SRCL (B) REFL165I and REFL33I - - -0.035 POP22I=10

 

  12620   Wed Nov 16 08:14:43 2016 SteveUpdateLSCDRMI locked on 1f and 3f signals

Nice job.

Quote:

After much trial and error with whitening gains, demod phases and overall loop gains, I was finally able to lock the DRMI on both 1f and 3f signals! I went through things in the following order tonight:

  1. Lock the arms, dither align
  2. Lock the PRMI on carrier and dither align the PRM to get good alignment
  3. Tried to lock the DRMI on 1f signals - this took a while. I realized the reason I had little to no success with this over the last few days was because I did not turn off the automatic unwhitening filter triggering on the demod screens. I had to tweak the SRM alignment while looking at the AS camera, and also adjust the demod phases for AS55 (MICH is on AS55Q) and REFL55 (SRCL is on REFL55I). Once I was able to get locks of a few seconds, I used the UGF servos to set the overall loop gain for MICH, PRCL and SRCL, after which I was able to revert the filter triggering to the usual settings
  4. Once I adjusted the overall gains and demod phases, the DRMI locks were very stable - I left a lock alone for ~20mins, and then took loop shape measurements for all 3 loops
  5. Then I decided to try transfering to 3f signals - I first averaged the IN1s to the 'B' channels for the 3 vertex DOFs using cds avg while locked on the 1f signals. I then set a ramp time of 5 seconds and turned the gain of the 'A' channels to 0 and 'B' channels to 1. The transition wasn't smooth in that the lock was broken but was reacquired in a couple of seconds.
  6. The lock on 3f signals was also pretty stable, the current one has been going for >10 minutes and even when it loses lock, it is able to reacquire in a few seconds

I have noted all the settings I used tonight, I will post them tomorrow. I was planning to try a DRFPMI lock if I was successful with the DRMI earlier tonight, but I'm calling it a night for now. But I think the DRMI locking is now back to a reliable level, and we can push ahead with the full IFO lock...

It remains to update the auto-configure scripts to restore the optimized settings from tonight, I am leaving this to tomorrow as well...

 

 

Attachment 1: 5hrs.png
5hrs.png
  12630   Mon Nov 21 14:02:32 2016 gautamUpdateLSCDRMI locked on 3f signals, arms held on ALS

Over the weekend, I was successful in locking the DRMI with the arms held on ALS. The locks were fairly robust, lasting order of minutes, and was able to reacquire by itself when it lost the lock in <1min. I had to tweak the demod phases and loop gains further compared to the 1f lock with no arms, but eventually I was able to run a sensing matrix measurement as well. A summary of the steps I had to follow:

  • Lock on 1f signals, no arms, and run sensing lines, adjust REFL33 and REFL 165 demod phases to align PRCL, MICH and SRCL as best as possible to REFL33I, REFL165Q and REFL165I respectively
  • I also set the offsets to the 'B' inputs at this stage
  • Lock arms on ALS, engage DRMI locking on 3f signals (the restore script resets some values like the 'B' channel offsets, so I modified the restore script to set the offsets I most recently measured)
  • I was able to achieve short locks on the settings from the locking with no arms - I set the loop gains using the UGF servos and ran some sensing lines to get an idea of what the final demod phases should be
  • Adjusted the demod phases, locked the DRMI again (with CARM offset = -4.0), and took another sensing matrix measurement (~2mins). The data was analyzed using the set of scripts EricQ has made for this purpose, here is the result from a lock yesterday evening (the radial axis is meant to be demod board output volts per meter but the calibration I used may be wrong)

I've updated the appropriate fields in the restore script. Now that the DRMI locking is somewhat stable again, I think the next step towards the full lock would be to zero the CARM offset and turning on the AO path.

On the downside, I noticed yesterday that ITMY UL shadow sensor readback was glitching again - for the locking yesterday, I simply held the output of that channel to the input matrix, which worked fine. I had already done some debugging on the Sat. Box with the help of the tester box, but unlike the PRM sat. box, I did not find anything obviously wrong with the ITMY one... I also ran into a CDS issue when I tried to run the script that sets the phase tracker UGF - the script reported that the channels it was supposed to read (the I and Q outputs of the ALS signal, e.g. C1:ALS-BEATX_FINE_I_OUT) did not exist. The same channels worked on dataviever though, so I am not sure what the problem was. Some time later, the script worked fine too. Something to look out for in the future I guess..

Attachment 1: DRMIArms_Nov20.pdf
DRMIArms_Nov20.pdf
  12638   Wed Nov 23 16:21:02 2016 gautamUpdateLSCITMY UL glitches are back

 

Quote:

As an aside, we have noticed in the last couple of months glitchy behaviour in the ITMY UL shadow sensor PD output - qualitatively, these were similar to what was seen in the PRM sat. box, and since I was able to get that working again, I did a similar analysis on the ITMY sat. box today with the help of Ben's tester box. However, I found nothing obviously wrong, as I did for the PRM sat. box. Looking back at the trend, the glitchy behaviour seems to have stopped some days ago, the UL channel has been well behaved over the last week. Not sure what has changed, but we should keep an eye on this...

I've noticed that the glitchy behaviour in ITMY UL shadow sensor readback is back - as mentioned above, I looked at the Sat. Box and could not find anything wrong with it, perhaps I'll plug the tester box in over the Thanksgiving weekend and see if the glitches persist...

  12644   Tue Nov 29 11:07:37 2016 SteveUpdateLSCITMY UL glitches are back

400 days plot. Satelite amp ITMY has been swapped with ETMY

Unlabeled sat.amps are labeled. This plot only makes sense if you know the Cuh-Razy sat amp locations.

Attachment 1: gliching400d.png
gliching400d.png
  12648   Wed Nov 30 01:47:56 2016 gautamUpdateLSCSuspension woes

Short summary:

  • Looks like Satellite boxes are not to blame for glitchy behaviour of shadow sensor PD readouts
  • Problem may lie at the PD whitening boards (D000210) or with the Contec binary output cards in c1sus
  • Today evening, similar glitchy behaviour was observed in all MC1 PD readout channels, leading to frequent IMC unlocking. Cause unknown, although I did work at 1X5, 1X6 today, and pulled out the PD whitening board for ITMY which sits in the same eurocrate as that for MC1. MC2/MC3 do not show any glitches.

Detailed story below...


Part 1: Satellite box swap

Yesterday, I switched the ITMY and ETMY satellite boxes, to see if the problems we have been seeing with ITMY UL move with the box to ETMY. It did not, while ITMY UL remained glitchy (based on data from approximately 10pm PDT on 28Nov - 10am PDT 29 Nov). Along with the tabletop diagnosis I did with the tester box, I concluded that the satellite box is not to blame.


Part 2: Tracing the signal chain (actually this was part 3 chronologically but this is how it should have been done...)

So if the problem isn't with the OSEMs themselves or the satellite box, what is wrong? I attempted to trace the signal chain from the satellite box into our CDS system as best as I could. The suspension wiring diagram on our wiki page is (I think) a past incarnation. Of course putting together a new diagram was a monumental task I wasn't prepared to undertake tonight, but in the long run this may be helpful. I will put up a diagram of the part I did trace out tomorrow, but the relevant links for this discussion are as follows (? indicates I am unsure):

  1. Sat box (?)--> D010069 via 64pin IDE connector --> D000210 via DB15 --> D990147 via 4pin LEMO connectors --> D080281 via DB25 --> ADC0 of c1sus
  2. D000210 backplane --> cross-connect (mis)labelled "ITMX white" via IDE connector
  3. c1sus CONTEC DO-32L-PE --> D080478 via DB37 --> BO0-1 --> cross-connect labelled "XY220 1Y4-33-16A" via IDE --> (?)  cross-connect (mis)labelled "ITMX white" via IDE connector

I have linked to the DCC page for the various parts where available. Unfortunately I can't locate (on new DCC or old or elog or wiki) drawings for D010069 (Satellite Amplifier Adapter Board), D080281 ("anti-aliasing interface)" or D080478 (which is the binary output breakout box). I have emailed Ben Abbott who may have access to some other archive - the diagrams would be useful as it is looking likely that the problem may lie with the binary output.

So presumably the first piece of electronics after the Satellite box is the PD whitening board. After placing tags on the 3 LEMOs and 1 DB15 cable plugged into this board, I pulled out the ITMY board to do some tabletop diagnosis in the afternoon around 2pm 29Nov.


Part 3: PD whitening board debugging

This particular board has been reported as problematic in the recent past. I started by inserting a tester board into the slot occupied by this board - the LEDs on the tester board suggested that power-supply from the backplane connectors were alright, confirmed with a DMM.

Looking at the board itself, C4 and C6 are tantalum capacitors, and I have faced problems with this type of capacitor in the past. In fact, on the corresponding MC3 board (which is the only one visible, I didn't want to pull out boards unnecessarily) have been replaced with electrolytic capacitors, which are presumably more reliable. In any case, these capacitors do not seem to be at any fault, the board receives +/-15 V as advertised.

The whitening switching is handled by the MAX333 - this is what I looked at next. This IC is essentially a quad SPDT switch, and a binary input supplied via the backplane connector serves to route the PD input either through a whitening filter, or bypass it via a unity gain buffer. The logic levels that effect the switching are +15V and 0V (and not the conventional 5V and 0V), but according to the MAX333 datasheet, this is fine. I looked at the supply voltage to all ICs on the board, DC levels seemed fine (as measured with a DMM) and I also looked at it on an oscilloscope, no glitches were seen in ~30sec viewing stretch. I did notice something peculiar in that with no input supplied to the MAX333 IC (i.e. the logic level should be 15V), the NO and NC terminals appear shorted when checked with a DMM. Zach has noticed something similar in the past, but Koji pointed out that the DMM can be fooled into thinking there is a short. Anyway, the real test was to pull the logic input of the MAX333 to 0, and look at the output, this is what I did next.

The schematic says the whitening filter has poles at 30,100Hz and a zero at 3 Hz. So I supplied as "PD input" a 12Hz 1Vpp sinewave - there should be a gain of ~x4 when this signal passes through the path with the whitening filter. I then applied a low frequency (0.1Hz) square wave (0-5V) to the "bypass" input, and looked at the output, and indeed saw the signal amplitude change by ~4x when the input to the switch was pulled low. This behaviour was confirmed on all five channels, there was no problem. I took transfer functions for all 5 channels (both at the "monitor" point on the backplane connector and on the front panel LEMOs), and they came out as expected (plot to be uploaded soon).

Next, I took the board back to the eurocrate. I first put in a tester box into the slot and measured the voltage levels on the backplane pins that are meant to trigger bypassing of the whitening stage, all the pins were at 0V. I am not sure if this is what is expected, I will have to look inside D080478 as there is no drawing for it. Note that these levels are set using a Contec binary output card. Then I attached the PD whitening board to the tester board, and measured the voltages at the "Input" pins of all the 5 SPDT switches used under 2 conditions - with the appropriate bit sent out via the Contec card set to 0 or 1 (using the button on the suspension MEDM screens). I confirmed using the BIO medm screen that the bit is indeed changing on the software side, but until I look at D080478, I am not sure how to verify the right voltage is being sent out, except to check at the pins on the MAX333. For this test, the UL channel was indeed anomalous - while the other 4 channels yielded 0V (whitening ON, bit=1) and 15V (whitening OFF, bit=0), the corresponding values for the UL channel were 12V and 10V.

I didn't really get any further than this tonight. But this still leaves unanswered questions - if the measured values are faithful, then the UL channel always bypasses the whitening stage. Can this explain the glitchy behaviour?


Part 4: MC1 troublesfrown

At approximately 8pm, the IMC started losing lock far too often - see the attached StripTool trace. There was a good ~2hour stretch before that when I realigned the IMC, and it held lock, but something changed abruptly around 8pm. Looking at the IMC mirror OSEM PD signals, all 5 MC1 channels are glitching frequently. Indeed, almost every IMC lockloss in the attached StripTool is because of the MC1 PD readouts glitching, and subsequently, the damping loops applying a macroscopic drive to the optic which the FSS can't keep up with. Why has this surfaced now? The IMC satellite boxes were not touched anytime recently as far as I am aware. The MC1 PD whitening board sits in the same eurocrate I pulled the ITMY board out of, but squishing cables/pushing board in did not do anything to alleviate the situation. Moreover, MC2 and MC3 look fine, even though their PD whitening boards also sit in the same eurocrate. Because I was out of ideas, I (soft) restarted c1sus and all the models (the thinking being if something was wrong with the Contec boards, a restart may fix it), but there was no improvement. The last longish lock stretch was with the MC1 watchdog turned off, but as soon as I turned it back on the IMC lost lock shortly after.

I am leaving the autolocker off for the night, hopefully there is an easy fix for all of this...

Attachment 1: IMCwoes.png
IMCwoes.png
  12652   Wed Nov 30 17:08:56 2016 gautamUpdateLSCBinary output breakout box removed

[ericq, gautam]

To diagnose the glitches in OSEM readouts, we have removed one of the PCIE BO D37 to IDE50 adaptor boxes from 1X5. All the watchdogs were turned off, and the power to the unit was cut before the cables on the front panel were removed. I am working on the diagnosis, I will update more later in the evening. Note that according to the c1sus model, the box we removed supplies backplane logic inputs that control whitening for ITMX, ITMY, BS and PRM (in case anyone is wondering/needs to restore damping to any of these optics). The whitening settings for the IMC mirrors resides on the other unit in 1X5, and should not be affected.

  12653   Thu Dec 1 02:19:13 2016 gautamUpdateLSCBinary output breakout box restored

As we suspected, the binary breakout board (D080478, no drawing available) is simply a bunch of tracks printed on the PCB to route the DB37 connector pins to two IDE50 connectors. There was no visible damage to any of the tracks (some photos uploaded to the 40m picasa). Further, I checked the continuity between pins that should be connected using a DMM.

I got a slightly better understanding of how the binary output signal chain is - the relevant pages are 44 and 48 in the CONTEC manual. The diagram on pg44 maps the pins on the DB37 connector, while the diagram on pg 48 maps how the switching actually occurs. The "load" in our case is the 4.99kohm resistor on the PD whitening board D000210. Following the logic in the diagram on pg48 is easy - setting a "high" bit in the software should pull the load resistor to 0V while setting a "low" bit keeps the load at 15V (so effectively the whole setup of CONTEC card + breakout board + pull-up resistor can be viewed as a simple NOT gate, with the software bit as the input, and the output connected to the "IN" pin of the MAX333).

Since I was satisfied with the physical condition of the BO breakout board, I re-installed the box on 1X5. Then, with the help of a breakout board, I diagnosed the situation further - I monitored the voltage to the pins on the backplane connector to the whitening boards while switching the MEDM switches to toggle the whitening state. For all channels except ITMY UL, the behaviour was as expected, in line with the preceeding paragraph - the voltage swings between ~0V and ~15V. As mentioned in my post yesterday, the ITMY UL channel remains dodgy, with voltages of 12.84V (bit=1) and 10.79V (bit=0). So unless I am missing something, this must point to a faulty CONTEC card? We do have spares, do we want to replace this? It also looks like this problem has been present since at least 2011...

In any case, why should this lead to ITMY UL glitching? According to the MAX333 datasheet, the switch wants "low"<0.8V and "high">2.4V - so even if the CONTEC card is malfunctioning and the output is toggling between these two states, the condition should be that the whitening stage is always bypassed for this channel. The bypassed route works just fine, I measured the transfer function and it is unity as expected.

So what could possibly be leading to the glitches? I doubt that replacing the BO card will solve this problem. One possibility that came up in today's meeting is that perhaps the +24V to the Sat. Box. (which is used to derive the OSEM LED drive current) may be glitching - of course we have no monitor for this, but given that all the Sat. Amp. Adaptor boards are on 1X5 near the Acromag, perhaps Lydia and Johannes can recommission the PSL diagnostic Aromag to a power supply monitoring Acromag?


What do these glitches look like anyway? Here is a few second snapshot from one of the many MC1 excursions from yesterday - the original glitch itself is very fast, and then that gives an impulse to the damping loop which eventually damps away.

And here is one from when there was a glitch when the tester box was plugged in to the ITMY signal chain (so we can rule out anything in the vacuum, and also the satellite box itself as the glitches seem to remain even when boxes are shuffled around, and don't migrate with the box). So even though the real glitch happens in the UL channel (note the y axes are very different for the channels), the UR, LR and LL channels also "feel" it. recall that this is with the tester box (so no damping loops involved), and the fact that the side channel is more immune to it than the others is hard to explain. Could this just be electrical cross-coupling?

Still beats me what in the signal chain could cause this problem.


Some good news - Koji was running some tests on the modified WFS demod board and locked the IMC for this. We noticed that MC1 seemed well behaved for extended periods of time unlike last night. I realigned the PMC and IMC, and we have been having lock streches of a few hours as we usually have. I looked at the MC1 OSEM PD readbacks during the couple of lock losses in the last few hours, and didn't notice anything dramatic laugh. So if things remain in this state, at least we can do other stuff with the IFO... I have plugged in the ITMY sat. box again, but have left the watchdog disabled, lets see what the glitching situation is overnight... The original ITMY sat. box has been plugged into the ETMY DAQ signal chain with a tester box. The 3 day trend supports the hypothesis the sat. box is not to blame. So I am plugging the ETMY suspension back in as well...

Attachment 4: ULcomparison.pdf
ULcomparison.pdf
  12654   Thu Dec 1 08:02:57 2016 SteveUpdateLSCglitching ITMY_UL_LL

 

 

Attachment 1: ITMY_UL_LL.png
ITMY_UL_LL.png
ELOG V3.1.3-