ID |
Date |
Author |
Type |
Category |
Subject |
793
|
Mon Aug 4 21:48:24 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Scan for TEM00/01/10 |
Work log on August 3rd - Part2
o I tried to measure the frequency of the FSRs using TEM00 resonances. Also search of TEM01/TEM10 resonances were tried.
-----------
Measurement for TEM00
o The frequency of the injection beam was scanned from 2MHz to 20MHz using the LabVIEW panel with GPIB. The 1st figure attached below is the result of the scan. Equispaced peaks were found as expected. The interval of the peaks are about 3.89MHz. Each peaks were measured with freq intervals of down to 50Hz. I will analyze the center frequency of the peaks precisely later in order to have a final result.
Measurements for TEM01/TEM10
o The beam injection technique is thought to be useful for measureing the frequency of the higher-order resonances. In order to measure the higher-order resonances the modifications of the experimental setup were applied as below.
1) For TEM10 (the beam like "OO" shape), a razor blade which blocked the horizontal half of the transmitted beam was placed. We needed to disturb half of the beam because the beat between the PSL TEM00 and the injection TEM01 cancels if the PD receives all of the light.
2) The injection beam is slightly misaligned in the horizontal direction in order to enhance the coupling of the injection beam to the cavity TEM01 mode.
3) For TEM01 (the beam like "8" shape), a razor blade cutting the vertical half and the misalignment of the inj beam in the vertical direction are applied.
o The frequency of the injection beam was scaned from 1st FSR of TEM00 in the upward direction. The alignment of the arm cavity was left untouched during the measurement. As shown in the 2nd figure attached below, the resonances were found about 1.19MHz away from the TEM00, but they are separated by about 19kHz(!). This could be split of the degenerated modes which corresponds to the difference of the mirror curvature in two directions! This difference is something like 56 m and 57 m. Can you believe this?
(To be continued to the next entry) |
Attachment 1: TEM00.png
|
|
Attachment 2: TEM01.png
|
|
Attachment 3: knife_edge.png
|
|
794
|
Mon Aug 4 22:31:10 2008 |
Koji | Update | General | Abs. Len. Meas. ~ Simple Test for TEM01/10 split |
Work log on August 3rd - Part3
Question:
o The TEM01 and TEM10 of the Yarm were found to split with 19kHz separation. Is this true?
o In which direction the eigenmodes are?
Thought:
o The separation of 19kHz is a kind of too big because the cavity bandwidth is several kHz.
o This means that "TEM01 and TEM10 can not resonate at the same time (by the PSL beam)".
Test:
o Imagine we are just using the PSL beam and playing with an arm cavity.
o Tilt the end mirror in pitch. Resonate the TEM01 mode (8-shaped).
o Then tilt the end mirror in yaw.
o a) If the resonances are degenerated within the bandwidth of the laser, it rotates freely.
o b) If the resonances splits, the tilt in yaw does not change the shape. Then suddenly jumps to TEM10 (by an accident).
Result:
o The shape does not change. Just jumps to the other mode. (The case above b.)
o The eigenmode looked like quite horizontal and vertical.
Conclusion: the mode really splits. |
Attachment 1: TEM01_10.png
|
|
795
|
Tue Aug 5 00:05:57 2008 |
Koji | Update | General | Abs. Len. Meas. ~ IFR2023A calibration |
Work log on August 4th
o IFR2023A (Marconi) was calibrated by the SR620 frequency counter which is locked to the GPS signal.
o The frequency of the IFR2023A was scanned from 1MHz to 20MHz with 1MHz interval. The readout of the frequency counter was recorded.
o The linear fit was taken.
f_freq_count = K0 + K1 * f_IFR [Hz]
K0 = 0.00 +/- 0.02
K1 = 0.999999470 +/- 0.000000001
o So, the IFR seems to have -0.5ppm systematic error. |
796
|
Tue Aug 5 02:39:55 2008 |
Koji | Configuration | General | Abs. Len. Meas. ~ Optical Layout on the AP / PSL table 2008-Aug-05 |
Here are the PDF and the PNG of the AP and PSL table layouts.
After this photo, the squeezing setup at the AP table was removed. |
Attachment 1: optical_layout_ap_table3.png
|
|
Attachment 2: optical_layout_ap_table3.pdf
|
|
Attachment 3: optical_layout_PSL_table1.png
|
|
Attachment 4: optical_layout_PSL_table1.pdf
|
|
798
|
Tue Aug 5 10:56:05 2008 |
Alberto | Configuration | General | ITMX chamber opened and mirror released |
D-Mass, Steve, Rana, Koji, Yoichi, Alberto,
We opened the ITMX chamber to check the optics after last week earthquake. In particular, from the spectra, ITMX seemed to be stuck and had to be released again. When we inspected the mirror, we found that it wasn’t necessary to touch it. It had become free again during the vent thanks to the change of conductivity in the air inside during the vent.
We checked the magnets and they seemed to be fine.
A couple of stop screws had lost the rubber on their tips, although we don’t know if that was due to the earthquake.
We also took advantage of the opening to center the LR and the left OSEMs in the mirror to their zero.
Inspecting the table we found a couple of things not totally clear on the configuration of the optics in the table. In particular we found a beam dump located too close to the ifo beam. Eventually we found out that the dump was meant to block a ghost beam coming from the ITM. A better location should probably be figured out for that. We also found that the POXM1 mirror designed to have the maximum reflectivity for the P polarization of the beam at 45 degrees is mounted so that the incident beam is at 22 degrees. This cause the beam to be 90% transmitted and only 10 percent reflected to POX. The transmitted beam appears at ther BSC chamber.
The ifo beam passes so close to the POXM1 mirror so that it can be clipped by its large metal frame ring. The beam at that point is about 6mm large and the ring is about 1cm thick so that we could gain some distance with a different mount. |
800
|
Tue Aug 5 17:56:23 2008 |
Alberto | Configuration | General | SRM and PRM inspection |
Yoichi, Koji, Rana, Steve, Alberto
Today we opened the BSC to inspect the optics, and in particular the SRM and PRM.
We found that one of the side magnets of the SRM was broken and a piece of it fell and got stuck to the LR magnet.
We removed the LR OSEM and took off the broken part with tweezers. Since we couldn’t replace the magnet on the side,
we decided to just switch the OSEM to the other side were a second magnet was available. Then we centered the OSEMs.
Using the optical levers we aligned both the ITMX and the SRM so that now we have to center again the OSEMs on both.
The PRM was visibly tilted and it was out of the range of the OSEMs. To try to fix the tilt we lift it up a little
with the screws on the bottom and pushed it with the third screw on top. That had the effect of making the mirror
tilt to the opposite direction. We looked at the wires (see attached picture) and it seemed centered on the side
of the mirror.
Tomorrow we are going to reset the OSEMs on ITMX and SRM and then we’re going to try to fix the tilt on PRM. |
Attachment 1: IMG_1434.JPG
|
|
Attachment 2: IMG_1456.JPG
|
|
801
|
Wed Aug 6 11:10:34 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM00 scan |
Analysis of the data on August 3th ~ Part 1
From the measurement of the 5 FSRs, the FSR frequency for the Yarm cavity was estimated as
f_FSR = 3878678 Hz +/- 30 Hz
and the Yarm length is
L_yarm = 38.6462 m +/- 0.0003 m
This is the precision of 8ppm. In my opinion, this is a satisfactory result for our purpose.Y-arm length
e-log length [m]
-----------------------------
556(2008-Jun-24) 38.70 +/- 0.08 Cavity swinging measurement
556(2008-Jun-24) 38.67 +/- 0.03 Tape & photo
776(2008-Jul-31) 38.640 +/- 0.007 Beam injection, poor PLL, Transmitted DC
782(2008-Aug-02) 38.6455 +/- 0.0012 Beam injection, independent PLL, Transmitted DC
787(2008-Aug-04) 38.64575 +/- 0.00037 Beam injection, independent PLL, Transmitted RF
this(2008-Aug-04) 38.6462 +/- 0.0003 Beam injection, independent PLL, Transmitted RF, five FSRs, freq calibrated
----------------------------- ----------------
o According to the entry 795, all of the scan frequency was calibrated.
o The five peaks of the scanned data for TEM00 were fitted. Each peak was fitted by the following formula:
V(f) = A / Sqrt(1 - ((f-f0)/fc)^2)
Variable
f: scan frequency
Parameters
A: peak amplitude
f0: center frequency
fc: half bandwidth of the peak for -3dB
o The results are shown in the attached figure 1. They look very similar each other but they are different plot! The fittings were extremely good. The center frequencies estimated were as follows:
FSR1: 3879251.9 Hz +/- 8.8 Hz
FSR2: 7757968.1 Hz +/- 10.8 Hz
FSR3: 11636612.9 Hz +/- 10.2 Hz
FSR4: 15515308.1 Hz +/- 8.7 Hz
FSR5: 19393968.7 Hz +/- 8.4 Hz
o The FSR frequencies were fitted by a line. The fitting and the residuals are shown in the attached figure 2.
The fitting results were
f_FSR(n) = 586.4 + 3878678 * n
This means that:
o FSR frequency was 3878678 [Hz].
o The lock of the carrier had detuning of 586 [Hz].
The detuning of the carrier from the resonance can be explained by the alignment drift. In deed, at the end of the measurement, decrease of the transmitted power by -15% was found. Then, the frequency of the 1st FSR was measured before and after the alignment adjustment. This changed the frequency of the FSR1 by 350Hz. This change could not be explained by the cavity length change as this is too big (~3.5mm).
Actually, the spacing of the cavity length is more stable. The residual is rather scattered with in 20-30Hz. So, I took the error of 30Hz as the whole precision of the frequency measurement that includes the fluctuation of the alignment, the cavity length itself, and so on. This yields the FSR and the cavity length of
f_FSR = 3878678 Hz +/- 30 Hz
L_yarm = 38.6462 m +/- 0.0003 m . |
Attachment 1: TEM00fit.png
|
|
Attachment 2: TEM00FSRfit.png
|
|
802
|
Wed Aug 6 11:43:52 2008 |
Koji | Update | General | Abs. Len. Meas. ~ analysis of the TEM01 scan |
Analysis of the data on August 3th ~ Part 2
o I already have reported that the resonant freq of TEM10 and TEM01 split.
o Again, note that TEM10/01 were arranged almost in the horizontal/vertical by the observation of the video.
o The peaks of TEM10 and TEM01 were fitted with the same method as of TEM00.
o The peak freqs were:
f_TEM10: 5087040 Hz +/- 20 Hz
f_TEM01: 5068322 Hz +/- 15 Hz
The split is 18.7kHz.
o The additional parameter from the previous entry:
f_TEM00: 3879252 Hz +/- 9 Hz
L_yarm: 38.6462 m +/- 0.0003 m
o Radius of curvature
Rx = L /(1-Cos^2(Pi (f_TEM10 - f_TEM00) / (c/L/2) ))
Ry = L /(1-Cos^2(Pi (f_TEM01 - f_TEM00) / (c/L/2) ))
from these formula we get the value
Rx = 56.1620 +/- 0.0013 [m]
Ry = 57.3395 +/- 0.0011 [m] |
Attachment 1: TEM01fit.png
|
|
805
|
Wed Aug 6 19:01:15 2008 |
Alberto | Update | General | ITMX and SRM OSEM post-earthquake diagnostic |
Koji, Yoichi, Alberto
Today we reset the OSEMs on ITMX and SRM in order to be centered when the mirrors are aligned to the IFO beam. Since the PRM is still out of order, we used the beam from NPRO laser of the absolute length measurement experiment as it is injected through the AS port.
That’s how we did it:
1) We aligned the SRM so that the reflected beam from the NPRO was at the camera after at the AS port.
2) We traded off the alignment of SRM in order for the reflected beam at the camera to have a nice shape, avoiding any clipping from the optics, and for the optical lever to be not too far from zero. The final alignment for SRM, as read on the sliders on the MDM screen, is: Pitch=1.1650, Yaw=1.4674.
3) We aligned ITMX checking out by an IR card that the incoming and the reflected main beam in between ITMX and the BS matched. The alignment of the two beams was improved checking the matching after the SRM. The final alignment for ITMX, as read on the sliders on the MDM screen, is: Pitch=-1.2937, Yaw=-0.9890.
4) After the alignment of SRM and ITMX these were the voltages at the OSEMs:
SRM
UL=0.957
UR=1.254
LR=0.768
LL=0.620
Side=0.958
ITMX
UL=1.144
UR=1.360
LR=0.591
LL=0.325
Side=-----
5) Finally we centered the OSEMs on both mirrors and we read these voltages:
SRM
UL=0.939
UR=0.994
LR=0.782
LL=0.938
Side=0.953
ITMX
UL=0.918
UR=0.891
LR=0.887
LL=0.875
Side=0.883 |
838
|
Thu Aug 14 21:52:51 2008 |
Koji | Summary | General | Abs. Len. Meas. ~ summary of my Summer |
I have made the summary of the absolute length measurement.
It is attached here. The file is a bit big (~8.6MB). |
Attachment 1: mode_spacing_measurement_080816_v2.pdf
|
|
875
|
Mon Aug 25 10:23:53 2008 |
steve | HowTo | General | cable killer |
Rack 1Y7 double violation:
BNC cables left to be jammed by door
and see destroyed BNCs
RED fibers should be rerouted.
I placed protective obstacle in position
so the door can not be closed.
Please do not do this!
DNA analysis is in progress on your finger prints. |
Attachment 1: cablkill.png
|
|
Attachment 2: cablkll2.png
|
|
938
|
Wed Sep 10 08:57:03 2008 |
steve | Update | General | etmy illuminator turned off |
The ETMY illuminator was left on yesterday.
I just turned it off. |
940
|
Wed Sep 10 19:53:53 2008 |
Alberto | Update | General | abs length experiment |
Update of the last days work on the experiment to measure the absolute length of the cavities.
I'm trying to repeat the same measurement that Koji did on the Y arm, before switching to the X arm.
I switched to the PHD universal box for the PLL control between the main laser and the secondary laser. I found a good gain value for the servo and now I can set the frequency of the beat to any value as long as I do it slowly turning the LO frequency from the knob on the Marconi.
I laid down a 50m BNC cable from the Y end to near the BS chamber, where all the abs length equipment is. I matched the two laser beams changing the alignment of the injection steering mirror at the the dark port on the AP table. I then locked the Y arm cavity. When I first tried to do that, the locking script didn't work because the beam was off of the 'sweet spot' where Rob had set it on Monday. It turned out that aborting the script during one of its previous run, had changed the alignment of the PZT steering mirrors. So with Rob I brought them back near the positions as in the snapshot and then saved a new one with the latest values.
Eventually I could set the beat frequency to the FSR of the arm cavity and saw it in transmission at the ETMY.
Now I'm working on the LabView interface for the GPIB data acquisition board. |
943
|
Thu Sep 11 23:28:35 2008 |
alberto | Update | General | abs cavity length experiment |
The MC lost lock for some reason not related to either the FSS or the PMC I'm done with my measurement for tonight. I've shut the NPRO beam before leaving. |
944
|
Fri Sep 12 11:09:20 2008 |
Alberto | Update | General | abs cavity length experiment |
I'm leaving the lab for a couple of hours. I shut the NPRO. The interferometer is available to anyone. |
945
|
Sat Sep 13 23:13:01 2008 |
Alberto | Update | General | abs cavity length experiment |
The Y arm was locked all time today but, suddenly, this afternoon it lost lock and since then I've been unable to restore it. I tried unsuccessfully the Restore and the Align scripts several times, although the position of PZT steering mirrors were good (as in the snapshot). I tried things like unlocking/locking the MC, the FSS reference cavity, the PMC but it didn't work. Then I decided to switch to the X arm. Locking it was a piece of cake compare to Y. I'm going to start measuring the FSR of the X arm. |
946
|
Sun Sep 14 18:30:32 2008 |
Alberto | Update | General | ABSL: measured X arm |
Today I measured the X arm FSR.
Hi moved the fast PD (Thor Labs PDA255) from the Y end table to the X end table. I had to use a beam splitter to pick out the transmitted beam from the cavity beam and send it to the PD. I did not want to interpose the BS before the TRANS X PD, so I had to move the ETMXT camera to an other place in the table to gain some room. Now the beam that used to go directly to the camera is 50% split and goes also to the PD. I had to put a lens to focus the beam on the PD. The transmitted beam is currently not aligned to the ETMXT camera, I need to fix the alignment of the BS before.
I'm now doing a rough scan of a frequency range 5 times as large as the FSR. I'll post the results soon. |
947
|
Sun Sep 14 19:29:07 2008 |
Alberto | Update | General | ABSL: measured X arm |
Quote: | Today I measured the X arm FSR.
Hi moved the fast PD (Thor Labs PDA255) from the Y end table to the X end table. I had to use a beam splitter to pick out the transmitted beam from the cavity beam and send it to the PD. I did not want to interpose the BS before the TRANS X PD, so I had to move the ETMXT camera to an other place in the table to gain some room. Now the beam that used to go directly to the camera is 50% split and goes also to the PD. I had to put a lens to focus the beam on the PD. The transmitted beam is currently not aligned to the ETMXT camera, I need to fix the alignment of the BS before.
I'm now doing a rough scan of a frequency range 5 times as large as the FSR. I'll post the results soon. |
I'm leaving a long measurement running. I should be back later on. If I won't, whoever wanted to use the interferometer has just to shut the NPRO laser in the AP table. |
956
|
Wed Sep 17 13:58:36 2008 |
Alberto | Update | General | ABSL: results from the X arm |
Today I repeated the measurement of the FSR on the X arm cavity. The noise in the transmitted power that made the measures fluctuate was much reduced after last night Rob worked on the interferometer. The X arm cavity length is now: (38.4580+/-0.0003)m. I'm attaching a summary of the data I've taken.
I'm now preparing the setup to measure the transverse mode spacing. |
Attachment 1: Sept17_XarmFSRmeasurement_report.ps
|
|
960
|
Wed Sep 17 19:13:47 2008 |
Alberto | Update | General | ABSL: status |
I installed the setup for measuring TEM01/10 on the X end table.
I'm leaving. I shut the laser, flipped down the flipper mirror, disconnected the pzt drive signal from the laser.
For Jenne. The power cable for the Guralps' board is now connected to the PDH box on my instruments cart but you can take it. |
962
|
Thu Sep 18 09:30:12 2008 |
steve | Update | General | low noise metal film resistors are in |
Low noise metal film resistor and capacitor kits from www.garrettelec.com are in.
manufacturer: Dale, 289 values, 25ea, surface mount,1206, 0.1% from 100 to 100K, 1/8 or 1/4W
additional values below 100 ohm and above 100K were purchased from Mouser with the same Dale specification
Ceramic capacitor kit from AVX
67 values, 25ea, surface mount, 1206 from 1.0 pF up
atm2: our new storage cabinet pick and put together by Jenni |
Attachment 1: mfr&cap.png
|
|
Attachment 2: storcab.png
|
|
979
|
Mon Sep 22 20:00:35 2008 |
Alberto | Update | General | ABSL: running measurement |
I'm leaving the X arm locked on the TEm01 mode while a measurement is running. Just please wait for 40 minute if you need the interferometer tonight. |
987
|
Wed Sep 24 17:57:04 2008 |
Alberto | Update | General | ABSL: FSS Slow Actuator Control |
Rana, Alberto
Today when I started working with the PLL that I use to control the secondary laser on the ABSL experiment, I found that the beat between the two lasers was at a much higher temperature of NPRO than usual (about one Celsius Degrees higher, 49.79 instead of 48.7). It turned out that the main beam frequency had changed, and so had its frequency, because of a too much high value of the slow actuator gain on the FSS. We looked at the trend for the gain and noticed it had changed from 0.3 to 3 at about noon today. We brought it back to the old value and also optimized the single gains in the FSS slow servo to obtain a faster and stabler response to step changes in the laser temperature.
It is very important for the ABSL experiment that the frequency and the NPRO temperature of the main laser do not change.
** update:you asked for: diff 2008/09/25,0:00 2008/09/25,8:50:19 utc 'FSS[-_]SLOW'
LIGO controls: differences, 2008 09/25 00:00:00 utc vs. 2008 09/25 08:50:19 utc
__Epics_Channel_Name______ __Description__________ __value1____ __value2____
C1:PSL-FSS_SLOWKD 0.000000 0.001000
C1:PSL-FSS_SLOWKI -0.001000 -0.001700
C1:PSL-FSS_SLOWKP -0.000300 -0.001000
It seemed later that it was not being cool with the derivative gain up at -0.001, so I set it to zero. We really need some documentation on this
loop (e.g. pseudo code and a PID tuning procedure). Note that the PID record as documented in the EPICS Reference Manual
has been deprecated and so we run a perl script that Tobin wrote. |
994
|
Thu Sep 25 17:14:31 2008 |
rana | Configuration | General | new sitemap |
|
Attachment 1: vegemite.png
|
|
1030
|
Tue Oct 7 10:49:29 2008 |
Alberto | Update | General | Displaced Photodiode |
This morning I found that the photodidode of the PLL in the PSL table was not aligned to the beam anymore. The PD support was not tight to the pedestal so that the PD was rotated and completely off of the beam.
It is possible that the BNC cable connected to the PD was pulled very strongly, or the PD was hit so that the support got unscrewed by its pedestal. Anyways, it did not happen spontaneously.
I re-aligned the PD and observed again the beat between the two laser beams. Here are the values from the measurement of the signal from the PD:
I measured the DC values of the hitting power, alternatively occluding one of the two laser beams, and I measured the beat amplitude letting them interfere and reading the peak-to-peak amplitude of the oscillating signal:
main beam DC: 200mV
secondary beam DC: 490
beat: 990mV
beat at the spectrum analyzer (after the two-way splitter of the PLL): -8.40dBm on a noise floor of the photodiode of -75dBm
the frequency of the beast is 8.55MHz and the temperature of the NPRO of the secondary beam, as read from the laser driver display, is 48.7357C.
Alberto |
1062
|
Tue Oct 21 16:14:42 2008 |
steve | Update | General | divergence of He Ne 1035P |
The ITM oplevs laser diodes are noisy.
They will be replaced by JDS 1035P
SN T8093307 was measured with the beamscanner.
This will able us to calculate the right lenses to get a small beam on the qpd.
** The first column is distance from the front face of the laser in cm.
The second column is beam diameter in the horizontal direction in microns.
The third column is the beam diameter in the vertical direction in microns. (edit by Rana) |
Attachment 1: 1035p_divergence.png
|
|
1069
|
Wed Oct 22 17:48:58 2008 |
Yoichi | Update | General | Lenses for focusing the optical lever laser (Re:divergence of He Ne 1035P) |
Steve had difficulty in finding lenses for focusing the HeNe laser for the ITM op-lev.
Following his measurement of the beam divergence, I did some calculation to find a suitable set of lenses and positions.
First, I fitted Steve's data to get the waist size and location of the new HeNe.
The first plot shows the fitting result.
The size of the waist is 0.3mm at -367mm from the laser output (i.e. inside the laser).
(I only used horizontal beam size data.)
Then using the obtained beam parameter, I calculated the propagation of the beam through two lenses.
After playing with the focal length and location of the lenses, I found that with parameters {f1=-0.125m, f2=0.2m, d1=0.2m, d2=0.1m} we get about 1mm beam at the QPD (about 4m away from the laser). f1 and f2 are the focal lengths of the lenses, d1 is the distance from the laser to the first lens and d2 is the distance between the two lenses.
The second plot shows the beam size as a function of the distance from the laser.
The Mathematica notebook used to plot the beam propagation is attached.
By running it on Mathematica 6, you can dynamically change the parameters (focal lengths and locations) by sliders, and the plot (like the one shown in the second attachment) updates in real time. It is cool. Please try it.
Quote: | The ITM oplevs laser diodes are noisy.
They will be replaced by JDS 1035P
SN T8093307 was measured with the beamscanner.
This will able us to calculate the right lenses to get a small beam on the qpd.
** The first column is distance from the front face of the laser in cm.
The second column is beam diameter in the horizontal direction in microns.
The third column is the beam diameter in the vertical direction in microns. (edit by Rana) |
|
Attachment 1: BeamProfile.png
|
|
Attachment 2: BeamPropagation.png
|
|
Attachment 3: BeamPropagation.zip
|
1072
|
Thu Oct 23 15:27:19 2008 |
Alberto | Update | General | Abs length |
Here are the measurements I've got yesterday. The plot shows the transmitted power after the X arm while sweeping the frequency of the beat between the two lasers. That frequency is changed by scanning the frequency of the local oscillator of the PLL (that is the Marconi).
The X arm cavity has been locked to the TEM00 of the main beam. I tilted ITMX in order to enhance the higher modes of the secondary beam with the purpose of making them beat with the main beam.
Three traces are shown in the plot correspondent to three different measurements in which I clipped the transmitted beam at the X end with a razor blade from up and from the side of the photodiode.
Both the beats of the TEM00 mode of the main laser with the TEM01 and TEM10 modes of the secondary laser are expected to be at 6.2763 MHz. The plot has a candidate peak at 6.325MHz but it does not appear on both the measurements with the blade. the peaks at 3.897MHz and 7.795MHz are the first and the second longitudinal modes of the X arm cavity. |
Attachment 1: TRX_aplot_03_04_05_together.png
|
|
1073
|
Thu Oct 23 18:23:47 2008 |
Alberto | Update | General | Abs length |
Quote: | Here are the measurements I've got yesterday. The plot shows the transmitted power after the X arm while sweeping the frequency of the beat between the two lasers. That frequency is changed by scanning the frequency of the local oscillator of the PLL (that is the Marconi).
The X arm cavity has been locked to the TEM00 of the main beam. I tilted ITMX in order to enhance the higher modes of the secondary beam with the purpose of making them beat with the main beam.
Three traces are shown in the plot correspondent to three different measurements in which I clipped the transmitted beam at the X end with a razor blade from up and from the side of the photodiode.
Both the beats of the TEM00 mode of the main laser with the TEM01 and TEM10 modes of the secondary laser are expected to be at 6.2763 MHz. The plot has a candidate peak at 6.325MHz but it does not appear on both the measurements with the blade. the peaks at 3.897MHz and 7.795MHz are the first and the second longitudinal modes of the X arm cavity. |
Today I repeated the measurement and I'm attaching the resulting plot. Still, not clear and (and most of all) not nice.
It seems like tilting ITMX is introducing a lot of unwanted higher modes that don't let us to clearly identify TEM01 and TEM10.
I think I'm going to stop it to get back to technique in which the arm cavity is locked to the TEM01/10 of the main beam. |
Attachment 1: TRX_plot_06_07_08_together.png
|
|
1074
|
Thu Oct 23 18:27:04 2008 |
Alberto | Update | General | Abs length |
Quote: | Here are the measurements I've got yesterday. The plot shows the transmitted power after the X arm while sweeping the frequency of the beat between the two lasers. That frequency is changed by scanning the frequency of the local oscillator of the PLL (that is the Marconi).
The X arm cavity has been locked to the TEM00 of the main beam. I tilted ITMX in order to enhance the higher modes of the secondary beam with the purpose of making them beat with the main beam.
Three traces are shown in the plot correspondent to three different measurements in which I clipped the transmitted beam at the X end with a razor blade from up and from the side of the photodiode.
Both the beats of the TEM00 mode of the main laser with the TEM01 and TEM10 modes of the secondary laser are expected to be at 6.2763 MHz. The plot has a candidate peak at 6.325MHz but it does not appear on both the measurements with the blade. the peaks at 3.897MHz and 7.795MHz are the first and the second longitudinal modes of the X arm cavity. |
Here is the Matlab code I use to calculate the HOM frequencies. |
Attachment 1: HOM_Frequencies.m
|
% FP Cavity HOM Frequencies Estimate
% Alberto Stochino, October 2008
R1 = 7280; % Mirror1 radius of curvature
R2 = 57.57; % Mirror2 radius of curvature
L = 38.458; % Length of the FP Cavity
n = 1; % X Order of the Mode
m = 0; % Y Order of the Mode
c = 299792458; % Speed of Light
... 11 more lines ...
|
1084
|
Fri Oct 24 11:42:48 2008 |
Alberto | Update | General | Abs length: locking the X arm cavity in TEM01/10 |
I went back to lock the arm cavity in either TEM01 or TEM10 mode. Attached are the results. We still have several resonances which we can't clearly identify. I expect TEM01/10 to be at 6.276MHz but we don't have a peak exactly there. What we have is:
- a peak at 6.320MHz in the measurement of the TEM01 mode (the one with the lobes of the spot almost on the vertical axis)
- a peak at 6.590MHz in both the TEM01 and TEM10 measurements.
I'm either missing the real TEM01/10 mode or the peaks at 6.590MHz are those. If that were true, that would mean that the radius of curvature of ETMX is 49.29 m instead of 57.57 m as listed in the IFO data sheets. I think it's much more likely that the measurements are missing the right peaks. |
Attachment 1: TRX_armTEM00-plot_09-10_together.png
|
|
1086
|
Fri Oct 24 17:21:13 2008 |
Alberto | Update | General | Abs length: the right amount of beam clipping |
I found the reason why the peak at about 6.3MHz appeared only on the TEM10 mode: the blade was clipping the beam too much and it was probably totally killing the mode. I'm attaching a plot that shows that difference when I did that. |
Attachment 1: 24OCT08_levels_of_clipping_comparison.png
|
|
1087
|
Fri Oct 24 18:05:01 2008 |
Alberto | Update | General | Abs length: transverse mode spacing measured for the X arm |
The ETMX suffers of astigmatism. I measured the following frequencies for the higher order modes:
- f_01 = 6317500 +/- 500 Hz
- f_10 = 6305500 +/- 500 Hz
From
g2=1/g1*(cos(A*L*pi/c))^2
where A= (fsr-f_i), fsr=(3897654+/-15)Hz (see elog entry 956), L=(38.4580+/-0.0003)m, g1=0.9947 (from R1=7280m), I get the following values for the g-factor coefficients:
g2_x = 0.3164 +/- 0.0002
g2_y = 0.3209 +/- 0.0002
from which we have the radius of curvature of ETMX:
R_x = 56.26 +/- 0.01 m
R_y = 56.63 +/- 0.01 m
The specs for the mirror have R2= 57.57 m (unc).
So, they seem conditions similar of those of ETMY that Koji measured:
Rx = 56.1620 +/- 0.0013 [m]
Ry = 57.3395 +/- 0.0011 [m]
for which L_yarm: 38.6462 m +/- 0.0003 m |
Attachment 1: 24OCT08_TEM10-01_comparison(file12-14).png
|
|
1108
|
Mon Nov 3 19:12:27 2008 |
alberto | Update | General | Transverse mode spacing measurement for the X arm |
I know a lot of expectations have been building up on these days in the scientific community at the 40m towards a conclusive elog entry about the g-factor measurement of the X arm cavity.
The reason of the delay is that the results are still under review by the author. It turned out that the measurements of the transverse mode spacing have been performed on the beat
of the TEM02/20 and TEM00 modes between the two laser beams instead of on the beat between 00 and 01/10. However, the results posted on the elog in the last weeks seem likewise correct,
in particular my plot of the HOM of the sidebands.
Anyways, lately I have been trying to repeat the measurement on the beat of TEM01/10 with 00 but, despite all the efforts and the countless configurations tried (on the locking of
the arm, on the tilt of the mirrors, on the injection of the secondary beams, on the chopping with the blade), only the beat of TEM10 has been measured - although quite clearly -
whereas that of TEM01 has so far hidden itself.
The search continues but even if it does not succeeds, a summarizing document is going to be posted soon.
Here I attach a plot that shows the kind of difficulties trying to detect TEM10. The red neat peak is the beat of TEM01 whereas the other curves are some of the resulting
resonances after trying to couple TEM10 with 00 (or vice versa, according to whether I'm locking the cavity to the 00 mode of the main laser or to that of the secondary beam). |
Attachment 1: 2008-11-02_summarizingplot.png
|
|
1109
|
Mon Nov 3 19:18:47 2008 |
Alberto | Configuration | General | new elog |
Phil Ehrens kindly poured our elog's content in a CD that now is here at the 40m.
I've been trying to install the 2.7.5 version of the elog on Nodus, a Sun machine, but the installing procedure is different from linux and I dont' know it. I tried to recompile the elog from the source code but the way gcc is called must be wrong because I get this error message:
nodus:elog-2.7.5>make
gcc -DHAVE_SSL -o elog src/elog.c -lsocket -lnsl -lssl
src/elog.c:45:25: openssl/ssl.h: No such file or directory
src/elog.c:329: error: parse error before "SSL"
src/elog.c: In function `ssl_connect':
src/elog.c:331: error: `SSL_METHOD' undeclared (first use in this function)
src/elog.c:331: error: (Each undeclared identifier is reported only once
src/elog.c:331: error: for each function it appears in.)
src/elog.c:331: error: `meth' undeclared (first use in this function)
src/elog.c:332: error: `SSL_CTX' undeclared (first use in this function)
src/elog.c:332: error: `ctx' undeclared (first use in this function)
src/elog.c:340: error: `ssl_con' undeclared (first use in this function)
src/elog.c:341: error: `sock' undeclared (first use in this function)
src/elog.c: In function `retrieve_elog':
src/elog.c:383: error: `SSL' undeclared (first use in this function)
src/elog.c:383: error: `ssl_con' undeclared (first use in this function)
src/elog.c: In function `submit_elog':
src/elog.c:631: error: `SSL' undeclared (first use in this function)
src/elog.c:631: error: `ssl_con' undeclared (first use in this function)
make: *** [elog] Error 1
Joe, Yoichi, anyone else knows how to do that? |
1110
|
Mon Nov 3 21:38:32 2008 |
Yoichi | Configuration | General | new elog |
Quote: | I tried to recompile the elog from the source code but the way gcc is called must be wrong because I get this error message:
nodus:elog-2.7.5>make
gcc -DHAVE_SSL -o elog src/elog.c -lsocket -lnsl -lssl
src/elog.c:45:25: openssl/ssl.h: No such file or directory
src/elog.c:329: error: parse error before "SSL"
|
The location of ssl.h is a bit strange in the sunfreeware version of OpenSSL. Since elog does not use configure script, you have to
edit Makefile and add an appropriate -I option to an appropriate variable definition (probably LIBS or CFLAGS, because the elog Makefile does
not use INCLUDES).
If you don't understand what I'm saying, just wait for me. |
1133
|
Thu Nov 13 15:50:44 2008 |
Alberto | Configuration | General | GPS 10MHz clock |
The schematic of the 1Y7 rack that Alan pointed out (see attachment) don't represent anymore the actual rack.
First, with Yoichi we found that the GPS receiver for the 10 MHz is in a different position,
on the other side of the VME computer. It seems to output 1 kHz, which also appears in some modulated way.
This signal is then passed to a board on 1Y7 that seems make just copies of the signal. One of these goes
to an other board in 1Y6 that looks like a GPS receiver but has actually no GPs antenna input. Here it is
not connected to anything, but on its same crate is a the awg computer, so it might be providing the clock
to that by the crate.
We also checked the clock monitor output on the boards in the PSL that provides for the clock to the Penteks
and it seems that these are actually getting 4MHz. |
Attachment 1: rackstuff.pdf
|
|
1142
|
Mon Nov 17 20:47:19 2008 |
Caryn | Summary | General | Drove MC at 28kHz to excite drum modes |
Rana, Alberto and I observed drum mode frequencies at 23.221kHz(MC1), 28.039kHz(MC2), 28.222kHz(MC3) while driving the mode cleaner. We observed no peaks when we didn't drive the mode cleaner. We used the SR785 to send a ~80mV noise signal in the 28-28.2kHz band to the mode cleaner mirrors via 1Y4-MC1,2,3-POSIN. Then we looked at 1Y2-Mode Cleaner-Qmon on the SR785 and saw peaks. |
1145
|
Tue Nov 18 19:44:53 2008 |
Alberto | Update | General | X Arm Cavity "Negative" FSRs Measured |
Previous measurements on the X arm cavity revealed a shift of the frequencies of the cavity resonances from where one would expect these to be by just looking at integer multiples of the cavity FSR. In particular, plotting the resonant frequencies versus the order of their occurrences while sweeping the laser frequency (in our case that of the beat between the two lasers), the linear fit of the data contained an unwanted offset:
resonant_frequency = n x FSR + offset
In part, we attributed this offset to the local oscillator of the PLL, the Marconi, which was not referred to an absolute frequency clock.
For that reason, I connected the Marconi to the RS FS275 which uses the 1PPS from the GPS to generate a 10 MHZ reference signal, and then scanned the cavity again. This time I started from negative beat frequencies, that happen when the frequency of the secondary laser is smaller than the main laser's, to positive frequencies. The way I made sure of the sign of the frequency was looking at the effect of changing the temperature of the NPRO. I decided that negative frequencies where those for which an increase in temperature lowered the beat frequency and positive frequencies those for which increasing the temperature made the beat frequency go up.
I then plotted the data and obtained the attached plot.
The offset was reduced to about 80 Hz (from more than 200 in the previous measurements). I think the residual offset has to do with something that happens in the cavity, something, as Koji found out, related to the alignment of the mirrors.
Thanks to the more data points, the measurement of the FSR improved to (3897627 +/- 5) Hz, which would let us know the measure of the cavity length with an error of 50um, if it weren't for the offset. I have to understand whether and how to take this into account to determine the precision in the cavity length. I guess it depends on whether it is real or it is still a systematic error due to the measurements. |
Attachment 1: 2008-11-17_Linear_Fit.pdf
|
|
1150
|
Fri Nov 21 16:03:50 2008 |
rana | HowTo | General | Recharging Batteries |
I found some black & red "Ninja" alkaline AA batteries in the battery charger. This is dangerous. Please
do not put alkaline batteries in there, only Nimh. If you need help with the battery charger you can
come and talk to me or Rob and we can help you out getting started. |
1183
|
Sun Dec 7 16:02:46 2008 |
rana | Update | General | Mag 5.1 EQ halfway to Vegas |
There was a Mag 5.1 EQ Friday night at 8:18 PM.
It tripped most of our optics. They all damped down passively except for MC2. Further more, ITMY seems to have come back to a different place.
Don't know why MC2 was so upset but I think maybe its watchdog didn't work correctly and the side loop is unstable when there are
large motions. After I lowered the side gain by 10x and waited a few minutes it came back OK and the MC locked fine.
I have just now put all the WDs into the Shutdown state so that we can collect some hours of free swinging data to see if there's been
any damage. Feel free to redamp the optics whenever you need them. Someone should do the eigenfrequency check in the morning and compare
with our table of frequencies in the wiki.
I excited the optics using the standard SUS/freeswing-all.csh script. Here's the output:Excited all optics
Sun Dec 7 16:07:32 PST 2008 |
Attachment 1: g.png
|
|
Attachment 2: Untitled.png
|
|
1185
|
Mon Dec 8 00:10:42 2008 |
caryn | Summary | General | calibrating the jenne laser |
I apologize in advance for the long list of numbers in the attachment. I can't seem to make them hide for some reason.
So, since Jenne's laser will probably be used for the Stoch mon calibration, Alberto and I took some measurements to calibrate Jenne's laser.
We focused the beam onto the New Focus RF 1GHz photodetector that we stole from rana's lab (powered with NewFocus power 0901). Measured the DC output of the photodetector with scope. Aligned the beam so DC went up (also tried modulating laser at 33MHz and aligning so 33MHz peak went up). Hooked up the 4395a Spectrum/Network Analyzer to the laser and to the AC out of the photodetector (after calibrating Network analyzer with the cables) so that the frequency response of the laser*photodetector could be measured.
(Note: for a while, we were using a splitter, but for the measurements here, I got rid of the splitter and just sent the RFout through the cables to channel A for the calibration, sent RFout to the laser and photodetector to channel A for the measurement)
Measured the frequency response. At first, we got this weird thing with a dip around 290MHz (see jcal_dip_2_norm.png below).
After much fiddling, it appeared that the dip was from the laser itself. And if you pull up just right on the corner of this little metal flap on the laser (see picture), then the dip in the frequency response seems to go away and the frequency response is pretty flat(see jcal_flat_3_norm below). If you press down on the flap, the dip returns. This at least happened a couple of times.
Note that despite dividing the magnitude by the DC, the frequency responses don't all line up. I'm not sure why. In some cases the DC was drifting a bit(I presume the laser was coming out of alignment or decided to align itself better) and maybe with avgfactor=16, and measuring mean DC on the scope, it made the DC meas not match up the the frequ resp meas...
I've attached the data for the measurements made (I'm so sorry for all the #'s. I can't figure out how to hide them)
name/lasercurrent/DC/analyzer SourcePower/analyzer avgfactor
jcal7_1/I=31.7mA/DC=-4.41/SourcePower=0dBm/avgfactor=16
jcal7_2/I=31.7mA/DC=-1.56/SourcePower=0dBm/avgfactor=none
jcal8_1/I=31.7mA/DC=-4.58/SourcePower=0dBm/avgfactor=16
jcal8_2/I=31.7mA/DC=-2.02/SourcePower=0dBm/avgfactor=16
jcal8_3/I=31.7mA/DC=-3.37/SourcePower=0dBm/avgfactor=16
Note also that the data from the 4395a seems to have column1-frequency, column2-real part, column3-imaginary part...I think. So, to calculate the magnitude, I just took (column2)^2+(column3)^2.
To get sort of an upper-bound on the DC, I measured how DCmax varied with laser current, where DCmax is the DC for the best alignment I could get. After setting the current, the laser was modulated at 33MHz and the beam was aligned such that the 33MHz peak in the photodetector output was as tall as I could manage. Then DC was measured. See IvsDCmax.png. Note the DC is negative. I don't know why.
Also, the TV's don't look normal, the alarm's going off and I don't think the mode cleaner's locked. |
Attachment 1: IvsDCmax.png
|
|
Attachment 2: data.tar.gz
|
Attachment 3: jcal_dip_2_norm_log.png
|
|
Attachment 4: jcal_flat_3_norm_log.png
|
|
1187
|
Mon Dec 8 11:54:27 2008 |
Yoichi | Update | General | IFO mirrors aligned |
This morning, I re-aligned the IFO mirrors to see if they were badly moved by the earthquake.
The both arms locked just by the restoring scripts, but the transmission was about 0.7. So I aligned them
with the dithering scripts.
To lock the PRMI, I had to manually tweak the PRM alignment. After running the dithering script, the SPOB
went up to 1200.
I also had to tweak the SRM to get the DRMI locked. After the dithering script, the SPOB was 4200 and REFL166Q
was 3000. |
1189
|
Tue Dec 9 10:48:17 2008 |
Caryn | Summary | General | calibrating the jenne laser: impedance mismatch? |
We sent RFout of network analyzer to a splitter, with one side going back to the network analyzer and the other to the laser modulation input. We observed a rippled transfer function through the splitter. The ripple is probably due to reflection due to an impedance mismatch in the laser. |
Attachment 1: reflection.png
|
|
1194
|
Fri Dec 19 11:18:52 2008 |
Alberto | Configuration | General | Mode Cleaner Temperature Monitor |
I reduced from 10 to 5 the gain of the SR560 that Caryn has set up after the lock-in amplifier nest to the PSL rack because the overload LED was flashing. |
1198
|
Sat Dec 20 23:37:43 2008 |
rob | Omnistructure | General | Saturday Night Fever after presumed power failure |
Just came by to pick something up...
... alarm handlers screeching...
... TP1 failure--closing V1... call Steve... Steve says ok till tomorrow...
... all front ends down (red)...
... all suspensions watchdogged...
... all (I think) servos off...
... PSL shutter closed ...
... chiller at 15C ... I turned it off to prevent condensation in PA...
... MOPA shutter closed... turned off key on Lightwave power supply
... good luck all, and happy holidays! |
1218
|
Thu Jan 8 20:26:17 2009 |
rob | Omnistructure | General | Earthquake in San Bernardino |
Magnitude 4.5
Date-Time
* Friday, January 09, 2009 at 03:49:46 UTC
* Thursday, January 08, 2009 at 07:49:46 PM at epicenter
Location 34.113°N, 117.294°W
Depth 13.8 km (8.6 miles)
Region GREATER LOS ANGELES AREA, CALIFORNIA
Distances
* 2 km (1 miles) S (183°) from San Bernardino, CA
* 6 km (4 miles) NNE (25°) from Colton, CA
* 8 km (5 miles) E (89°) from Rialto, CA
* 88 km (55 miles) E (86°) from Los Angeles Civic Center, CA
Location Uncertainty horizontal +/- 0.3 km (0.2 miles); depth +/- 0.8 km (0.5 miles)
Parameters Nph=142, Dmin=1 km, Rmss=0.38 sec, Gp= 14°,
M-type=moment magnitude (Mw), Version=Q
I felt it from home.
All the watchdogs are tripped, vacuum normal. It looks like all the OSEM sensor values are swinging, so presumably no broken magnets. I'm leaving the suspensions off so we can take fine-res spectra overnight.
Watchout for crappy cables coming loose. |
1222
|
Mon Jan 12 10:57:38 2009 |
rob | Update | General | some stuff |
The AS beam was not hitting the AS166 diode, so I aligned the last little steering mirror and adjusted the phase for MICH locking.
I turned on the HV supplies for the OMC.
Then I realigned the beam onto the AS166 diode, since the steering mirrors came on when I turned on the HV supplies.
It took awhile to find the alignment of the beam into the OMC. Once that was done, the output beam alignment was set, so I aligned onto the AS166 diode a third time.
The bottom two Sorensens in the OMC voltage supply don't look right. They have stickers that say +-24V, but each is sitting at 17.5V and showing no current draw. What's going on here? |
1263
|
Mon Feb 2 12:35:22 2009 |
Alberto | Configuration | General | New Elog 2.7.5 in Service on Nodus |
I moved the 40m, the Adhikari Lab and the SUS elogs from Dziban (located in Millikan's 6th floor) to our gateway server Nodus. In this way we should the complete control of it.
I also updated the elog manager from the 2.6.5 version to the 2.7.5.
Some smoothing of its interface might still be needed these days. We'll be testing it for a while before killing the old one.
from now on everybody is invited to use only the new elog address since there will be no record of entries posted in the old one.
Let me know of any possible difficulty in having access to it. |
1264
|
Mon Feb 2 17:25:44 2009 |
Alberto | Configuration | General | Some little problem with the new elog |
For some reason the new elog does not look exactly like it should.
1) Some of the editing features are not available.
2) The Reply option opens the HTML of the message by default.
I think this is happening because Nodus is a Sun of platform and things are a little bit different from linux.
I'm working to fix these things. If I make any change and need to restart the elog, I'll try to be very quick.
I apologize for the inconveniences. |