40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 212 of 330  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  11810   Wed Nov 25 16:40:32 2015 yutaroUpdateLSCround trip loss of Y arm

I measured round trip loss of Y arm. The alignment of relevant mirrors was set ideal with dithering (no offset).

Summary:

 round trip loss of Y arm: 166.2 +/- 9.3 ppm

(In the error, only statistic error is included.)

How I measured it: 

I compared the power of light reflected by Y arm (measured at AS) when the arm was locked (P_L) and when ETMY was misaligned (P_M). P_L and P_M can be described as 

P_M=P_0(1-T_\mathrm{ITM})

P_L=P_0\left[1-(1-\alpha)\frac{4T_\mathrm{ITM}}{T_\mathrm{tot}^2}T_\mathrm{loss}\right].

The reason why P_L takes this form is: (1-alpha)*4T_ITM/(T_tot)^2 is intracavity power and then product of intracavity power and loss describes the power of light that is not reflected back. Here, alpha is power ratio of light that does not resonate in the arm (power of mismatched mode and modulated sideband), and T_tot is T_ITM+T_loss. Transmissivity of ETM is included in T_loss. I assumed alpha = 7%(mode mismatch) + 2 % (modulation) (elog 11745)

After some calculation we get

1-P_L/P_M\simeq \frac{4(1-\alpha) T_\mathrm{loss}}{T_\mathrm{ITM}}-T_\mathrm{ITM}.

Here, higher order terms of T_ITM and (T_loss/T_ITM) are ignored. Then we get

(1-\alpha) T_\mathrm{loss}=\frac{T_\mathrm{ITM}}{4}(1-P_L/P_M+T_\mathrm{ITM}).

Using this formula, I calculated T_loss. P_L and P_M were measured 100 times (each measurement consisted of 1.5 sec ave.) each and I took average of them. T_ETM =13.7 ppm is used.

Discussion: 

-- This value is not so different from the value ericq reported in July (elog 10248).

-- This method of measuring arm loss is NOT sensitive to T_ITM.  In contrast, the method in which loss is obtained from finesse (for example, elog 11740) is sensitive to T_ITM.

In the method I'm now reporting, 

\Delta T_\mathrm{loss}/T_\mathrm{loss}\simeq\Delta T_\mathrm{ITM}/T_\mathrm{ITM},

but in the method with finesse,

\Delta T_\mathrm{loss}\simeq\Delta T_\mathrm{ITM}.

In the latter case, if relative error of T_ITM is 10%, error of T_loss would be 1000 ppm.

So it would be better to use power of reflected light when you want to measure arm loss.  

  11813   Wed Nov 25 22:37:12 2015 yutaroUpdateLSCremoval of Gautam's cable in 1Y2 and restoration of POYDC

[yutaro, Koji]

We disconnected the cable that was connected to CH5 of the whitening filter in 1Y2, then connected POYDC cable to there (CH5). This channel is where POYDC used to connect.

Then we turned on the whitening filter for POYDC (C1:LSC-POYDC FM1) and changed the gain of analog whitening filter for POYDC from 0 dB to 39 dB (C1:LSC-POYDC_WhiteGain).

  11814   Wed Nov 25 22:59:42 2015 yutaroUpdateLSCAS table optics realignment

I slightly changed the orientation of a few mirrors on AS table that are used to make the AS light get into PDs, in order to confirm that the strange behavior of ASDC (I will report later) is not caused by clipping related to these mirrors or miscentering on PDs.

Then output level of ASDC, AS55, and AS165 could have changed.   

So take care of this possible change when you do something related to them. But the relative change of them would be at most several %, I think.

 

  11815   Wed Nov 25 23:17:34 2015 yutaroUpdateLSCstrange behavior of ASDC

[yutaro, Koji]

I noticed that ASDC level changes depending on the angle of ITMY when trying to take some data for loss map of YARM. We finally found that ASDC level behaves strangely when the angle of ITMY in yaw direction is varied, as you can see in Attachment 1. Now, AS port recieved only the reflection of ITMY. 

NOTE: This behavior indicates that angular motion could couple to length signal in AS port.      

Koji suggested that this behavior might be caused by interference at SR2 or SR3 between main path light and the light reflected by the AR surface. By rough estimation, we confirmed that this scenario would be possible. So it would be better to measure AR reflection of the same mirror to ones used for SR2 and SR3 in term of incident angle.     

Ed by KA: This senario could be true if the AR reflection of teh G&H mirrors have several % due to large angle of incidence. But then we still need think about the overlap between the ghost beam and the main beam. It's not so trivial.

Attachment 1: 14.png
14.png
  11816   Wed Nov 25 23:34:52 2015 yutaroUpdateLSCround trip loss of Y arm

[yutaro, Koji]

Due to the strange behavior (elog 11815) of ASDC level, we checked if it is possible to use POYDC instead of ASDC to measure the power of reflected light of YARM. Attached below is the spectrum of them when the arm is locked. This spectrum shows that it is not bad to use POYDC, in terms of noise. The spectrum of them when ETMY is misaligned looked similar.

So I am going to use POYDC instead of ASDC to measure arm loss of YARM. 


Ed by KA:
The spectra of POYDC and ASDC were measured. We foudn that they have coherence at around 1Hz (good).
It told us that POYDC is about 1/50 smaller than ASDC. Therefore in the attached plot, POYDC x50 is shown.
That's the meaning of the vertical axis unit "ASDC".

Attachment 1: 14.png
14.png
  11817   Thu Nov 26 19:39:27 2015 KojiUpdateLSCCurrent state of the frequency source, and possible improvement

Uploaded on T1000461 too.

Attachment 1: RF_Frequency_Source.pdf
RF_Frequency_Source.pdf RF_Frequency_Source.pdf
  11818   Fri Nov 27 03:38:23 2015 yutaroSummaryLSCround trip loss of Y arm

Tonight I measured "loss map" of ETMY. The method to calculate round trip loss is same as written in elog 11810, except that I used POYDC instead of ASDC this time.

How I changed beam spot on ETMY is: elog 11779.

I measured round trip loss for 5 x 5 points. The result is below.

(unit: ppm)

494.9 +/- 7.6       356.8 +/- 6.0       253.9 +/- 7.9       250.3 +/- 8.2       290.6 +/- 5.1      
215.7 +/- 4.8       225.6 +/- 5.7       235.1 +/- 7.0       284.4 +/- 5.4       294.7 +/- 4.5      
205.2 +/- 6.0       227.9 +/- 5.8       229.4 +/- 7.2       280.5 +/- 6.3       320.9 +/- 4.3      
227.9 +/- 5.7       230.5 +/- 5.5       262.1 +/- 5.9       315.3 +/- 4.7       346.8 +/- 4.2      
239.7 +/- 4.5       260.7 +/- 5.3       281.2 +/- 5.8       333.7 +/- 5.0       373.8 +/- 4.9 

The correspondence between the loss shown above and the beam spot on ETMY is shown in the following figure. In the figure, "downward" and "left" indicate direction of shift of the beam spot when you watch it via the camera (ex. 494.9 ppm corresponds to the lowest and rightest point). 

Edited below on 28th Nov. 

To shift the beam spot on ETMY, I added offset in YARM dither loop. The offset was [-30,-15,0,15,30]x[-10,-5,0,5,10] for pitch and yaw, respectively.  How I calibrated the beam spot is basically based on elog 11779, but I multiplied 5.3922 for vertical direction and 4.6205 for horizontal direction which I had obtained by caliblation of oplev (elog 11785).

Edited above on 28 th Nov.    

 

   

 

I will report the detail later. 

  11819   Fri Nov 27 22:20:24 2015 yutaroUpdateLSCround trip loss of Y arm

Here, I upload data I took last night, including the power of reflected power (locked/misaligned) and transmitted power for each point (attachement 1).

 

And I would like to write about possible reason why the loss I measured with POYDC and the loss I measured with ASDC are different by about 60 - 70 ppm (elog 11810 and 11818). The conclusion I have reached is: 

It could be due to the strange bahavior of ASDC level. 

This difference corresponds to the error of ~2% in the value of P_L/P_M. As reported in elog 11815, ASDC level changes when angle of the light reflected by ITMY changes, and 2% change of ASDC level corresponds to 10 urad change of the angle of the light according to my rough estimation with the figure shown in elog 11815 and attachment 2. This means that 2% error in P_L/P_M could occur if the angle of the light incident to YARM and that of resonant light in YARM differ by 10 urad. Since the waist width w_0 of the beam is ~3 mm, with the 10 urad difference, the ratio of the power of TEM10 mode is (10\,\mu \mathrm{rad}/ \theta_0)^2\sim0.01, where \theta_0=\lambda/\pi w_0. This value is reasonable; in elog 11743 Gautam reported that the ratio of the power of TEM10 was ~ 0.03, from the result of cavity scan. Therefore it is possible that the angle of the light incident to YARM and that of resonant light in YARM differ by 10 urad and this difference causes the error of ~2% in P_L/P_M, which could exlain the 60 - 70 ppm difference. 

Attachment 1: log.txt.zip
Attachment 2: 17.png
17.png
  11820   Sat Nov 28 11:46:40 2015 yutaroUpdateLSCpossible error source of loss map measurement

I found that TRY level degraded and the beam shape seen with CCD camera at AS port was splitted when the beam spot on ETMY was not close to the center. This was because dither started not working well. I suspect so because in such a case TRY level went up when I did iteration with TT1 and TT2 after freezing dither. Splitted beam shape indicates that incident light did not match well with the cavity mode.

TRY level for each point was this:

TRYDC
[[ 0.6573      0.8301      0.8983      0.8684      0.6773    ]
 [ 0.7555      0.8904      0.9394      0.8521      0.6779    ]
 [ 0.6844      0.8438      0.9318      0.8834      0.6593    ]
 [ 0.7429      0.8688      0.9254      0.8427      0.6474    ]
 [ 0.7034      0.8447      0.8834      0.8147      0.6966    ]]

 In the worst case, TRY level was 70 % of the maximum level. Assuming that this degrade was totally due to the mode mismatch, this corresponds to ~50 urad difference between the angle of incident light and resonant lighe in the arm (see elog 11819).

  11821   Sun Nov 29 05:23:57 2015 ranaUpdateLSCCurrent state of the frequency source, and possible improvement

I need some more hints to understand the improvement, although its generally good to re-build it considering the sad state of the assembly/installation that you found.

I see that the current design brings the 11 MHz signal to -2 dBm before intering the first ZHL-2+, but since that has a NF of 9 dB, that seems to only degrade the phase noise to -2 - (-174 +9) = -163 dBc. That seems OK since we only need -160 dBc from this system. Probably the AM noise is worse than this already (we should remember to hook up a simple AM stabilizer in 2016, as well as the ISS).

What else are the main features of this improvement? I can reward a good summary with some Wagonga.

  11822   Sun Nov 29 12:32:26 2015 KojiUpdateLSCCurrent state of the frequency source, and possible improvement

I'm not claiming we need to modify the frequency source immediately as we are not limited by the oscillator amplitude or phase noise.
I just wanted to note something in mind before it goes away quickly.

Alberto's T1000461 tells us that the oscillator and phase noise are degraded by factor of ~3 and ~5 due to the RF chanin.
My diagram is possible removal of up-down situation of the chain.

Maybe more direct improvement would be:

- Removal of two amplifiers out of four. The heat condition of the box is touch thought it is not critical.

- The modification will allow us to have a spare 11MHz channel at 1X2 rack that would be useful for 3f modulation.

  11823   Mon Nov 30 10:41:45 2015 yutaroUpdateLSCDoes a baffle in front of ETMY have effect on loss map measurement?

It might have, so I think I need to estimate shift of beam spot more preciely.

 

According to Steve's drawing, radius of the hole of the baffle is 19.8 mm.

Intensity distribution of fundamental mode in x axis direction is this (y is integrated out):

I(x)=\frac{1}{\sqrt{2\pi(w/2)^2}}e^{-\frac{1}{2}\left(\frac{x}{w/2}\right)^2}

With the radius of curvature of ETMY of 60 m and the arm length of 37.78 m, the beam width w on ETMY is estimated to be 5.14 mm. From this expression of the intensity, \int^\infty_{x=9.56\mathrm{mm}}\mathrm{d}xI(x)=100\,\mathrm{ppm},\,\int^\infty_{x=10.00\mathrm{mm}}\mathrm{d}xI(x)=50\,\mathrm{ppm}, for example. If round trip loss is considered, these values are doubled.

Although maximum shift of beam spot from the ideal spot on ETMY is estimated to be sqrt(6.0^2+(1.7+1.7)^2)=6.9 mm, this value could have error of several tens of % because I am not sure to what exten the calibration is precise, which means that the maximum shift could be ~10 mm and seperation between the baffle and the beam could be ~10 mm.

Therefore, I need to check how much the beam spot shifts with another way, maybe with captured image of the CCD camera. 

 

  11825   Mon Nov 30 14:12:14 2015 ericqUpdateLSCLO level check for the LSC RF distribution box

I checked the RF levels at the LSC LO distribution box, with the agilent scope and a handful of couplers. This was all done with the Marconi at +13dBm. 

I only checked the channels that are currently in use, since the analyzer only measures 3 channels at a time, and rewiring involves walking back and forth to the IOO rack to make sure unpowered amps aren't driven, and I was getting hungry. 

For the most part, the LO levels coming into the LSC demod boards are all around +1.5dBm (i.e. I measured around -18.0dBm out of the ZFDC-20-5 coupler, which has a nominal 19.5dB coupling factor)

The inputs piped over from the IOO rack, labeled as "+6dBm" were found to be 4.7dBm and 2.9dBm for 11Mhz and 55MHz, respectively. 

The 2F signals were generally about 40dB lower, with two exceptions:

  • REFL165's ~332MHz signal was around -18dBc
  • POP22 had many more visible harmonics than any other LO signal
    • 11MHz: -32 dBc
    • 33MHz: -32 dBc
    • 44Mhz: -15dBc 

Here are the raw numbers I measured out of the couplers, all in dBm:

  • 11MHz in: -14.8
  • 55MHz in: -16.6
  • POX11:    -18.7
  • POY11:    -18.0
  • REFL11:   -18.0
  • REFL33:   -18.3
  • POP110:   -17.9
  • AS110:    -18.1
  • POP22:    -19.9
  • REFL165:  -18.5
  • AS55:     -18.6
  • POP55:    -18.8 (this port is used as the REFL55 LO)
  11826   Mon Nov 30 15:17:57 2015 KojiUpdateLSCLO level check for the LSC RF distribution box

T1000461 tells us that the nominal LO input is 2dBm although we don't know what's the LO level is at the mixers in the demod boards.

  11827   Mon Nov 30 16:33:06 2015 ericqUpdateLSCstrange behavior of ASDC

One possible explanation of this behavior is simply poor centering of the AS beam on AS55 (whose DC level provides ASDC, if memory serves me correctly).

I misaligned ETMY, and moved ITMY through its current nominal alignment while looking at the POYDC and ASDC levels. 

In both pitch and yaw, the nominal alignment is fairly close to the "plateau" in which the AS beam is fully within the PD active surface. I.e. it doesn't take much angular motion to start to lose part of the beam, and thus introduce a first order coupling of angle to power. (Look at the plateaus at around -2min and -0.5min, and where the rapidly changing oplev trace crosses zero)

Furthermore, POYDC seems to be in some weird condition where it is actually possible to increase the reported powerwhen misaligning in pitch, but somehow there is more angular coupling in this state. 

In any case, I would advise that the POY11 and AS55 RFPDs have their spots recentered with optics in their nominal aligned states. In fact, given how we found REFL11 alingment to be less-than-ideal not so long ago, all of the RFPDs could probably use a checkup. 

  11828   Mon Nov 30 17:17:30 2015 yutaroUpdateLSCDoes a baffle in front of ETMY have effect on loss map measurement?

With captured images of ETMYF, I measured the shift of the beam spot on ETMY.

The conclusions are:

the baffle would have almost no effect on loss map measurement and

the calibration of beam spot shift is confirmed to be not so bad.

 

What I did:

I captured ETMYF images in the cases that (i)beam spot is centered on ETMY, beam spot is at the rightest and lowest point of my loss map measurement (corresponding to [0,0] component of the matrix shown in elog 11818), and beam spot is at the leftest and highest point of my loss map measurement ([4,4] component). Each captured image is attached.

Then using ImageJ, I measured the shift of the beam spot. I calibrated lengh in horizontal direction and vertical direction with the diameter of the mirror. 

Results:

The amount of the beam shift was 7.2 mm and 8.0 mm for each case.

These values indicate that clapping loss due to the baffle is less than 10 ppm in a round trip.

Today's results support the previous calibration with oplev, which says the amount of the beam shift is 7.0 mm. Two values derived by different calibrations coincide within ~10 % though they are totally different methods. This also support the calibration of the oplev for ETMY (elog 11785) indirectly. 

 

 

Attachment 1: element2-2.png
element2-2.png
Attachment 2: element0-0.png
element0-0.png
Attachment 3: element4-4.png
element4-4.png
  11829   Mon Nov 30 18:27:30 2015 KojiUpdateLSCstrange behavior of ASDC

It wasn't fully mentioned in ELOG 11814.
We checked the PD first and this behavior didn't change after the realignment of the AS55PD.
Yutaro confirmed that this effect is happening in the vacuum chamber.

  11836   Wed Dec 2 03:34:30 2015 ericqUpdateLSCSRCL OLG weirdness

[gautam, ericq]

Since ETMX seems to have been on good behavior lately, we tried to fire the IFO back up. 

We had a fair amount of trouble locking the DRMI with the arms held off resonance. For reasons yet to be understood, we discovered that the SRCL OLG looks totally bananas. It isn't possible to hold the DRMI for very long with this shape, obviously. 

With the arms misaligned and the DRMI locked on 1F, the loop shape is totally normal. I haven't yet tried 3F locking with the arms misaligned, but this is a logical next step; I just need to look up the old demod angles used for this, since it wasn't quickly possible with the 3F demod angles that are currently set for the DRFPMI. 

Attachment 1: weirdSRCLG.pdf
weirdSRCLG.pdf
  11838   Wed Dec 2 15:52:28 2015 yutaroUpdateLSCrestoration of POXDC

I disconnected the cable that was connected to CH6 of the whitening filter in 1Y2, then connected POXDC cable to there (CH6). This channel is where POXDC used to connect.

Then I turned on the whitening filter for POXDC and POYDC (C1:LSC-POXDC FM1, C1:LSC-POYDC FM1) and changed the gain of analog whitening filter for POXDC and POYDC from 0 dB to 45 dB and from 0 dB to 39 dB, respectively (C1:LSC-POXDC_WhiteGain, C1:LSC-POYDC_WhiteGain).

  11839   Wed Dec 2 17:14:33 2015 yutaroUpdateLSCBeam on POX11 is possibly not centered well

I checked how POXDC level changes when the angle of ITMX is varied. ETMX was misaligned.

Then I found that in YAW direction the POXDC level is maximized but it doesnt have plateau, and in PIT direction it is not maximized so that it is at the slope and it doesnt have plateau, as shown in attached figures. These results indicate that the beam size on POX11 is not small enough compared to the size of the diode and it is not centered well.

Attachment 1: 47.png
47.png
Attachment 2: 41.png
41.png
  11841   Thu Dec 3 03:01:07 2015 gautamUpdateLSCCalibration of C1CAL

[ericq, gautam]

While trying to resolve the strange SRCL loop shape seen yesterday (which has been resolved, eric will elog about it later), we got a chance to put in the correct filters to the "CINV" branch in the C1CAL model for MICH, PRCL, and SRCL - so we have some calibrated spectra now (Attachment #1). The procedure followed was as follows:

  1. Turn on the LO gain for the relevant channel (we used 50 for MICH and SRCL, 5 for PRCL)
  2. Look at the power spectra of the outputs of the "A" and "CINV" filter banks - the former has some calibrated filters in place already (though I believe they have not accounted for everything).
  3. Find the peak height at the LO excitation frequency for the two spectra, and calculate their ratio. Use this to install a gain filter in the CINV filter module for that channel. 
  4. Look at the spectrum of the output of the "W" filter bank for that channel - the plot attached shows this information.

The final set of gains used were:

MICH: -247 dB

PRCL: -256 dB

SRCL: -212 dB

and the gain-only filters in the CINV filter banks are all called "DRMI1f".

Once we are able to lock the DRFPMI again, we can do the same for CARM and DARM as well...

Attachment 1: 2015-12-C1CAL_Calibration.pdf
2015-12-C1CAL_Calibration.pdf
  11845   Thu Dec 3 19:10:28 2015 yutaroUpdateLSCXARM lock with ITMX actuated and related change on ASS

To avoid the strange kicking of ETMX, I locked XARM with ITMX actuated instead of ETMX so that I changed elements of C1LSC_OUTPUT_MTRX; before: XARM=ETMX, after: XARM=ITMX.

And I change C1:LSC-XARM_GAIN from 0.007 to 0.022.

 

With this setup, I ran dither but then error signals of dithering oscillated as shown in the figure below.

Then I found that if C1:ASS-XARM_ETM_PIT_L_DEMOD_SIG_GAIN / C1:ASS-XARM_ETM_YAW_L_DEMOD_SIG_GAIN in C1ASS_LOCKINS_XARM.adl are changed as 0.200 -> 0.100 and 0.200 -> 0.100, respectively, the dithering works well.

But the burt file that is loaded when you let dithering "ON" is not changed, because now I don't know how to update a burt file. So, if you let dithering "ON", the dithering will run with the condition that C1:ASS-XARM_ETM_PIT_L_DEMOD_SIG_GAIN / C1:ASS-XARM_ETM_YAW_L_DEMOD_SIG_GAIN are not 0.100 but 0.200.

 

   

Attachment 1: 40.png
40.png
  11847   Fri Dec 4 12:33:52 2015 yutaroUpdateLSCBeam on POX11 is possibly not centered well

To focus POX beam on POX11 PD, I added an iris and a lens before POX11 PD as you can see in Attachment 1.

It seemed that the beam is well focused, but the behavior of POXDC has not changed, as shown in Attachments 2 & 3.    

Attachment 1: image1-3.JPG
image1-3.JPG
Attachment 2: 07.png
07.png
Attachment 3: 47.png
47.png
  11850   Fri Dec 4 23:02:13 2015 yutaroUpdateLSCBeam on POX11 is possibly not centered well

[yutaro, Koji]

Now, the beam on POX11 PD is well centered and well focused.

We found out why POXDC had behaved as reported in elog 11839. There were a few reasons: the beam was not focused enough, hight of a mirror was not matched to the beam well, path of the light reflected by misaligned SRM was occasionally close to the path of POX beam.

Then, What we did is following:

- changed orientation of SRM slightly

- changed the hight of the mirror whose hight had not matched well, by changing the pedestal (hight of which mirror was changed is shown in Attachment 1.)

- put a lens with f=250 mm (where the lens is located is shown in Attachment 1.)

- refined alignment for the POX beam to hit on the center of POX11 PD.  

As a result, POX DC level behaved as shown in Attachment 2&3 when the orientation of ITMX was varied (Attachment 2: POX DC vs ITMX PIT, Attachment 3: POX DC vs ITMX YAW). 

You can see broad plateau when varied in both PIT and YAW directions, and the beam is at the center of the plateau if ITMX is aligned ideally.

 

 

Attachment 1: image1.JPG
image1.JPG
Attachment 2: 56.png
56.png
Attachment 3: 04.png
04.png
  11857   Mon Dec 7 11:11:25 2015 yutaroSummaryLSCround trip loss of X arm

On the day before yesterday and in this morning, I measured loss map of ETMX. I reported the method I used to change the beam spot on ETMX below.

Round trip loss was measured for 5 x 5 points. The result is below.

(unit: ppm)

455.4 +/- 21.1       437.1 +/- 21.8       482.3 +/- 21.8       461.6 +/- 22.5       507.9 +/- 20.1      
448.4 +/- 20.7       457.3 +/- 21.2       495.6 +/- 20.2       483.1 +/- 20.8       472.2 +/- 19.8      
436.9 +/- 19.3       444.6 +/- 19.7       483.0 +/- 19.5       474.9 +/- 20.9       498.3 +/- 18.7      
454.4 +/- 18.7       474.4 +/- 20.6       487.7 +/- 21.4       482.6 +/- 20.7       487.0 +/- 19.9      
443.7 +/- 18.6       469.9 +/- 20.2       482.8 +/- 18.7       480.9 +/- 19.5       486.1 +/- 19.2 

The correspondence between the loss shown above and the beam spot on ETMX is shown in the attached figure. In the figure, "up" and "right" indicate direction of shift of the beam spot when you watch it via the camera (ex. 455.4 ppm corresponds to the highest and rightest point in the view via the camera). 

This result is consistent withe previous result of 561.19 +/- 14.57 ppm ericq got with ASDC and reported in elog 10248 if the discussion I reported in 11819 is taken into account. Elog 11819 says in short that the strange behavior of ASDC could give us 60-70 ppm error.

The reason why the error is larger than that of the measurement for ETMY is that the noise of POX is larger than that of POY. But I am not sure to what extent the statistical error needs to be reduced.

How I shifted the beam spot on ETMX:   

Basically, the method was same as one used for Y arm. Different point is: for Y arm we have two steering mirrors TT1&2, but for X arm we have only one steering mirror BS. Then in order to shift incident beam so that the beam spot on ITMX does not change, I ran the dithering of X arm as well as that of Y arm and added offsets to both dither loops that caused same amount of shift on ETMX and ETMX. Thanks to the symmetry between X arm and Y arm, the dithering of Y arm ensured that the beam spot on ITMX was unchanged as well as that of ITMY. The idea of this method is schematically shown in Attachment 2. 

The calibration of how much the beam spot shifted is based on the results of elog 11846 . The offset was [-15,-7.5,0,7.5,15]x[-5,-2.5,0,2.5,5] for pitch and yaw, respectively.  

 

Attachment 1: image1-2.JPG
image1-2.JPG
Attachment 2: symmetry.png
symmetry.png
  11860   Mon Dec 7 15:56:35 2015 yutaroUpdateLSCXARM lock with ITMX actuated and related change on ASS

I changed the snapshot file for ASS, /opt/rtcds/caltech/c1/scripts/ASS_DITHER_ON.snap as follows:

L124 >  C1:ASS-XARM_ETM_PIT_GAIN 1 -5.000000000000000e-02

        => C1:ASS-XARM_ETM_PIT_GAIN 1 -1.500000000000000e-02

L128>   C1:ASS-XARM_ETM_YAW_GAIN 1 5.000000000000000e-02

        => C1:ASS-XARM_ETM_YAW_GAIN 1 1.500000000000000e-02

The purpose of this change is to avoid the oscillation when the dithering of X arm is running.

  11864   Tue Dec 8 15:57:16 2015 yutaroSummaryLSCPower recycling gain estimation from arm loss measurement

I estimated power recycling gain with the results of arm loss measurement.

From elog 11818 and 11857, round trip losses including transmittivity of ETM of Y arm and X arm (let us call them T_\mathrm{loss,Y} and T_\mathrm{loss,X}) are 229+13.7=243 ppm and 483+13.7=495 ppm, respectively.

 

How I calculated:

I used the following formula.

Amplitude reflectivity of an arm cavity r_\mathrm{FP}

r_\mathrm{FP}=\sqrt{1-\frac{4T_\mathrm{ITM}T_\mathrm{loss}}{T^2_\mathrm{tot}}}   (see elog 11816)

Amplitude reflectivity of FPMI r_\mathrm{FPMI}

r_\mathrm{FPMI}=\frac{1}{2}(r_\mathrm{FP,X}+r_\mathrm{FP,Y})

With power transmittivity of PRM T_\mathrm{PRM} and amplitude reflectivity of PRM r_\mathrm{PRM}, power recycling gain is

\mathrm{PRG}=\frac{T_\mathrm{PRM}}{(1-r_\mathrm{PRM}r_\mathrm{FPMI})^2}.

 I assumed T_\mathrm{ITM}\simeq T_\mathrm{tot}=\frac{2\pi}{401}=0.01566T_\mathrm{PRM}=0.05637, and r_\mathrm{PRM}=\sqrt{1-T_\mathrm{PRM}}, and then I got

PRG = 9.8.

Since both round trip losses have relative error of ~ 4 % and PRG is proportional to inverse square of T_\mathrm{loss} up to the leading order of it, relative error of PRG can be estimated as ~ 8 %, so PRG = 9.8 +/- 0.8

 

Discussion

According to elog 11691, which says TRX and TRY level was ~125 when DRFPMI was locked, power recycling gain was \mathrm{PRG}=125\times T_\mathrm{PRM}=7.0 at the last DRFPMI lock.

Measured PRG is lower than PRG estimated here, but it is natural because various causes such as mode mismatch between PRC mode and arm cavity mode, imperfect contrast of FPMI, and so on could decrease PRG, which Eric suggested to me. 

 

Added on Dec 9

If T_\mathrm{loss,X} were as small as T_\mathrm{loss,Y}, PRG would be 16.0. PRC would be still under coupled.  

  11870   Thu Dec 10 12:33:04 2015 yutaroUpdateLSCstrange behavior of ASDC

I did additional tests for the strange behavior of ASCD. ETMY, ETMX and ITMY were misaligned so that only light reflected by ITMX went into AS port. I had done similar measurement before with ITMY YAW varied.

Attachment 1 shows how ASDC level changed when ITMX PIT varied.

Attachment 2 shows how ASDC level changed when ITMX YAW varied.

Attachment 3 shows how the power of light measured by a power meter just after the AS view port varied when ITMX YAW varied.

 

Comparing 1 & 2, we can say that this behavior is not unique to YAW direction.

From 2 & 3, we can say something strange is happening inside the chamber.   

 

Attachment 1: 07.png
07.png
Attachment 2: 28.png
28.png
Attachment 3: ASDC.png
ASDC.png
  11871   Thu Dec 10 19:53:22 2015 yutaroUpdateLSCstrange behavior of ASDC

To check if the strange behavior of ASDC is caused by SR2/SR3 or not, I did the following measurement:

ASDC measures the power of the light reflected by ITMX. POXDC measures the power of the light reflected by ITMX and SRM successively. Then I varied the angle of ITMX in YAW direction and compared the behaviors of ASDC and POXDC.

The results are shown in Attachments 1-3.

As you can see in these figures, the strange up-and-down behavior appeared ONLY in ASDC. Therefore, the cause of this behavior exists between AS table and SRM (I had confirmed that the angle of SRM did not affect ASDC).

And this behavior is fringe-like, as can be seen in the figures (there seems to be 3 "peaks" and 2 "valleys"), so the cause could be interference between main path and not good AR reflection at a mirror after SRM before AS table (I suspect a mirror is flipped mistakenly).   

Attachment 1: 30.png
30.png
Attachment 2: 11.png
11.png
Attachment 3: 49.png
49.png
  11872   Fri Dec 11 09:35:44 2015 yutaroUpdateLSCPower recycling gain estimation from arm loss measurement

I took PR3 AR reflectivity and calculated PRG (PR3 is flipped and so AR surface is inside PRC).

As shown in attached figure, which shows AR specification of the LaserOptik mirror (PR3 is this mirror), AR reflectivity of PR3 is ~0.5 %. Since resonant light in PRC goes through AR surface of PR3 4 times per round trip, round trip loss due to this is ~2 %. Then I got

PRG = 7.8.    

 

Attachment 1: LaserOptikAR.png
LaserOptikAR.png
  11873   Fri Dec 11 13:28:36 2015 KojiUpdateLSCPower recycling gain estimation from arm loss measurement

Can I ask you to make a plot of the power recycling gain as a function of the average arm loss, indicating the current loss value?

  11874   Fri Dec 11 15:37:50 2015 yutaroUpdateLSCPower recycling gain estimation from arm loss measurement

Attached is the plot of relation between the average arm round trip loss and power recycling gain. 2 % loss due to PR3 AR reflection is taken into account.

Attachment 1: PRG_plot.png
PRG_plot.png
  11889   Thu Dec 17 01:55:16 2015 ericqUpdateLSCUncooperative AUX X

[ericq, Gautam]

We were not able to fix the excess frequency noise of the AUX X laser by the usual laser diode current song and dance. Unfortunately, this level of noise is much too high to have any realistic chance of locking.  angry

We're leaving things back in the IR beat -> phase tracker state with free running AUX lasers, on the off chance that there may be anything interesting to see in the overnight data. This may be limited by our lack of automatic beatnote frequency control. (Gautam will soon implement this via digital frequency counter). I've upped the FINE_PHASE_OUT_HZ_DQ frame rate to 16k from 2k, so we can see more of the spectrum.

For the Y beat, there is the additional weird phenomenon that the beat amplitude slowly oscillates to zero over ~10 minutes, and then back up to its maximum. This makes it hard for the phase tracker servo to stay stable... I don't have a good explanation for this. 

  11892   Fri Dec 18 17:37:04 2015 ranaUpdateLSCUncooperative AUX X

Here's how we should diagnose the EX laser:

  1. Compare IR RIN of laser out to 100 kHz with that of another similar NPRO.
  2. Look at time series of IR beat signal with a fast scope. Are there any high frequency glitches?
  3. Disconnect all of the cables to the EX laser PZT and temperature control. Does the frequency noise change?
  4. Change the temperature by +/- 1 deg to move away from mode hop regions. Remeasure RIN and frequency noise and plot.
  11894   Mon Dec 21 02:29:49 2015 ericqUpdateLSCAUX X RIN measurements

I'll finish up the beat / frequency noise parts of the diagnosis tomorrow later, but I've done some investigation of the AUX X laser RIN. 

I placed a PDA255 at one of the rejected beams from the PBS on the downstream side of the IR faraday, making sure the power didn't saturate the PD. I measured the RIN on a SR785, and simultaneously looked at the signal on a 100MHz scope. 

The RIN has a very strong dependence on the laser diode current, and no noticable dependence on the crystal temperature or the presence of the PDH modulation / temperature control cables. Here are some traces, note that "nominal" current up until recently was 2.0A. 

When adjusting the diode current, a peak beings to appear in the tens of kHz, eventually noticible in the DC power trace on the scope. The point at which this occurs is not fixed.

At all times, I saw a strong intensity fluctuation at around 380-400kHz on the scope whose amplitude fluctuated a fair amount (at least 75mVrms over Vdc=6.5V, but would often be 2 or 3 times that).

I didn't look at the frequency noise while doing this, because the WiFi at the X end was too slow, I'll do more tomorrow in the daytime. 

Attachment 1: auxXRIN.pdf
auxXRIN.pdf
  11908   Tue Jan 5 02:54:38 2016 ericqUpdateLSCAUX X Freq Noise attempt

[ericq, Gautam]

We set out to lock a marconi to the IR fiber beat of PSL + AUX X to measure some frequency noise, and failed.

In short, the Marconi's 1.6MHz max external FM isn't enough oomph to stabilize the PLL error signal. It's actually evident on the Agilent that the beat moves around a few times more than that, which I should've noticed sooner... We could briefly "lock" the PLL for a few tenths of a second, but weren't able to get a spectrum from this.

We also tried using the digital phase tracker temperature servo for some help at ~DC; this worked to the extent that we didn't have to twiddle the Marconi carrier frequency to stay on top of the fringes as the beat wandered, but it didn't otherwise stabilize the beat enough to make a difference in locking the PLL.

I suppose one more thing to try is to lock the PSL laser itself to each AUX laser in turn via PLL, and look for different / excess noise.

The Green and IR beat electronics are a in a little bit of disarray at the moment, but it's not like anyone else is going to be using them for the time being...

  11910   Tue Jan 5 13:17:06 2016 ranaUpdateLSCAUX X Freq Noise attempt

The problem here is that the MC displacement noise is leading to large frequency excursions of the PSL beam. Options

  1. Feed back the low frequency PLL control signal to the MC2 length to suppress the excursion required by the Marconi. This is better than driving the laser, since the drive to the laser would be squashed by the MC locking loop.
  2. Put the beat signal through a divider? Don't know if this makes the Marconi more able to handle it.
  3. Turn on the MCL path. this will make the low frequency MC error signal go to the MC length, thereby reducing the low frequency feedback to the NPRO.
  11912   Tue Jan 5 16:33:45 2016 ericqUpdateLSCAUX X Freq Noise attempt

Turning on the MCL path (in addition to the MCL FF we always have on) let me lock the PLL for multiple seconds, but low frequency excursions still break it in the end. I was able to briefly observe a level of ~50Hz/rtHz at 1kHz, which may or may not be real. Tomorrow we'll send the PLL control signal to MC2, which should lock it up just fine and give us time to twiddle laser diode current, measure the PLL loop shape, etc. 

  11917   Thu Jan 7 04:28:39 2016 ericqUpdateLSCAUX X Freq Noise measured

[ericq, Gautam]

Brief summary of tonights work:

  • Locked Marconi to AUX X vs PSL beat at around 320MHz, PSL shutter closed (i.e. both lasers free running)
  • Measured control signal spectrum at various laser diode currents, crystal temperatures. Oddly, spectra remained consistent across these variables. 
  • Measured OLG of PLL to calibrate into open-loop frequency noise of the beat, found UGF ~30kHz

Our "requirement" for the end laser is as follows: We expect to (and have in the past) achieved ALS sensitivity of 1Hz/rtHz at 100 Hz. If the end PDH loop is 1/f from 100Hz-10kHz, then we have 40dB of supression at 100Hz, meaning the free running AUX laser noise should be no more than 100Hz/rtHz at 100Hz.

So, if we expect both the PSL and AUX lasers to have this performance when free running, we would get the green curve below. We do not. frown


I'll post more details about the exact currents, temperatures and include calibrated plots for the >30kHz range later. Here's the OLG for kicks. 

Attachment 1: PLLspec.pdf
PLLspec.pdf
Attachment 2: PLL_OLG.pdf
PLL_OLG.pdf
  11919   Thu Jan 7 16:52:32 2016 ericqUpdateLSCAUX X Freq Noise measured

Here is some of the promised data. As mentioned, changing diode current and crystal temperature didn't have much effect on the frequency noise spectrum; but the spectrum itself does seem too high for our needs. 

At each temperature, we started measuring the spectrum at 1.8A, and stepped the current up, hoping to reach 2.0 A.

At 47.5 C, we were able to scan the current from 1.8 to 2.0 A without much problem. At 49.0C, the laser mode would hop away above 1.95A. At 50.4C it would hop away above 1.85A. The spectra were not seen to change when physically disconnecting the PZT actuation BNC from the rear of the laser. 

The flattening out at the upper end is likely due to the SR560 output noise. I foolishly neglected to record the output spectrum of it, but with the marconi external modulation set to 3.2MHz/V, the few Hz/rtHz above 20k translates to a signal on the order of uV/rtHz, which seems reasonable. 

Data and code attached. 

Attachment 1: AUXfreqnoise.pdf
AUXfreqnoise.pdf
Attachment 2: auxXmeasurements.zip
  11920   Thu Jan 7 19:04:25 2016 KojiUpdateLSCAUX X Freq Noise measured

The next step is to compare this data with the same measurement with the PSL and the AUX laser on the PSL table (or the end Y laser). If these show a lot lower noise level, we can say 1) the x-end laser is malfunctioning and 2) the y-end and AUX laser on the PSL are well low noise.

  11921   Fri Jan 8 14:47:33 2016 ericqUpdateLSCAUX Y Freq Noise measured

Here are some results from measuring the PSL / AUX Y beat. 

With the Y end laser, I was able to lock the PLL with a lower actuation range (1.6MHz/V), and with the PSL in both the free-running and MCL locked configurations. (In the latter, I had to do a bit of human-turning-knob servo to keep the control signal from running away). I also took a spectrum with the marconi detuned from the beat frequency, to estimate the noise from the PD+mixer+SR560. 

It looks like the AUX X laser is about 3 times noisier than the Y, though the Y laser looks more like a 10^5 noise-frequency product, whereas I thought we needed 10^4. 

Gautam is investigating the PSL / AUX PSL beat with Koji's setup now. 

Attachment 1: AUX_freqnoises.pdf
AUX_freqnoises.pdf
Attachment 2: AUXY_Jan8.zip
  11922   Fri Jan 8 20:02:49 2016 ranaUpdateLSCAUX Y Freq Noise measured

Unless this is the limit from the way you guys set up the PLL, it seems like there's no difference between the two lasers that's of any import. So then the locking problem has been something else all along - perhaps its noise in the X-PDF lock somehow? PDH box oscillations?

  11924   Sat Jan 9 00:39:15 2016 gautamUpdateLSCAUX Y Freq Noise re-measured
Quote:

With the Y end laser, I was able to lock the PLL with a lower actuation range (1.6MHz/V), and with the PSL in both the free-running and MCL locked configurations.

I took spectra (attached) with the same actuation range (3.2 MHz/V) for the AUX X+PSL and AUX Y+PSL combinations (PSL shutter closed) just to keep things consistent. It looks like there is hardly any difference between the two combinations - could the apparent factor of 3 worse performance of the X end laser have been due to different actuation ranges on the Marconi? 

I've not managed to take a spectrum for the proposed replacement Lightwave laser on the PSL table, though with Eric's help, I've managed to find the beatnote (at a temperature of 53.0195 degrees). I had to do some minor alignment tweaking for this purpose on the PSL table - the only optics I touched were the ones in the pink beam path in attachments 1 and 2 in this elog (the setup used to make the measurement is also qualitatively similar to attachment 3 in the same elog, except for the fact that we are feeding back to the Marconi and not the laser - a detailed sketch with specific components used will be put up later). I'll try and measure the frequency noise of this laser as well over the weekend and put up some spectra. 

With regards to possibly switching out the Lightwave on the PSL table for the (faulty?) Innolight at the X end, I've verified the following:

  • The beam-height from the Lightwave on the mount it is currently sitting on is the same as that from the Innolight on the X end table.
  • There is sufficient space on the X end table to house the Lightwave laser+mount

It remains to characterize the beam coming out from the Lightwave laser and do a mode matching calculation to see if we can use the same optics currently in place (with slight rearrangement) to realize a satisfactory mode-matching solution - I've obtained a beam profiler to do this from Liyuan and have the software setup, but have yet to do the beam scan - the plan is to do this on the SP table, but we've put off moving the Lightwave laser off the PSL table until we (i) establish conclusively that the X end laser is malfunctioning and (ii) check the frequency nosie of the Lightwave relative to the Aux lasers currently at the ends. 

The area around the Marconi is in a little disarray at the moment with a bunch of cables, SR560s, analyzers etc - I didn't want to disconnect the measurement setup till we're done with it. I have however turned both IR beat PDs on the PSL table off, and have reconnected the Marconi output to the Frequency Generation Unit and have set the carrier back to 11.066209MHz, +13dBm. 

Attachment 1: AuxPLL.pdf
AuxPLL.pdf
  11925   Mon Jan 11 19:01:56 2016 gautamUpdateLSCPLL Marconi Investigation

EDIT 01/12/2016 6PM: I've updated the plots of the in-loop spectra such that they are calibrated throughout the entire domain now. I did so by inferring the closed-loop transfer function (G/(1-G)) from the measured open-loop transfer function (G), and then fitting the inferred TF using vectfit4 (2 poles). The spectra were calibrated by multiplying the measured spectra by the magnitude of the fitted analytic TF at the frequency of interest.

EricQ brought back one of the Marconis that was borrowed by the Cryo lab to the 40m today (it is a 2023B - the Marconi used for all previous measurements in this thread was 2023A). Koji had suggested investigating the frequency noise injected into the PLL by the Marconi, and I spent some time investigating this today. We tried to mimic the measurement setup used for the earlier measurements as closely as possible. One Marconi was used as a signal source, the other as the LO for the PLL loop. All measurements were done with the carrier on the signal Marconi set to 310MHz (since all our previous measurements were done around this value). We synced the two Marconis by means of the "Frequency Standard" BNC connector on the rear panel (having selected the appropriate In/Out configurations digitally first). Two combinations were investigated - with either Marconi as LO and signal source. For each combination, I adjusted the FM gain on the Marconi (D in the plot legends) and the overall control gain on the SR560 (G in the plot legends) such that their product remained approximately constant. I measured the PLL OLG at each pair to make sure the loop shape was the same throughout all trials. Here are the descriptions of the attached plots:

Attachment #1: 2023A as LO, 2023B as source, measured OLGs

Measured OLG for the various combinations of FM gain and SR560 gain tested. The UGF is approximately 30kHz for all combinations - the exceptions being D 1.6MHz, G=1e4 and D=3.2MHz, G=1e4. I took the latter two measurements just because these end up being the limiting values of D for different carrier frequencies on the Marconi.

Attachment #2: 2023A as LO, 2023B as source, measured spectra of control signal (uncalibrated above 30kHz)

I took the spectra down to 2Hz, in two ranges, and these are the stitched versions. 

Attachment #3: 2023B as LO, 2023A as source, measured OLGs

Attachment #4: 2023B as LO, 2023A as source, measured spectra of control signal (uncalibrated above 30kHz)

So it appears that there is some difference between the two Marconis? Also, if the frequency noise ASD-frequency product is 10^4 for a healthy NPRO, these plots suggest that we should perhaps operate at a lower value of D than the 3.2MHz/V we have been using thus far? 

As a quick trial, I also took quick spectra of the PLL control signals for the PSL+Aux X and PSL+Aux Y beat signals, with the 2023B as the LO (Attachment #5). The other difference is that I have plotted the spectrum down to 1 Hz (they are uncalibrated above 30Hz). The PSL+Y combination actually looks like what I would expect for an NPRO (for example, see page 2 of the datasheet of the Innolight Mephisto) particularly at lower frequencies - not sure what to make of the PSL+X combination. Also, I noticed that the amplitude of the PSL+Y beatnote was going through some large-amplitude (beat-note fluctuates between -8dBm and -20dBm) but low frequency (period ~10mins) oscillations. This has been observed before, not sure why its happening though. 

More investigations to be done later tonight.

Attachment 1: 2023ALockedto2023B.pdf
2023ALockedto2023B.pdf
Attachment 2: 2023ALockedto2023B_spectra.pdf
2023ALockedto2023B_spectra.pdf
Attachment 3: 2023BLockedto2023A.pdf
2023BLockedto2023A.pdf
Attachment 4: 2023BLockedto2023A_spectra.pdf
2023BLockedto2023A_spectra.pdf
Attachment 5: TestSpectra.pdf
TestSpectra.pdf
Attachment 6: 2016_01_AUXLaser.tar.gz
  11926   Tue Jan 12 03:03:55 2016 ericqUpdateLSCFrequently making noise

Gautam will soon follow up with detailed analysis, but here is a brief summary of some of our activities and findings.

  • Two Marconis were beat together in various ways, we figured the noise added by turning on external modulation didn't make us happy. 
  • I locked the AUX X laser to the PSL via PZT. I'm more likely to believe we're seeing real broadband laser noise in this configuration; locking the the PSL laser to the IMC brought the noise down in a reasonable way. The PLL bandwidth was a smidge over 100k.
  • We saw a factor ~6 increase in noise when changing the diode current from 1.8 to 1.96A. We'll be following this up at more temperatures and currents soon. 
  • Gautam will verify the AUX X laser PZT calibration tomorrow, and post calibrated spectra of this increase. 

Please note that there is a long BNC cable still laid out from the IOO rack area to the X end table; watch your step!

  11929   Tue Jan 12 19:38:31 2016 gautamUpdateLSCFrequently making noise

EDITS 15Jan:

  1. Schematic of test setup added (Attachment #5). Note that the UGF measurements were made with the LPF and gain on the 'wrong' SR560, in a way defeating the purpose of having 2 SR560s in the setup. I only realised this after taking the measuements. But having done the loop algebra, I believe we can extract the necessary information, which is what has been done in subsequent plots...
  2. Koji pointed out that UGFs of ~100kHz was probably too high - this is when I took a closer look at the setup and realised the remarks made above in point 1. I realised we were in fact measuring the 'Process' open-loop TF. We can recover the loop TF by measuring the controller TF (which I did, see Attachment #3). The UGF for the PSL+X PLL loop is ~7.5kHz while that for PSL+Y is ~22kHz (both with a 1Hz LP on the SR560 and gain of x200).
  3. During the above investigations, I found that the measured TF for a 1Hz LP on the SR560 is weird - there seems to be a zero around 5kHz which gives some phase lead where one would expect a uniformly decaying gain and phase to be -90 degrees. Eric and I confirmed this behavioud on another SR560. Low-pass at 10kHz and high-pass at 1kHz seem to work fine. I will investigate this further when I get the time. Anyhow I don't think this affects anything as long as we measure the correct OLTF. It is still not clear to me why we even need this to lock the PLL...
  4. All the spectra (Attachment #4 and #5) are now calibrated taking into account the loop TF. I've added another panel with the spectra in V/rtHz as measured on the SR785, along with the SR560 output noise. I don't think any of the conclusions below are affected by these edits.

Summary:

I took several measurements today using the revised PLL scheme of using the Marconi just as an LO, and actuating on the Laser PZT to keep the PLL locked (I will put up a sketch soon). On the evidence of the attached plots (spectra of PLL control signal), I guess we can conclude the following:

  1. The AUX X laser's frequency noise performance is consistent with the levels expected from 'typical' NPRO numbers (and the datasheet), and is more or less consistent across different diode currents/crystal temperatures (? see below...).
  2. The diode current should be set to something less than 2.00 A
  3. Qualitatively, there is a difference in the shape of the spectra between the PSL+X and PSL+Y combinations above a couple of kHz. I don't know why we see this.

Attachment #2: Measured OLG of PLL for the PSL+X and PSL+Y combinations. The UGF in both cases looks to be above 100 kHz, so I didn't do any calibration for the spectra attached. The gain on the SR560 was set to 200 for all measurements.

Attachment #3: Measured spectra of PLL control signal for various diode currents, with one reading from the PSL+Y combination plotted for comparison. When we took some data last night, Eric noted that there was a factor of ~6 increase in the overall frequency spectrum level at higher currents, I will update the plots with last night's data as well shortly. I found it hardest to keep the PLL locked at a diode current of 2.00 A across all measurements.

Attachment #4: Measured spectra of PLL control signal at two different crystal temperatures. There does not seem to be any significant dependance on temperature, although I did only do the measurement at two temperatures.

Attachment #4 Attachment #1All the data used to make these plots (plus some that have yet to be added to the plots, I will update them).

Misc notes:

  • All measurements taken with two free-running lasers (PSL shutter closed)
  • The SR560 noise was measured with the input on the SR560 set to ground. 
  • In order to go from V/rtHz to Hz/rtHz on the plots, I used 1MHz/V for the X-end laser (which I verified by a quick measurement today to be approximately correct) and 4.6 MHz/V for the Y-end laser, based on an earlier measurement. 
  • I re-routed the long BNC cable to the Y-end, have yet to remove it. The BNC from the PDH setup at the X-end has been re-attached to the X-end NPRO.

Unrelated to this work:

When I came in this afternoon, I noticed that the PMC was unlocked. The usual procedure of turning the servo gain to -10dB and playing around with the DC output adjust slider on the MEDM screen did not work. Eric toggled a few buttons on the MEDM screen after which we were able to relock the PMC using the DC output adjust slider.

Attachment 1: 2016_01_AUXLaser.tar.gz
Attachment 2: OLGs.pdf
OLGs.pdf
Attachment 3: variedCurrent.pdf
variedCurrent.pdf
Attachment 4: variedTemp.pdf
variedTemp.pdf
Attachment 5: PLL_setup.pdf
PLL_setup.pdf
  11930   Wed Jan 13 18:36:00 2016 gautamUpdateLSCrestoration of green beat electronics

In preparation for tonight's work, I did the following:

On the PSL table:

  • Powered the RF amplifiers for the green beat signal on
  • Reconnected the outputs of the Green beat PDs to the RF amplifiers
  • Restored wiring in the fiber box such that both IR beats go to the frequency counter.

At the IOO Rack area:

  • Restored wiring to the frequency counter module such that the IR beats from both arms go to the respective channels
  • Partially cleaned up the setup used for measuring AUX laser frequency noise - moved the SR785 to the X end along with one SR560 so that we can measure the end PDH OLTF
  • Brought the HP network analyzer back to the control room so that we can view the green beatnotes.

At the X-end:

  • Turned the function generator used for PDH locking back on
  • Checked that the AUX laser diode current is 1.90 A, and the crystal temperature is ~47.5 degrees, both of which I think are "good" values from our AUX laser frequency noise measurements
  • Did some minor manual alignment of the PZT mirrors

At the Y-end:

  • Restored the BNC connection from the PDH box to the laser's "FAST" control input. The long BNC cable used for the PLL is still running along the Y-arm, I will clean this up later.

Having done all this, I checked the green transmission levels for both arms (PSL green shutter closed, after running ASS to maximize IR transmission). GTRY is close to what I remember (~0.40) while the best I could get GTRX to is ~0.12 (I seem to remember it being almost double this value - maybe the alignment onto the beat PD has to be improved?). Also, the amplitudes of the beatnotes on the network analyzer are ~-50dBm, and I seem to remember it being more like -25dBm, so maybe the alignment on the PD is the issue? I will investigate further in the evening. It remains to measure the OLTF of the X-end PDH as well.

  11931   Thu Jan 14 02:33:37 2016 ericqUpdateLSCALSX Noise still anomalously high

[ericq, Gautam]

We checked the UGF of the AUX X PDH servo, found a ~6kHz UGF with ~45 degree phase margin, with the gain dial maxed out at 10.0. Laser current is at 1.90, direct IR output is ~300mW.

We recovered ALS readout of IR-locked arms. While the GTRX seemed low, after touching up the beam alignment, the DFD was reporting a healthy amount of signal. ALSY was perfectly nominal. 

ALSX was a good deal higher than usual. Furthermore, there's a weird shape around ~1kHz that I can't explain at this point. It's present in both the IR and green beats. I don't suspect the DFD electronics, because the Y beat came through fine. The peak has moderate coherence with the AUX X PDH error signal (0.5 or so), but the shape of the PDH error signal is mostly smooth in the band in which the phase tracker output is wonky, but a hint of the bump is present. 

Turning the PDH loop gain down increases the power spectrum of the error signal, obviously, but also smoothens out the phase tracker output. The PDH error signal spectrum in the G=10 case via DTT is drowning in ADC noise a bit, so we grabbed it's spectrum with the SR785 (attachment #2, ASD in V/rtHz), to show the smoothness thereof.

Finally, we took the X PDH box to the Y end to see how ALSY would perform, to see if the box was to blame. Right off the bat, when examining the spectrum of error signal with the X box, we see many large peaks in the tens of kHz, which are not present at the same gain with the Y PDH box. Some opamp oscillation shenanigans may be afoot... BUUUUUT: when swapping the Y PDH box into the X PDH setup, the ~1kHz bump is identical. ugh

Attachment 1: 2016-01-14_ALSXspectra.pdf
2016-01-14_ALSXspectra.pdf
Attachment 2: PDHsig.pdf
PDHsig.pdf
  11937   Tue Jan 19 17:54:39 2016 gautamUpdateLSCALSX Noise still anomalously high

While carrying out my end-table power investigations, I decided to take a quick look at the out-of-loop ALSX noise - see the attached plot. The feature at ~1kHz seems less prominent (factor of 2?) now, though its still present, and the overall noise above a few tens of Hz is still much higher than the reference. The green transmission was maximized to ~0.19 before this spectrum was taken.

EDIT 1130pm: 

We managed to access the trends for the green reflected and transmitted powers from a couple of months back when things were in their nominal state - see Attachment #2 for the situation then. For the X arm, the green reflected power has gone down from ~1300 counts (November 2015) to ~600 counts (january 2016) when locked to the arm and alignment is optimized. The corresponding numbers for the green transmitted powers (PSL + End Laser) are 0.47 (November 2015) and ~0.18 (January 2016). This seems to be a pretty dramatic change over just two months. For the Y-arm, the numbers are: ~3500 counts (Green REFL, Nov 2015), ~3500 counts (Green REFL, Jan 2016) ~1.3 (Green Trans, Nov 2015), ~1 (Green Trans, Jan 2016). So it definitely looks like something has changed dramatically with the X-end setup, while the Y-end seems consistent with what we had a couple of months ago...

Attachment 1: 2016_01_19_ALS_OutOfLoop.pdf
2016_01_19_ALS_OutOfLoop.pdf
Attachment 2: Green_Locking_Trends.png
Green_Locking_Trends.png
ELOG V3.1.3-