40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 224 of 348  Not logged in ELOG logo
ID Date Author Type Categoryup Subject
  11611   Thu Sep 17 13:06:05 2015 ericqSummaryLSCLow input impedance on CM board

As it turns out, our version of the common mode board does not have high input impedence. I think this is what is messing with the lowpass. 

I added photos of the PCB to our 40m DCC page about this board: D1500308, wherein you can see that we have Revision B. 

On the aLIGO wiki's CommonModeServo page, one finds that high input impedence was added in Revision E. At LIGO-D040180, one finds this was implemented via an additional dual AD829 instrumentation amplifier stage before the input amplification stage that exists on our board.

Also, I find that the boosts installed are the default 40:4k, 1k:20k, 1k:20k, 500:10k pole zero pairs. Given our 30-40kHz UGF for CARM thus far, maybe we would like to lower some of these boost corner frequencies, to actually be able to use them; so far we only use the first two.

  11613   Thu Sep 17 17:27:01 2015 gautamUpdateLSCRF micky mouse - dodgy DIN connector blocks fixed

[Steve, gautam]

We fixed the problematic DIN connectors on 1Y2, by swapping out the 3 DIN connector blocks that were of the wrong type (see attached image for the difference between the types appropriate for "Live" and "Ground").

Before doing anything, Eric turned the Wenzel multiplier off. We have not turned this back on.

Then we turned off the power supply unit at the base of 1Y2, removed the connectors from the rail, swapped out the connectors, reinstalled them on the rail, and turned the power supply back on. After swapping these out, we verified with a multimeter that between each pair of "Live" and "Ground" blocks, there was ~15V. We could now use the third unused pair of blocks to power the delay line phase shifter box, though for the moment, it remains powered by the bench power supply. 

Quote:

1. POP110 RF amps are powered from the cross connect. But that +15V block has GND connections that are not connected to the ground.
    i.e. The ground potential is given by the signal ground. (Attachment 1)

    This is caused by the misuse of the DIN connector  blocks. The hod side uses an isolated block assuming a fuse is inserted.
    However, the ground sides also have the isolated blocks

2. One of the POP110 RF cable has a suspicious shiled. The rigidity of the cable is low, suggesting the broken shield. (Attachment 2)

 

Attachment 1: DIN_rail_terminal.jpg
DIN_rail_terminal.jpg
  11614   Thu Sep 17 19:42:43 2015 KojiUpdateLSCRF micky mouse - dodgy DIN connector blocks fixed

1. The delay-line box is now hooked up to the cross connect +15V supply.

2. The broken RF cable was fixed.

It is actually the POP22 cable.
Therefore, we might see significant change of the signal size for POP22.
Be aware.

RG405 + SMA connector rule

- Don't bend the cable at the connector.

- Always use a cap on the connector. It is a part of the impedance matching.

- Use transparent shrink tube for strain relieving and isolation. This allow us to check the condition of the shield without removing the cover.

Attachment 1: IMG_20150917_190635033.jpg
IMG_20150917_190635033.jpg
Attachment 2: IMG_20150917_192551919.jpg
IMG_20150917_192551919.jpg
  11616   Fri Sep 18 08:03:53 2015 ranaUpdateLSCRF micky mouse - dodgy DIN connector blocks fixed

Steve and I turned on the box this morning so that the IMC would lock again.

For future reference, remember that one should turn off the Marconi output before turning off the RF distribution box. Don't drive the input of unpowered RF amps.

 

  11617   Fri Sep 18 08:04:09 2015 ranaUpdateLSCRF micky mouse - dodgy DIN connector blocks fixed

Steve and I turned on the box this morning so that the IMC would lock again.

For future reference, remember that one should turn off the Marconi output before turning off the RF distribution box. Don't drive the input of unpowered RF amps.

 

  11619   Fri Sep 18 11:59:08 2015 ericqUpdateLSCAUX X Laser Current Reverted

Once again, the transmitted X green beam was showing enormous intensity fluctuations (50x higher than normal). Last month, I reduced the AUX X laser current from 2.0A to 1.9A, which I thought had fixed it somehow.

However, when I sent to the end to check it out today, I found the SR560 which is there to amplify the green PDH error signal before being sent to the AA board was overloading. Not so surprising, since the error signal was similarly noisy as the transmitted light. 

I turned the SR560 gain down, and, after relocking, the transmitted light was stable. I've turned the AUX X laser current back up to 2.0A, it's previous nominal value, and the green transmitted light is still stable. 

I'm a little mystified that the 560 could intefere with the loop, since it is not in the feedback path. Could it be that when it is overloading, it sends garbage backwards out of the inputs? But even then, its input is not connected to the real error point, but the buffered monitor port. Could it be interfering via the power line?

Before, I had hesitated adding gain to the PDH board's monitor point for DAQ purposes, because the motivation of the port is to provide a 1:1 version of the real error signal, and I didn't want to add gain to the AA board, because we normally don't have gain in those boards, and I didn't want to surprise future people. The SR560 was meant to be temporary, but as often happens, it was forgotten. Now, I think I will add gain to the error monitor buffer stage of the PDH boards. 

  11620   Fri Sep 18 13:33:17 2015 ericqUpdateLSCFast ALS troubles - Noise at 36kHz

To get around the problems between the pomona LPF and low CM board input impedance, I've placed the LPF at the CM board fast output. This won't work as a permanent solution, since we only want to lowpass the ALS signal, but it should be fine for a single arm test. 

However, I kept getting blown out of lock when turning up the AO gain, but well before I really expect any real action from the fast path. Looking at the OLTF, I was seeing some large spike at ~36kHz nearing 0dB loop gain with unstable phase. This prompted me to look at the ALS error signal out to higher bandwidth with the SR785; before I only ever looked at it through the digital system. 

So, with the X arm locked via POX11 I, and ITMY misaligned to use AS55 as an out of loop sensor, I measured the spectrum of the I ouput of the ALS X demod board (which was set to be near a zero crossing via the delay line), and the Q Mon of the AS55 demod board. 

Both ALS and AS55 show a sharp line at around 36.5kHz, so something is really happening in the IFO at this frequency. Koji might have seen an indication of this back in March.

What's going on here? And what would be different about PRFPMI that wouldn't have made this a problem for locking?

Attachment 1: IRlock_noises.pdf
IRlock_noises.pdf
  11621   Fri Sep 18 16:08:41 2015 ericqUpdateLSCFast ALS troubles - Noise at 36kHz

 I looked at REFL11 and REFL55 during PRMI lock - the line is there.

In fact, it is even visible in REFL11 I from a single bounce off of the PRM (ITMs misaligned).

This led me to look at the IMC error point (via the OUT2 on the servo board, no compensation for the input gain). Also there!

Attachment 1: PRMIlock_REFLspectra.pdf
PRMIlock_REFLspectra.pdf
Attachment 2: IMCspectrum.pdf
IMCspectrum.pdf
  11622   Fri Sep 18 19:15:35 2015 ranaUpdateLSCFast ALS troubles - Noise at 36kHz

One the Wiki (https://wiki-40m.ligo.caltech.edu/40mHomePage), we have a Mech Resonance page for mechanical frequencies and a PEM page where we want to list the sources of all of our environmental lines. So please put in an entry when you find out what's at this frequency. This reminds me that I need to upload my MC2 COMSOL eigenmode analysis.

  11632   Tue Sep 22 03:48:18 2015 ericqUpdateLSCDRMI tweaked, briefly held with ALS arms

Given the RF component power supply grounding, POP110, POP22 and REFL165 all changed somewhat. They have all been rephased for the DRMI, as they were before. 

I tweaked the 3F DRMI settings, and chose to phase REFL165I to PRCL, instead of SRCL as before, to try and minimize the PRCL->MICH coupling instead of the SRCL->MICH coupling. 

With these settings, I once locked the DRMI for ~5 seconds with the arms held off on ALS, during which I could see some indications of neccesary demod angle changes. Haven't yet gotten longer, but we're getting there...

  11637   Wed Sep 23 03:08:50 2015 ericqUpdateLSCDRMI + ALS Arms

[ericq, Gautam]

We can reliably lock the DRMI with the arms held off on ALS. yes

I have not been able to hold it at zero CARM offset; but this is probably just a matter of setting up the right loop shapes with enough phase margin to handle the CARM fluctuations ( or figuring out high bandwidth ALS...)

Right now, it's the most stable at CARM offsets larger (in magnitude) than -1. Positive CARM offsets don't work well for some reason. 


The key to getting this to work was to futz around, starting from the misaligned arms DRMI settings, until brief locks were seen (triggering all 3 DRMI DoFs on POP22, since the correct AS110 sign was amiguous). I could tell from how the control signals responded to gain changes that REFL165Q, which was being used as the MICH error signal, was seeing significant cross coupling from both PRCL and SRCL, suggesting the demod angle of REFL165 had to be adjusted. I randomly tweaked the REFL165 demod angle until a 20 second lock was achieved, with excitations running. Then, I downloaded that data and analyzed the sensing matrix. This showed me that the REFL33 demod angle was ok, and the PRCL-from-SRCL subtraction factor determined with the arms misaligned was still valid. The main difference was indeed the SRCL angle in REFL165.

With the REFL165 demod angle properly adjusted, the DRMI would briefly lock, but the DRMI had become somewhat misaligned at this point, and the SRC could be seen to mode hop. Interestingly, the higer order modes had an opposite sign in AS110, with respect to the TM00. At that point, I went back to PRMI on carrier to dither-align the BS and PRM. 

With alignment set, the DRMI would lock on TM00 readily, still only triggering on POP22. I set the AS110 angle, and moved SRCL triggering over to that, which sped up acquisition even more. The input matrix and FM gains from no-arms DRMI still work for acquistion; UGF servos were used to adjust overall gains a bit. 

At CARM offsets larger in magnitude than -1, the DRMI lock seems indefinite. I just broke it to see how fast it would acquire; 3 seconds. cool

Lastly, here is the sensing matrix at CARM offset of -4, measured over five minutes. REFL11 is the only degenerate looking PD. Thus, I feel like controlling the DRMI of the DRFPMI should be more managable than I had feared.

(I didn't include/excite CARM or DARM, because I'm not sure it would really mean anything at such a large CARM offset)

Attachment 1: DRMIarms.pdf
DRMIarms.pdf
  11638   Wed Sep 23 10:31:49 2015 ericqUpdateLSCDRMI + ALS Arms

Looking good. How many meters of CARM is '-1 counts'?

  11639   Wed Sep 23 12:51:03 2015 JenneUpdateLSCDRMI + ALS Arms

Nice!!

  11648   Tue Sep 29 16:52:49 2015 ericqUpdateLSCFast ALS troubles - unknown zero

Fast ALS control continues to elude me. 

I fixed my LPF to take the input impedance of the CM board input into account; this unfortunately results in about -12dB DC gain of the ALS signal due to voltage-divider-y things, but by my estimation, this still puts the DFD noise above the input-referred voltage noise of the input AD829 on the CM board, so it'll do for now. The 120Hz pole shows up as expected when comparing the usual digital channels and the CM_SLOW output, and is digitally compensated with a zero at 120Hz (with a digital pole at 5k so nothing blows up). 

However, there seems to be some zero in the analog path somewhere that spoils the loop shape for the AO path. Here's a measurement of the X arm OLG from 10-100kHz, when the digital control is happening with ~100Hz UGF via ALS X I -> CM IN2 -> CM_SLOW -> LSC_CARM -> ETMX, and there is some AO action via ALS X I -> CM IN2 -> IMC IN2

The peak is recognizable as the gain peaking in the IMC servo (and changes predictably with changes to the IMC crossover and loop gains), which is expected. However, one can see that the magnitude is roughly flat before the peak, and the phase is around 0. With the 1/f LPF, we should see some downward slope and phase starting around -90. 

Thus, there must be some zero in the fast or common path, maybe at a few kHz where the digital loop wouldn't really see its effect. I'm not sure what it could be at this point in time.

One thought I had is that I never really checked the TF of DFD response to frequency modulation of the RF beat. I used an SR785 to drive the external FM input of a Fluke 1061A synthesizer, and saw it to be totally flat from 1-100kHz with carriers from 30-100MHz, so that should be fine. (For a little while I was confused by what seemed to be some heavy high-passing going on, but it turns out that the Fluke just can't push much low frequency FM; the manual says -3dB at 20Hz.)

Attachment 1: OLG_fastALS.pdf
OLG_fastALS.pdf
  11649   Tue Sep 29 18:03:11 2015 ranaUpdateLSCuse LISO

Use LISO - see what it tells you. I would think that you should make a differential RC filter to get the right behavior. (e.g. 1K on each leg and 1 uF between them)

Each leg of the diff input of the board has a 4k input impedance.

But surely the AO input to the MC servo should also make sense independently.

Attachment 1: Screen_Shot_2015-09-29_at_5.55.34_PM.png
Screen_Shot_2015-09-29_at_5.55.34_PM.png
  11651   Wed Sep 30 10:00:02 2015 ericqUpdateLSCused LISO

LISO confirms that I did my algebra right in picking the component values, and shows no extra zeros. 

I also took some TFs with the SR785 and confirmed that both CM board inputs behave the same, and that including the LPF on the input gives the expected 1/f shape at the slow and fast outputs.

  11658   Fri Oct 2 03:29:16 2015 ericqUpdateLSCFast ALS progress - AO path crossed over, but no high BW

I've been using an SR560 to experiment with differnent pole frequencies, to try and cancel the mystery zero. It's after the ALS demod board, before the pomona LPF with a gain of five. 

A pole frequency of 3kHz seems to recover sensible loop shapes. I've been able to crossover the AO path to make a nice long phase bubble which isn't the prettiest, but seems workable.

Getting to this point is now almost entirely scripted and repeatable; one just has to make sure that the ALS beat has the correct sign and adjust the delay line length. Most frustratingly, due to the dependence of the ALS gain on beat frequency / magnitude / delay, which can all vary on the order of a few dB, the AO gain settings to get to the crossed over point are not always the same, so at the end it's a lot of small steps and frequent loop measurements. 

The FSS crossover and overall IMC loop gain have to be pretty actively managed too. It's all too easy to drive the pockel's cell crazy. And if it's going crazy on its own anyways, there's no hope in trying to pile ALS sensing noise on top of it... It would really help in this effort to fix the whole PC situation up. 

Unfortunately, lock is lost when increasing the overall gain on the common mode board even by 1dB.angry We've seen in the single arm tests, that the gain settings have an appreciable difference in offset between them. Maybe this step is more than what the loop can handle? Or maybe it's the voltage glitches... Maybe some gain reallocation can put me on a region of the slider that glitches less.

In terms of the mystery plant features, I figure I'd like to take the analog TF of AO control signal to, say, AS55, and see what may or may not be there. I just haven't done this tonight since it would involve recabling the analyzer, and I still need frequent loop measurements to get to the crossed over state. Having ITMY misaligned and using the digital AS55Q spectrum as an out of loop monitor has been very helpful. 

Attachment 1: crossedover.pdf
crossedover.pdf
  11662   Sun Oct 4 13:53:30 2015 jamieUpdateLSCSENSMAT oscillator used for EPICS tests

I've taken over one of the SENSMAT oscillators for a test of the EPICS system.

These are the channels I've modified, with their original and current settings:

controls@donatella|~ > caget C1:LSC-OUTPUT_MTRX_7_13 C1:CAL-SENSMAT_CARM_OSC_FREQ C1:CAL-SENSMAT_CARM_OSC_CLKGAIN
C1:LSC-OUTPUT_MTRX_7_13          -1
C1:CAL-SENSMAT_CARM_OSC_FREQ    309.21
C1:CAL-SENSMAT_CARM_OSC_CLKGAIN   0
controls@donatella|~ > caget C1:LSC-OUTPUT_MTRX_7_13 C1:CAL-SENSMAT_CARM_OSC_FREQ C1:CAL-SENSMAT_CARM_OSC_CLKGAIN
C1:LSC-OUTPUT_MTRX_7_13           0
C1:CAL-SENSMAT_CARM_OSC_FREQ      0.1
C1:CAL-SENSMAT_CARM_OSC_CLKGAIN   3
controls@donatella|~ >

 

 

  11669   Tue Oct 6 03:30:17 2015 ericqUpdateLSCDRFPMI Progress

[ericq, Gautam]

Highlight of the night: the DRFPMI was held at arm powers > 110 for 20 seconds. ALS feedback was still running though, but so was some nonzero REFL11 AO path action.

In short, time was spent finding the right FM trigger settings to keep the DRMI locked while CARM is fluctuating through resonance, what CARM offset to acquire DRMI lock at, order of operations of turning on AO / turning up overall CARM gain, etc. 

Sadly, for the past hour or so, the DRMI has refused to stay locked for more than ~20 seconds, so I haven't been able to push things much further. This is a shame, since I'm very nearly at the equivalent point in the PRFPMI locking script where the ALS control is turned off completely. 

  11671   Thu Oct 8 04:48:50 2015 ericqUpdateLSCDRFPMI Progress

Progress was made. CARM was stably locked on RF only. DARM was RF only for a few moments before I typed in a wrong number...

A change was made to the LSC model's triggering section to make the DRMI hold more reliably at zero CARM offset. Namely, the POPDC signal now has its absolute value taken before the trigger matrix. Even unwhitened, it occaisionally would somehow go negative enough to break the DRMI trigger.

AUX X laser was acting up again. As before, tweaking laser current is the temporary fix.

  11672   Thu Oct 8 13:13:20 2015 KojiUpdateLSCDRFPMI Progress

Please clarify: I wonder if you were at the zero offset for CARM and DARM or not. I am 25% excited right now.

  11673   Thu Oct 8 14:14:50 2015 ericqUpdateLSCDRFPMI Progress
Quote:

Please clarify: I wonder if you were at the zero offset for CARM and DARM or not. 

Yes, this was at the full DRFPMI resonance.

  11674   Thu Oct 8 16:48:23 2015 KojiUpdateLSCDRFPMI Progress

Awesome

  11675   Thu Oct 8 21:35:49 2015 ranaUpdateLSCDRFPMI Progress

Give us a lockloss or other kind of time series plot so we can bask in the glory.

  11676   Fri Oct 9 09:22:38 2015 ericqUpdateLSCDRFPMI Progress

Look upon this three second lock, ye Mighty, and rejoice!

Attachment 1: oct8_allRF.pdf
oct8_allRF.pdf
  11677   Fri Oct 9 11:24:06 2015 JenneUpdateLSCDRFPMI Progress

I hope the grappa was already cold, and ready to drink! 

  11679   Fri Oct 9 13:31:21 2015 ericqUpdateLSCALS plant shape

To get a better look at how to do fast ALS, I took some "Plant TF" measurements of the X arm. 

Specifically, in single arm POX lock and the both Y TMs misaligned, I used the SR785 to inject into EXC B of the common mode board with the CM fast output gain and IMC IN2 gain both at 0dB, and looked at the transfer function of that excitation into the analog ALSX I and AS55 Q out-of-loop signals. (ALSX I tuned to a zero crossing via the delay line box as usual.)

My expectation was to see them only differ by the IR single arm cavity pole, which should be around 8-9kHz ( FSR/450 = 3.9MHz/450 ~ 8.6kHz). The green cavity pole at ~18k shouldn't show up since we're not touching the green light, and the IMC pole at ~3.8kHz shouldn't show up since this is well within the IMC loop bandwidth and we're actuating on its error point.  

Instead, I see them differ by a double pole at 4.3kHz. (or zero, if you look at it the reciprocal way). Vectfit actually fits them as a slightly complex pair, with a Q of 0.53/ I imagine that the wiggles are due to the digital control loop.

My question is: why is there a double zero here? Where has my reasoning led me astray?

 

Attachment 1: xarm_plantTFs.pdf
xarm_plantTFs.pdf
  11680   Fri Oct 9 14:50:18 2015 KojiUpdateLSCALS plant shape

ALS is the comparison of the PSL laser freq vs the end laser freq that is locked to the arm cavity resonant freq

On the other hand, the AS55 PDH is the comparison of the PSL laser freq after the IMC vs the arm cavity resonant freq. Here the PDH signal involves the arm cavity pole.

In total you observe the difference by the IMC cav pole + the arm cav pole.

  11681   Fri Oct 9 16:23:25 2015 ericqUpdateLSCALS plant shape

Ah, I understand it now! Since the additive offset path keeps the post-cavity frequency TF flat, the pre-cavity frequency must grow above the cavity pole, which is why ALS sees a zero. 

Ok, so this means we want to apply two lowpasses to the ALS signal for use as fast CARM control, if we want it to be capable of scalar blending with REFL11: one at ~120Hz to imitate the CARM coupled cavity pole present in REFL11, and one at ~3.8kHz to undo the "IMC cavity zero" present in ALS. 

At this point, I'm starting to prefer an active circuit to do this lowpassing; using LISO to check designs for two cascaded passive LPFs it looks like the ALS signal would have to be attenuated by a factor of ~20 at DC if we don't use resistors smaller than 1k, given the low input impedence of the CM board. 

  11685   Tue Oct 13 05:48:39 2015 ericqUpdateLSC:/

[ericq, Gautam]

Despite our best efforts, the grappa remains out of reach: the DRFPMI was not locked tonight. 

We spent a fair amount of time with the AUX X laser, as it was glitching madly again.

DRMI was finicky until I found some more reliable triggering settings; namely aquiring with AS110Q, but after that transitioning the trigger to the same POP22+POPDC combo as PRCL and MICH. With this in place, the DRMI lock seems really indefinite no matter what CARM seems to do; or at least, I always lost lock due to CARM shenanigans after this. 

The most frustrating part was the fact that I just couldn't cross over the AO path stably. It never "clicked" into high circulating power as it normally does (either in PRFPMI, or how it was last week). Various crossover filters and tweaks were attempted to no avail. Morning traffic starts soon, so we're calling it a night. 

  11686   Tue Oct 13 16:28:21 2015 ericqUpdateLSCFast ALS pomona

I've made a cascaded passive 2-pole pomona box for fast ALS use, using LISO to check that it'll give the right shape when hooked up to the CM board's input stage. 

First stage is a 133Ohm + 10uF cap for ~120Hz LP, second is 1.15kOhm + 47nF cap for ~3.8kHz LP. The DC gain is ~0.75, which is much better than what I was doing before. The second stage would normally make a 2.9kHz LPF on its own, but the loading of the input stage moves the corner up. 

It seems the 133 Ohm resistor is a reasonable load on the output AD829 of the ALS demod board (short-circuit output current of 32mA and a series output resistor of 499Ohm). To be able to use the digitized ALSX I and the lowpassed analog version simultaneously, I had to buffer the signal with a SR560 before the pomona box, otherwise the signals looked distorted. This isn't a good long-term solution. Maybe I can used the further-buffered differential output to drive the LPF+CM board. 

The LISO files used to model the filter and CM board input stage, and fit the pole frequencies are attached. 

I made some attempts to get the AO path going today, but I suspect this daytime noise is just too much; the PC drive seems too irritable

Attachment 1: liso_lp.zip
Attachment 2: 2LPfit.pdf
2LPfit.pdf
  11691   Thu Oct 15 03:08:57 2015 ericqUpdateLSCDRFPMI Locked for 20 sec

[ericq, Gautam]

For real this time.

Attachment 1: DRFPMI_locked.pdf
DRFPMI_locked.pdf
  11692   Thu Oct 15 04:14:14 2015 ericqUpdateLSCDRFPMI Locked for 20 sec

Fast ALS was still a problem tonight. I don't think high frequency ALS noise saturating the PC drive is the issue; I put two 10k poles before the CM board (shooting for just 2-3kHz bandwidth), and the PC drive levels would be stable and low up until the lockloss, which was always conincident with a step in the AO gain.

After working with that for a few hours, we turned back to our more standard locking attempts. First, we dither aligned the PRMI, and then centered the REFL beam on REFL11. It's hard to say for certain, but we may have been a little close to the edge of the PD. The only other thing that differed from Monday's attempts was using 6dB less AO gain when trying the up the overall gain. 

The script now reliably breaks through to stable high powers, we had a handful of pure-RF locks tonight. The digital DARM gain needs tuning, and the CARM bandwidth still isn't at its final state, but these are very tractable. Off the top of my head, the way forward now includes:

  • Set proper final DARM loop shape
  • Set final CARM loop shape
  • Take full sensing matrix
  • Make 1F handoff
  • Set up the CAL model to produce (at least roughly) calibrated spectra
  • measure noise couplings and other fun stuff

Unrelated: I feel that the PRC angular FF may have deteriorated a bit. I'm leaving the PRC locked on carrier to collect data for wiener filter recalculation. 

  11693   Thu Oct 15 10:59:12 2015 KojiUpdateLSCDRFPMI Locked for 20 sec

Great job!
Many thanks Eric, Gautam, and all the current and past colleagues
for your tremendous contributions to bring the 40m to this achievement.

  11696   Sat Oct 17 18:55:07 2015 ranaUpdateLSCDRFPMI Locked for 20 sec

smiley in addition to Koji's words I feel like we should also thank those who made small but positive contributions. Its hard not to notice that this locking only happened after the new StripTool PEM colors were implemented...

From the times series plot I guess that the fuzz of the in-loop DARM is 1 pm RMS (based on memory). This means that the ALS was holding the DARM at 10 pm from the RF resonances.

There is no significant shift in the DRMI error signals, so new weird CARM effect. Would be interesting to see what the 1f signals do in the last 60 seconds before RF lock.

For documentation, perhaps Gautam can post the loop gain measurements of the 5 loops on top of the Bode plots of the loop models.

  11698   Mon Oct 19 15:23:22 2015 ericqUpdateLSCLonger DRFPMI lock

Here is a longer lock, about 100 seconds RF only, from later that same night. The in-loop CARM and DARM error signals have the order of magnitude of 1nm per count. 

From ~-150 to -103, we were fine tuning the ALS offsets to try and get close to the real CARM/DARM zero points then blending the RF CARM signal. 

At -100, the CARM bandwidth increases to a few kHz and stabilizes the arm powers. By -81, the error signals are all RF. At -70, I turned on the transmon QPD servos, which brought the power up a bit. 

If I recall correctly, lock was lost because I put waaaay too big of an excitation on DARM with the goal of running its UGF servo for a bit. The number I entered was appropriate for ALS, but most certainly too huge for AS55...

  11700   Mon Oct 19 16:20:52 2015 ericqUpdateLSCGreen beatnote couplers installed

Last Friday, I installed some RF couplers on the green BBPDs' outputs, and sent them over to Gautam's frequency divider module. At first I tried 20dB couplers, but it seemed like not enough power was reaching the dividers to produce a good output. I could only find one 10dB coupler, and I stuck that on the X BBPD. With that, I could see some real signals come into the digital system.

I don't think it should be a problem to leave the couplers there during other activities.

  11701   Tue Oct 20 11:24:29 2015 ericqHowToLSCHow to DRFPMI

Herein, I will describe the current settings and procedures used to achieve the DRFPMI lock, cobbled together from scripts, burts and such. 


Initial Alignment

  1. With arms POX/POY locked, run dither alignment servos. Set transmon QPD offsets here
  2. Restore "PRMI Carrier" configuration, run BS and PRM dither alignment servos simultaneously. (Note: this sacrifices some X arm alignment for better dark port alignment. In practice no appreciable loss of TRX is observed)
  3. Misalign PRM, align SRM and tune SRM alignment by eye while looking at AS camera. 
  4. Restore POX/POY arm lock, lock green to arms, check that powers are high enough and align if neccesary.

Initial Configuration

CARM, DARM

For CARM and DARM, the A channels are used for the ALS signals, whereas the B channels are used for blending the RF signals. 

ALS

  • BEATX and BEATY, I and Q channels: +0dB Whitening Gain, Whitening Filters ON
  • Green beatnotes somewhere between 20-80MHz, following sign convention of temperature slider UP makes beat freq go UP.  Check spectrum of PHASE_OUT_HZ vs references in ALS_outOfLoop_Ref.xml. The locking script automatically sets the correct phase tracker gain, so no need to adjust manually.
  • CARM_A = -1.0 x ALSX + 1.0 x ALSY, G=1.0
  • DARM_A = 1.0 x ALSX + 1.0 x ALSY, G=1.0

RF

  • CM Board: REFL11 I daugher board output -> IN1, IN1 Enabled, -32dB input gain, 0.0V offset, all boosts off, AO polarity positive, AO gain +0dB
  • MC Board: IN2 disabled, -32dB input gain
  • CM_SLOW: +0dB Whitening Gain, Whitening ON, LSC-CM_SLOW_GAIN = -5e-4 (Though, it would be good to reallocate this gain to the input matrix element)
  • CARM_B = 1.0 x CM_SLOW, FM4 FM10 ON, G=0 (FM4 = LP700 for AO crossover stability, FM10 = 120:5k for coupled cavity pole compensation)
  • AS55: +9dB Whitening Gain, Whitening filters manual, Demod angle -37.0
  • DARM_B = -1e-4 x AS55 Q, G=0

DRMI 3F

For the DRMI, the A channels are used for the 1F signals, whereas the B channels are used for the 3F signals. The settings for transitioning to 1F after locking the DRFPMI have not yet been determined. 

These settings are currently saved in the DRMI configurator, but the demod angles are set for DRFPMI lock, so the settings don't reliably work for misaligned arms. 

  • REFL33: +30dB Whitening Gain, Whitening filters trigger on DRMI lock, Demod angle: 136.0
  • REFL165: +24dB Whitening Gain, Whitening filters trigger on DRMI lock, Demod angle: -111.0
  • POP22: +15dB Whitening Gain, Whitening filters OFF, Demod angle: -114.0
  • AS110: +36dB Whitening Gain, Whitening filters OFF, Demod angle: -116.0
  • POPDC: +0dB Whitening Gain, Whitening filters OFF (used as a supplemental trigger signal when CARM and DARM are buzzing and POP22 fluctuates wildly)
  • MICH_B = 6.0 x REFL165Q, offset = 15.0
  • PRCL_B = 5.0 x REFL33I, offset = 45.0
  • SRCL_B = -0.6 x REFL165I + 0.24 x REFL33 I, offset=0

The REFL33 element in SRCL_B is to reduce the PRCL coupling, was found empirically by tuning the relative gains with the arms misaligned and looking at excitation line heights. The offsets were found by locking the DRMI on 1F signals with arms misaligned, and taking the average value of these 3F error signals.  

Servo filter configuration

The CARM and DARM ALS settings are largely scripted by scripts/ALS/Transition_IR_ALS.py, which takes you from arms POX/POY locked to CARM and DARM ALS locked. The DRMI settings are usually restored from the IFO_CONFIGURE screen. 

  • CARM: FM[1, 2, 3, 5, 6] , G=4.5, Trigger forced on, no FM triggers, output limit 8k
  • DARM: FM[1, 2, 3, 5, 6] , G=4.5, Trigger forced on, no FM triggers, output limit 8k
  • MICH: FM[4, 5], G= -0.03, Trigger POP22 I x 1.0 [50, 10], FM[2, 3, 7] triggered [50, 10], output limit 20k
  • PRCL: FM[4, 5], G= -0.003, Trigger POP22 I x 1.0 [50, 10], FM[1, 2, 8, 9] triggered [50, 10], output limit 8k
  • SRCL: FM[4, 5], G= -0.4, Trigger AS110 Q x 1.0 [500, 100], FM[2, 7, 9] triggered [500, 100], output limit 15k

Actuation Output matrix

  • MC2 = -1.0 x CARM
  • ETMX = -1.0 x DARM
  • ETMY = 1.0 x DARM
  • BS = 0.5 x MICH
  • PRM = 1.0 x PRCL - 0.2655 MICH
  • SRM = 1.0 x SRCL + 0.25 MICH (The mich compensation is very roughly estimated)

Locking Procedure

When arms are POX/POY locked, and the green beatnotes are appropriately configured, calling scripts/DRFPMI/carm_cm_up.sh initiates the following sequence of events:

  • Turn ON MC length feedforward and PRC angle feedforward
  • Set ALS phase tracker UGFs by looking at I and Q magnitudes
  • Set LSC-ALSX and LSC-ALSY offsets by averaging, ramp CARM+DARM gains up, XARM+YARM gains down, engage CARM+DARM boosts, now ALS locked
  • Move CARM away from resonance, offset = -4.0 (DRMI locks quicker on this side for whatever reason)
  • Restore PRM, SRM alignment. Set DRMI A FM gains to 0, B FM gains to 1.0. Enable LSC outputs for BS, PRM, SRM
  • When DRMI has locked, add POPDC trigger elements to DRMI signals and transition SRCL triggering to POP22I. NB: In the c1lsc model, the POPDC signal incident on the trigger matrix has an abs() operator applied to it first. 
    • MICH Trig = 1.0 x POP22 I + 0.5 x POPDC, [50, 10]
    • PRCL Trig = 1.0 x POP22 I + 0.5 x POPDC, [50, 10]
    • SRCL Trig = 10.0 x POP22 I + 5 x POPDC, [500, 100]
  • Reduce POX, POY whitening gains from their nominal +45dB to +0dB, so there aren't railing channels making noise in the whitening chassis and ADCs
  • DC couple ITM oplevs (average spot position, set FM offset, turn on DC boost filter, let settle)
  • With an 8 second ramp, reduce CARM offset to 0 counts. 
  • MANUALLY adjust CARM_A and DARM_A offsets to where CARM_B_IN and DARM_B_IN are seen to fluctuate symetrically around their zero crossing.
    • Note: Last week, this adjustment tended to be roughly the same from lock to lock, unlike the PRFPMI which generally didn't need much adjustment. Also, by jumping from CARM offset of -0.4 to 0.4, it could be seen that the zero crossing in  CARM_B aka CM_SLOW aka REFL11 had some offset, so CARM_B_OFFSET was set to 0.005, but this may change. 

When CARM and DARM are buzzing around true zero, powers maximized:

  • CARM and DARM FM1 (18,18:1,1 boosts) OFF
  • CARM_B_GAIN 0.0 -> 1.0, FM7 ON (20:0 boost)
  • DARM_B_GAIN 0.0 -> 0.015, FM7 ON (20:0 boost) 
  • MC servo board IN2 ENABLE, IN2 gain -32dB -> -16dB
  • Turn ALL MC2 violin filters OFF (smoothen out AO crossover)
  • If stable, CM board IN1 gain -32dB -> -10dB (This is the overall CARM gain, the arm powers stabilize within the last few dB of this transition)
  • CARM_A_GAIN 1.0 -> 0.7
  • CARM_A FM9 ON (LP1k), sleep, FM 1 ON (1:20 deboost), sleep, FM 2 ON (1:20 deboost), HOLD OUPUT, CARM now RF only
  • DARM_B_GAIN 0.015 -> 0.02, sleep, DARM_A_GAIN 1.0 -> 0.0 (This may not be the ideal final DARM_B gain, UGF hasn't been checked yet)

IFO is now RF only!

  • Turn on transmon QPD servos.
  • Adjust comm/diff QPD servo offsets to correct any problems evident on AS/REFL cameras. This usually brings powers from ~100-120 to ~130-140. 

This is as far as we've taken the DRFPMI so far, but the CARM bandwidth is still only at a few kHz. Based on PRFPMI locking, the next steps will be:

  • CM BOARD +12dB or so additional IN1 gain, more AO gain may be needed to get crossover to final position of ~100Hz
  • MC2 viollin filters back on
  • CM boost(s) on
  • AS55 whitening on
  • Transition DRMI to 1F
  11708   Fri Oct 23 09:55:50 2015 SteveUpdateLSCstable days
Attachment 1: stable4days.png
stable4days.png
  11714   Mon Oct 26 18:59:25 2015 gautamUpdateLSCGreen beatnote couplers installed

I found (an old) 10 dB coupler in the RF component shelves near MC2 - it has BNC connectors and not SMA connectors, but I thought it would be worth it to switch out the 20dB coupler currently on the X green beat PD on the PSL table with it. I used some BNC to SMA adaptors for this purpose. It appears that the coupler works, because I am now able to register an input signal on the X arm channel of the digital frequency counter (i.e. the coupled output from the green beat PD). I thought it may be useful to have this in place and do an IR transmissions arm scan using ALS for the X arm as well, in order to compare the results with those discussed here. However, the beat note amplitude on the analyzer in the control room looks noticeably lower - I am not sure if the coupler is responsible for this or if it has to do with the problems we have been having with the X end laser (the green transmission doesn't look glitchy on striptool though, and the transmission itself is ~0.45). In any case, we could always remove the coupler if this is hindering locking efforts tonight. 

  11718   Tue Oct 27 03:56:52 2015 ericqUpdateLSCDRFPMI work

A handful of DRFPMI locks tonight, longest one was ~7 minutes. 

EPICS/network latency has been a huge pain tonight. The locking script may hang between commands at an unstable place, or fail to execute commands altogether because it can't find the EPICS channel. This prevented or broke a number of locks. 

I made some CARM OLG and crossover measurements, and found the AO gain for the right crossover freq (~100Hz) to be ~8dB different than what's in the PRFPMI script, which is weird. Right now, the CARM bandwidth / ability to turn on boosts is limited by the gain peaking in the IMC CLG due to the high-ish PC/PZT crossover frequency we're using. 

Gautam turned on some sensing excitations during the last couple of locks, but they weren't on for very long before the lock loss. Hopefully I can pull out at least some angles from the data. 

I'm also more convinced that the PRC angular FF needs retuning; there is more residual motion on the cameras than I'm used to seeing. I've taken more data that I'll use to recalculate a wiener filter tomorrow. 

The PMC, ALSX beat and ITMX oplev all needed a reasonable pitch realignment tonight. 

  11722   Thu Oct 29 03:25:49 2015 ericqUpdateLSCDRFPMI work

[ericq, Gautam]

The length of DRFPMI lock did not increase much tonight, but we got a ~80 second sensing matrix measurement, and got the CARM bandwidth up to 10k with two boosts on. 

NB: I did not measure the CARM loop gain at its excitation frequency, so the plotted sensing element is supressed by the CARM loop. However, this is still useful for gauging the size of the PRCL signal vs. the residual CARM fluctuations. The excitations are fairly closely spaced between 309 and 316 Hz. 

For comparison, I'm also re-plotting the DRMI sensing measurement from a few weeks back taken at CARM offset of -4. We can see some change in the PRCL sensing, likely due to the CARM-coupled path. MICH/PRCL sadly looks pretty degenerate, but REFL55 looks more reasonable. 

 

I think the main limitation tonight was SRC stability. Even before bringing CARM to zero offset, we would see occasional sharp dives in AS110 power. One lockloss happened soon after such an occurance, but I checked the values, and it was not sufficient to trigger the Schmitt trigger down; instead it may have been a real optical loss of signal. The SRCL OLTF looks sensible. 

Random notes:

  • Aux X laser was glitching yet again, twiddled laser current to 1.90A from the 1.95A that I twiddled it to on Monday from the nominal 2.0A. 
  • When aligning the PRMI, I saw both ITMs' oplevs shift by a few urad in both pitch and yaw when engaing/breaking the lock, but this was not repeatable.
  • I reduced the AS110 whitening gain by 9dB, since the DC values were a few thousands, and I wanted to make sure there were no stray ADC saturations. This didn't change lock stability though. 
Attachment 1: DRFPMI.pdf
DRFPMI.pdf
Attachment 2: DRMIarms.pdf
DRMIarms.pdf
  11726   Tue Nov 3 03:12:46 2015 ericqUpdateLSCDRFPMI work

Tonight was kind of a wash. 

We spent some time retaking single arm scans with Gautam's frequency counting code to confirm the linewidths he measured before his most recent round of code improvements. During this, ETMX was being its old fussy self, costing us gentle realignment time. For the time being, we started actuating on ITMX for single arm locks. Also, out of superstition, I changed the static position offset that had been at +1k for the last N months to -1k. 

ETMX broke us out of a few DRFPMI lock trials as well, as did poor SRM alignment. I finally set up dither alignement settings for SRM in DRMI though, which helped (even in the arms-held-off-resonance situation). I still prefer doing the PRM/BS dither alignment in a carrier PRMI lock, because I think the SNR should be better than DRMI. 

We know that the ETMX excursions can happen without length drive exciting them, but also that length drives certainly can excite them. For future locks, I'm going to try out avoiding ETMX drive altogether; the sites use a single ETM for their DARM actuation and let the CARM loop take care of the resultant cross coupling, so hopefully we can do the same without angering the mode cleaner.

Anyways, we didn't really ever make it far enough to do anything interested with the DRFPMI tonight frown

  11735   Thu Nov 5 02:18:32 2015 gautamUpdateLSCFSR and linewidth measurements with phase tracker

While the ETMx issues are being investigated - with Eric's help, I took some data from arm scans of the Y arm through ~2FSRs using ALS. I've also collected the data from the frequency counter readout during these scans but since they were done rather fast (over 60seconds), I am not sure how accurate this data will be. The idea however is to use the frequency readout from the phase tracker - this has to be linearized though, which I will do during the daytime tomorrow. The plan is to use our GPS timing unit to synchronize the following chain :

GPS timing unit 1PPS out --> FS725 Rb Clock 1PPS in (I recovered one which was borrowed from the 40m some time ago from the ATF lab yesterday evening, waiting for it to lock to the Rb clock now)

FS725 Rb Clock 10 MHz out --> Fluke 6061A 10MHz reference in

FS725 Rb Clock 10 MHz out-->agilent network analyzer 10MHz reference in (for measurement of the frequency of the signal output from the Fluke RF signal generator independent of its front panel display)

Then I plan to look at the phase tracker output as a function of the driving frequency (which will also be measured, offline, using the digital frequency counter setup) over a range of 20 MHz - 50 MHz in steps of 1 MHz. Results to follow.

Earlier tonight, Eric and I tweaked the PMC alignment (the mode cleaner was not staying locked for more than a couple of minutes, for almost an hour). 

  11738   Fri Nov 6 15:56:00 2015 gautamUpdateLSCFSR and linewidth measurements with phase tracker

Summary:

I performed a preliminary calibration of the X and Y phase trackers, and found that the slopes of a linear fit of phase tracker output as a function of driven frequency (as measured with digital frequency counter) are 0.7886 +/- 0.0016 and 0.9630 +/- 0.0012 respectively (see Attachments #1 and #2). Based on this, the EPICS calibration constants have been updated. The data used for calibration has also been uploaded (Attachment #4).

Details:

I found that by adopting the approach I suggested as a fix in elog 11736, and setting a gate time of 1second, I could eliminate the systematic bias in measured frequency I had been seeing, the origin of which is also discussed in elog 11736. This was verified by using a digital oscillator to supply the input to the frequency counting block, and verifying that I could recover the driving frequency without any systematic bias. Therefore, I used this as a measure of the driving frequency independent of the front panel display of the Fluke 6061A. 

The actual calibration was done as follows:

  1. Close PSL green and end green shutters. Turned off the power to the green transmission PDs on the PSL table and disconnected the couplers from their outputs.
  2. Connected the output of the Fluke 6061A RF signal generator to a splitter, and to the inputs of the couplers for the X and Y signal chains.
  3. Adjusted the amplitude of the RF signal output until the Q readout of the rotated X and Y outputs were between 1000 and 3000. The final value used was -17dBm. As a qualitative check, I also looked at the beat signal on the spectrum analyzer in the control room and judged the peak height to be roughly the same as that seen when a real beat note was being measured. The phase tracker gains after setting the UGF were ~83 and 40 for the X and Y arms respectively.
  4. Step through the frequency from 20MHz to 70MHz in steps of 1MHz, and record the outputs of (i) Digital frequency counter readout, and (ii) Phase tracker phase readout for the X and Y arms. I used the z avg -s utility to take an average for 10 seconds, and the standard deviation thus obtained correspond to the errorbars plotted. 
  5. Restore the connections to the green beat PDs and power them on again.

Y-arm transmission scan

I used the information from Attachment #2 to calibrate the X-axis of the Y-arm transmission data I collected on Wednesday evening. Looking at the beat frequency on the analyzer in the control room, between 24 and 47 MHz (green beat frequency, within the range the calibration was done over), we saw three IR resonances. I've marked these peaks, and also the 11MHz sideband resonances, in Attachment #3. It remains to fit the various peaks. I did a quick calculation of the FSR, and the number I got using these 3 peaks is 3.9703 +/- 0.0049 MHz. This value is ~23 kHz greater than that reported in elog 9804, but the error is also ~4 times greater (6 IR resonances were scanned in elog 9804) so I think these measurements are consistent.

Rubidium clock

I had brought an FS725 Rubidium clock back from W Bridge - the idea was to hook this up to the GPS 1PPS output, and use the 10MHz output from the FS725 as the reference for the fluke 6061A. However, the FS725 has not locked to the Rb frequency even though it has been left powered on for ~2days now. Do I have to do something else to get it to lock? The manual says that it should lock within 7 minutes of being powered on. Once this is locked, I can repeat the calibration with an 'absolute' frequency source...

Attachment 1: Xcalib.pdf
Xcalib.pdf
Attachment 2: Ycalib.pdf
Ycalib.pdf
Attachment 3: Y_scan_log.pdf
Y_scan_log.pdf
Attachment 4: 2015-11-05_phase_tracker_calib.dat.zip
Attachment 5: 2015-11-04_y_arm_scan.dat.zip
  11740   Mon Nov 9 11:34:51 2015 yutaroUpdateLSCFSR and linewidth measurements with phase tracker

I fitted the data obtained with the FSR and linewidth measurements and I've got FSR and finesse of y-arm by fitting.

The fitted data and the fitting results are attached.

 

Summary:

FSR = 3.9704 MHz (ave. of two FSRs, 3.9727 MHz and 3.9681 MHz)

finesse = 401 +/- 11

estimated loss = 1812 (+456 / - 431) ppm

 

Detail:

I found peaks from the data and fitted each peak by Lorentzian, automatically with Python (the sourse code I used is attached).

3 parameters of Lorentzian for each peak and their fitting errors are attached.

Then, using 3 peaks of carrier resonance, I calculated FSR, finesse, and loss.

The error of finesse came from that of linewidth.

When calculating the loss, I used the value of 1.384 % for transmission of ITMY. 

 

Note:

Since the finesse is mostly determined by the transmission of ITM, the relative error of loss estimation is larger (about 25 % ) though the relative error of finesse is about 3 %. Therefor we have to find the reason why each estimated linewidth varies that largely, and measure finesse more accurately.

 

Attachment 1: plt.png
plt.png
Attachment 2: fitresult_and_code.zip
  11741   Mon Nov 9 14:24:36 2015 yutaroUpdateLSCFSR and linewidth measurements with phase tracker

I'd like to add a few calculation results, mode matching ratio for Y arm and modulation depth.

Here I assumed peaks marked in the bottom figure shown in elog 11738 as resonances of carrier and modulated sidebands and others as resonances of HOM. 

 

- mode matching ratio = 94.92 +/- 0.19 % WRONG

How I calculated: for each peak of carrier, you can find 6 peaks of HOM resonaces. Then I calculated the sum of the hight of 6 peaks divided by the hight of carrier resonance peak, and took average of this values for 3 resonance peaks of carrier.

 

- modulation depth = 0.390 +/- 0.062 WRONG

How I calculated: I took average of the hight of 6 peaks of modulated sideband resonance, and normalized it with the hight of peaks of carrier resonance. Using the relation 'normalized hight' = (J_1(m)/J_0(m))^2, I got modulation depth, m. 

 

 

  11742   Mon Nov 9 15:59:06 2015 ericqUpdateLSCFSR and linewidth measurements with phase tracker
Quote:

- modulation depth = 0.390 +/- 0.062

There are two modulation frequencies that make it to the arm cavities, at ~11MHz and ~55MHz. Each of these will have their own modulation depth indepedent of each other. Bundling them together into one number doesn't tell us what's really going on. 

  11743   Mon Nov 9 16:58:59 2015 gautamUpdateLSCFSR and linewidth measurements with phase tracker
Quote:

There are two modulation frequencies that make it to the arm cavities, at ~11MHz and ~55MHz. Each of these will have their own modulation depth indepedent of each other. Bundling them together into one number doesn't tell us what's really going on. 

Summary:

As an update to Yutaro's earlier post - I've done an independent study of this data, doing the fitting with MATLAB, and trying to estimate (i) the FSR, (ii) the mode matching efficienct, and (iii) the modulation depths at 11MHz and 55MHz.

The values I've obtained are as follows:

FSR = 3.9704 MHz +/- 17 kHz 

Mode matching efficiency = 92.59 % (TEM00 = 1, TEM10 = 0.0325, TEM20 = 0.0475)

Modulation depth at 11MHz = 0.179

Modulation depth at 55MHz = 0.131

Details:

  • To approximately locate the TEM10 and TEM20 resonances, I followed the methodology listed here (though confining myself to (m+n) = 1,2). 
  • To approximately locate the 11 MHz and 55 MHz sidebands, I used the mod command in MATLAB to locate approximately how far they should be from a carrier resonance. 
  • The results of these first two steps are demonstrated pictorially in Attachment #1. Red = carrier resonance, grey = 55MHz sideband resonance, cyan = 11MHz sideband resonance, green = TEM20 resonance, and yellow = TEM10 resonance
  • The FSR was calculated by fitting the center frequencies of fits to the three carrier resonances with a lorentzian shape, vs their index. The quoted error is the 95% C.I.s generated by MATLAB
  • The mode-matching efficiency was calculated by taking the fitted height of Lorentzian shapes to the TEM00, TEM10 and TEM20 shapes. The ratio of the peak heights was taken as a measure of the fraction of total power coupled into the TEM10 and TEM20 modes relative to TEM00. In calculating the final value, I took the average of the 3 available values for each peak to calculate the ratios.
  • The modulation depth was calculated by approximating that the ratio   \sqrt\frac{P_c}{P_s} = \frac{J_0(\beta)}{J_1(\beta)}, and solving for \beta. Attachment #2 shows a plot of the RHS of this equation as a function of \beta - the two datatips mark the location of the ratios on the LHS of the equation - both P_c and P_s were averaged over the 3 and 6 values available, respectively. The values I have obtained are different from those cited here - not sure why? The real red flag I guess is that I get the modulation depth at 11MHz to be larger than at 55MHz, whereas elog10211 reports the reverse... Do we expect a resonance for a 44MHz sideband as well? If so, it could be that the two peaks close to the carrier resonance is in fact the 55.30 MHz sideband resonance, and the peaks I've identified as 55MHz sideband resonances are in fact 44MHz sidebands.. If this were true, I would recover the modulation depth for 55.30 MHz sidebands to be approximately 0.22...

Misc Remarks and Conclusions:

  • The y-scale in Attachment #1 is log(transmission) - the semilogy command in MATLAB messed up the rendering of the overlaid semi-transparent rectangles, hence the need for adopting this scale...
  • I've attached the code used to split the entire scan into smaller datasets centered around each peak, and the actual fitting routine, in Attachment #3. I've not done the error analysis for the mode matching efficiency and the modulation depths, I will update this entry with those numbers as soon as I do. 
  • In my earlier elog11738, I had mislabelled some peaks as being sideband peaks - attachment #1 in this entry is (I think) a correct interpretation of the various peaks. 
  • There are two peaks on either side of every carrier resonance, spaced, on average, about 177kHz away from the resonance on either side. I am not sure what the interpretation of this peak should be - are they the 55.30 MHz resonances? 
  • These values should allow us to carry out alternative measurements of the round trip arm loss as estimating this from the cavity finesse seems to not be the best way to go about this. 

 

 

Attachment 1: Y_scan.pdf
Y_scan.pdf
Attachment 2: modDepth.pdf
modDepth.pdf
Attachment 3: Matlab_code.zip
  11745   Tue Nov 10 02:34:28 2015 gautamUpdateLSCUpdated interpretation of peaks

After thinking about the interpretation of the various peaks seen in the scan through 2 FSRs, I have revised the information presented in the previous elog. Yutaro pointed out that the modulation frequency isn't exactly 11MHz, but according to this elog, is 11.066209 MHz. So instead of using mod(11e6,FSR), I really should have been using mod(11.066209,FSR) and mod(5*11.066209,FSR) to locate the positions of the 11MHz and 55MHz sidebands relative to the carrier resonances. With this correction, the 'unknown' peaks identified in Attachment #1 in elog 11743 are in fact the 55MHz sideband resonances. 

However, this means that the peaks which were previously identified as 55MHz sideband resonances have to be interpreted now - I'm having trouble identifying these. If we assume that the types of peaks present in the scan are 11 MHz sideband, 55MHz sideband, and the TEM00, TEM10, TEM20, TEM30, and TEM40 mode resonances, then the peaks marked in grey in Attachment #1 to this elog can be interpreted as TEM30 (right of a carrier resonance) and TEM40 (left of a carrier resonance) mode resonances - however, the fitted center frequencies differ from the expected center frequencies (determined using the same method as elog 469) by ~3% (for TEM30) and ~20% (for TEM40) - therefore I am skeptical about these peaks, particularly the 4th HOM resonances. In any case, they are the smallest of all the peaks, and any correction due to them will be small. 

The updated modulation depths are as follows (computed using the same method as described in elog 11743, the updated plot showing the ratio of bessel functions as a function of the modulation depth is Attachment #2 in this elog):

@11.066209 MHz ---- 0.179

@5*11.066209 MHz --- 0.226

These numbers are now reasonably consistent with those reported in elog10211.

As for the mode-matching efficiency, the overall number is almost unchanged if I assume the TEM30 peaks are accurately interpreted: 92.11%. But the dominant HOM contribution comes from the first HOM resonance: (TEM00 = 1, TEM20 = 0.0325, TEM10 = 0.0475, TEM30 =  0.0056). These numbers may change slightly if the 4th HOM resonances are also correctly identified.

ETMx is still not well behaved and the mode cleaner isnt too happy either, so I think we will save the measurement of the round trip arm loss for daytime tomorrow.  

Attachment 1: Y_scan.pdf
Y_scan.pdf
Attachment 2: modDepth.pdf
modDepth.pdf
ELOG V3.1.3-