40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 76 of 339  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  11172   Wed Mar 25 18:46:14 2015 JenneUpdateLSCREFL PDs get more light

After discussions during the meeting today, I removed the PBS from the REFL path, which gives much more light to REFL11, REFL33 and REFL55.  Also, the ND1.5 in front of REFL165 was replaced with ND1.1, so that REFL165 now gets 50mW of light.  REFL11 gets about 1.3mW, REFL33 gets about 13mW and REFL55 gets about 12mW. 

No locking, and importantly no re-phasing of any PDs has been done yet. 

Here is an updated diagram of the REFL branching ratios.

Attachment 1: AS_REFL_branchingRatios_25Mar2015.png
AS_REFL_branchingRatios_25Mar2015.png
  11176   Thu Mar 26 16:32:32 2015 JenneUpdateLSCREFL PDs get more light

Some more words on yesterday's REFL path work. 

The 90/10 BS that splits the light between REFL11 and REFL55 was placed back in August 2013, to compensate for the fact that REFL11 has a much larger RF transimpedance than REFL33.  See elog 9043 for details.

We had been operating for a long time with an embarrasingly small amount of light on the REFL PDs.  REFL11 used to have 80 uW, REFL33 used to have 400 uW and REFL55 used to have 700 uW.  REFL 165 was the only sane one, with about 15 mW of light.

After yesterday's work, the situation is now:

  Power incident [mW] PD responsivity [A/W] photocurrent [mA]
shot noise intercept
current [mA]
Ratio (photocurrent) /
(shot noise intercept current)
REFL 11 1.3 mW 0.7 0.91 mA 0.12 mA 7.6
REFL 33 13 mW 0.7 9.1 mA 0.52 mA 17.5
REFL 55 12 mW 0.7 8.4 mA 1.6 mA 5.3
REFL 165 50 mW 0.15 7.5 mA 1.06 mA 7.1

As an aside, I was foiled for a while by S vs. P polarizations of light.  The light transmitted through the PBS was P-pol, so the optics directing the beams to REFL11, 33 and 55 were all P-pol.  At first I completely removed the PBS and the waveplate, but didn't think through the fact that now my light would all be S-pol.  P-pol beam splitters don't work for S-pol (the reflection ratios are different, and it's just a terrible idea), so in the end I used the PBS to set the half waveplate so that all of my light was P-pol, and then removed the PBS but left the waveplate.  This means that all of the old optics are fine for the beams going to the 3 gold-box REFL PDs.  We don't have many S-pol beamsplitter options, so it was easier to use the waveplate to rotate the polarization. 

  11186   Tue Mar 31 22:27:43 2015 JenneUpdateModern ControlPreliminary PRMI angular Wiener results

Before locking for the evening, I wanted to try again implementing the Wiener filters that I had designed back in Jaunary (elog 10959). 

The problem then was that the newer version of Quack that I was using was doing weird things to me (elog 10993).  But, tonight I used the old quack3andahalf that we used to use for Wiener-related things, and that worked (for up to order 20 filters).  Actually, the pitch z-axis Wiener filter, when I copy the command string into Foton, says "Error" in the alternate box (the lower one).  I also get this error message if I try to put in filters that were greater than order 20, and have been split into several filters.  I'm not sure what's wrong, so for tonight I'm leaving out the pitch z-axis seismometer feed forward, and only using 20th order filters for all the rest.

So, pitch has feed forward signals from the T-240's x and y axes, and yaw has feed forward signals from all 3 seismometer channels.

At first, I just had the calculated Wiener filters, and a 10Hz lowpass, but the POP beam spot on the camera was getting slowly pushed away from the starting location.  So, I added a 0.01Hz cheby1 highpass filter, and that seems to have fixed that problem.  I need to go back to the simulations though, and see if this is going to cause extra noise to be injected (because of incorrect phase in the feed forward signal) at very low frequencies.  All 5 Wiener filter banks have a gain of -1.

I'm getting a factor of 4-5ish between 2Hz and 3Hz in both pitch and yaw.  What's interesting is that despite no direct angular suppression (as measured by the QPD) at higher frequencies, both POP22 and POPDC see improvement over a much broader range of frequencies.  I'll have to think about how to predict this RIN coupling in my budgets.

The time series data for these filters was collected 2 months ago, on the 29th of January.  So, it's nice to see that they work now too (although we have already seen that length feed forward signals are good over a many-month period).   

In uncalibrated units (I need to calibrate the QPD to microrad, and should probably quote the PD signals in RIN), here is the plot.  Blue trace (taken first) was with the feed forward on. Red trace (taken immediately afterward) was with feed forward off. This data is all PRMI-only, locked on REFL165 using Koji's recipe from elog 11174, including changing REFL165 phase to -14deg (from the -110 I found it at) for the no-arms case.

PRMI_31Mar2015.pdf

Attachment 1: PRMI_31Mar2015.pdf
PRMI_31Mar2015.pdf
  11187   Wed Apr 1 03:54:15 2015 JenneUpdateLSCPRMI to 1f twice

I got the PRMI transitioned from REFL165 over to REFL55 two times tonight.  Also, I had 2 long-ish locks, one 9 minutes, and one 6 minutes.  All the other locks were short - less than a minute or two.

I've done some shuffling around of the point in the CARM transition when the anti-boosts (1:20 filters) come on in the CARM A filter bank.  I've moved the turn-on of these filters a several gain steps earlier, but I'm not sure that they're in the best place yet.  Fiddling with the turn-on of the anti-boosts makes the big CARM oscillations last for longer or shorter - if they last too long, they blow the lock, so we don't want them to get too big.

The PRMI angular feedforward has helped a lot tonight, I think.  I've added a line to the up script to enable the output of the OAF after the PRMI is locked, and the down script turns it off again.  It's not so great when the PRM isn't aligned, since it's designed to work when the oplev is on, so it should be off unless the PRM is aligned.  I tried to get a comparison of off vs. on PRC powers with the arms resonating, but I can't hold the lock for long enough when the OAF is not on to get even one average on my 0.01Hz bandwidth spectrum. 

I've turned the arm ASC on a few times, but not every lock.  Around 12:34am, I set the offsets when CARM and DARM were on RF signals, and I had hand-aligned the ETMs to minimize the power at the AS port.  But, this wasn't a good spot for the next lock - the AS port was much darker with the ASC off for that lock.  It would be nice to think about trying some dither alignment, and then maybe resetting the setpoints every lock.  I'm using Q's original loop shapes, but as he left them yesterday, only actuating on the ETMs (with Yarm Yaw gain 0.7 rather than 0.9).

The CARM crossover might need more tuning.  There's some gain peaking around 400 Hz that goes mostly away if I turn the digital CARM gain down by 2dB.  (I'm not using any filters in the CM_SLOW filter bank).

I think that the CARM/DARM transition is more likely to be successful if the FSS slow DC is greater than 0.55ish.  So far this is pretty anecdotal, but I think I have more success when it's higher.  We should pay attention, and see if our trouble locking later in the nights correlates with smaller FSS slow DC values. 

I got the PRMI over to 1f two times, at 1:54am and at 2:25am.  I did not re-phase "POP"55 (which is the REFL55 signal), but I did check the values for the input matrix.  I needed MICH = 0.01*POP55Q and PRCL = 0.008*POP55I.  The first time I lost lock because I turned down the CARM digital gain too much.  The second time I forgot to turn down the PRCL gain (I was *actually* using 0.01*POP55I for the PRCL input matrix, but needed to lower the gain from -0.08 to -0.07, which is about the same as just using 0.008 in the input matrix).  Anyhow, I think PRCL loop oscillations were the cause of the second lockloss.


Here's a strip chart of my first lock of the night, which was the 9 minute lock.  Up until about -6 minutes, I was hand-aligning (including the dip around -7.5 minutes, where I was figuring out which direction to move the ETMs).  Around -3.5 minutes there is a significant dip down, that corrected itself.  By the time I realized that the power had gone down, and was trying to figure out why, it came back.  Maybe the same thing happened at the end of the lock, but it kept getting worse?  Self, re-look at this time (around 11:50pm) to find out why the power dips. 

My tummy feelings (without any data) make me think that this could be something with ITMX, like Q saw earlier today.  Or, maybe ETMX, like we've seen for ages.  Anyhow, my tummy feeling says this is an optic pointing problem.  I certainly think this might be the same thing we see at the end of many locks, the power going low suddenly.  So, it might give a big clue to our locklosses.  Maybe.

RXA: I've changed the above text into pink Comic Sans to lend it the appropriate level of gravitas, given its scientific justification.

Attachment 1: FirstLock_9min_arms150_1154pm.png
FirstLock_9min_arms150_1154pm.png
  11190   Wed Apr 1 16:52:02 2015 JenneUpdateLSCList of measurements

I'd like to get a concrete list of measurements written down, so that it's clear what needs to be done before I graduate.

Noise couplings:

  • Laser amplitude noise coupling to DARM
    • We don't have an AOM for ISS right now, but we should be able to just stick it back in the beam path, right?  I think Koji checked that the AOM was all okey-dokey recently.
    • AOM calibration should tell me how much the single-pass amplitude changes as a function of input signal.
  • Laser frequency noise coupling to DARM
    • Inject signal at the CM board input, which should be calibrated by looking at response to calibrated MC2 motion.
  • Marconi phase noise coupling to DARM
    • Marconi can produce internally or accept via BNC 0-10 rad of phase modulation.  Marconi spec sheet should give me rad/V for the input calibration.
  • Marconi amplitude noise coupling to DARM
    • Using external input of Marconi.  Marconi spec sheet should give me input calibration.
  • MICH err to DARM
    • Compare with Optickle model
  • PRCL err to DARM
    • Compare with Optickle model

Noise cancellation:

  • PRC angle
  • MICH noise removed from DARM (compare flat gain FF vs. Wiener FF)
  • PRCL noise removed from DARM (compare FF shape from model vs. Wiener FF)
  • MC length noise (equiv. to laser freq noise) removed from CARM & DARM

Are there things that I'm missing?  I've never had an IFO to characterize before.

  11192   Thu Apr 2 01:28:34 2015 JenneUpdateLSCX Green Power drifting

Have you tried a different set of laser temperatures?  I don't remember the value for the Xgreen, but whatever the value that matches PSL of 0.62ish and above seems to put the Xgreen laser at a bad temperature.  I think this is the mode-hopping region, and we sometimes lock to the wrong mode. 

So, FSS values of above 0.5ish are good, but they should be below 0.61ish. 

  11193   Thu Apr 2 01:45:44 2015 JenneUpdateLSCX Green Power drifting
Quote:

Have you tried a different set of laser temperatures?

Yep, that is how I got back to stable powers. 

  11197   Fri Apr 3 05:17:36 2015 JenneUpdateLSCPRMI to 1f twelve times

I have 12 tick marks for times I got all the way to 1f for all 4 degrees of freedom in the PRFPMI.  The CARM / DARM transitions now succeed more than they fail, which is nice. 

At Q's suggestion, I am turning off all the violin filters in the MC2 path during the CARM transition.  This also means that I don't need any of the notches that Den and I put into the CARM_A and CARM_B filter banks last week, which were right at the edges of the violin notches.  Anyhow, this seems to make the transition much more likely to succeed.  I don't ever use the CM_SLOW FM10 "crossover helper" that Q had to use last night.  The violin filters are turned back on after the CARM transition is complete.  We don't ever need those other notches.

I checked the REFL165 vs. REFL55 transfer functions for PRCL and MICH, and they are mostly flat.  REFL55 seems like it'll give us extra phase for some reason.

I tried setting offsets for PRMI, but they seem to be strongly dependent on arm alignment.  I ended up being pretty confused, and since all the REFL signals are pretty close to zero (when CARM/DARM on RF, PRMI on 3f), I have given up on that avenue for tonight. 

I think many of my locklosses tonight (lost from the all 1f state) have been fast things, faster than the ADCs can handle.  On the lockloss plots that I've looked at, the FSS PC drive is railed at 10V about 200msec before I lose lock.  So, something (presumably in the fast CARM path) is making the MC/FSS loop unhappy.  I have plugged in the Agilent to the Out2 of the CM board, so that it looks at REFL11.  Unfortunately, this is after the input gain slider, so we don't see much until we're locked, but that seems fine.  A video camera is pointed at the screen, so that I get real time spectra.  It's hard to watch the TV at the same time as everything else, so I haven't witnessed the moment of lockloss in the fast spectrum yet.  Be careful when walking down the Yarm.  The tripod is partly in the walkway.

Q, I took a few TFs of the total CARM loop, although none of them are particularly good below a few kHz.  I can't push hard enough to get coherence, without blowing the lock.  TF data is in /users/jenne/PRFPMI/CM_TFs/CM_TFs_2Apr2015/ . 

I was worried for a while that, after I transition PRMI to 1f, I hear lots of low frequency rumbling.  However, watching the spectra (relative to references taken with CARM and DARM on RF, but PRMI on 3f), the low frequency error and control signals are staying the same for all 4 DoFs, but the high frequency for PRCL and MICH goes down significantly, so it's probably just that the low frequency stuff sounds more obvious, since it's not drowning in high frequency fuzz. 

 

  11201   Fri Apr 3 19:35:14 2015 JenneUpdateSUSBS oplev centered

I think that this happens when the beam gets too close to the edge of the QPD.  We see this regularly in the ETMs, if they've been kicked a bit, but not enough to trip the watchdogs.  I think it might be the step/impulse response of the RES3.3 filter, which rings for almost 20 seconds. 

Anyhow, I've just recentered the BS oplev.  It was at -21urad in pitch, and had more than 400 counts on the top two quadrants, but only about 100 counts on the bottom two.  Now it's around 300 counts on all 4 quadrants.

As a totally unrelated aside, I have installed texlive on Donatella, so that I could run pdflatex.

  11205   Tue Apr 7 04:17:42 2015 JenneUpdatePEMjackhammering at ETMX

Q is writing the locking elog for the night, but just to reply to this thread:  The IFO worked well tonight, so things are at least not broken.

Quote:

Unfortunately, this kind of trend plot is not detailed enough to know if something has gone bad in a quantitative way. But at least we can tell that the suspension wire didn't break.

 

  11207   Wed Apr 8 03:44:48 2015 JenneUpdateLSCMediocre locking night

It was only a mediocre locking night.  I was foiled for a long time by 2 things, both of which are now taken care of in the scripts, so I don't waste so much time again.

  • Somehow FM4 (LP700) in the CARM_A filter bank was turned off.  It took me a long time to figure this one out. 
    • At first, I had a 2056Hz oscillation, and then if I notched that, I would have problems at the edges of my notch.
    • I turned on the LP1000 in CARM_B (which we don't usually use) to fight the 2k resonances, but then I had violin mode problems. 
    • I couldn't turn off the violin mode filters on MC2 for the transition, so the edges of these notches were causing instability.
    • Anyhow, in the end, I realized that FM4 of CARM_B wasn't on, but it usually is.
    • It is now turned on in the carm_cm_up.sh script.
  • After that fiasco, I had trouble turning on the ASC loops.
    • Turns out we had left the offsets in place from last night in the ASC loops, so that when I zeroed the outputs of the transmission QPDs, the offsets in the ASC loops didn't make any sense, and they pushed the IFO severely out of alignment.
    • Now the ASC down script (which is run by the carm down script) zeros the filter bank offset values

Scripts are checked into the svn.


I used Q's handy-dandy 2D histogram plotter (..../scripts/general/dataHist, which I have taken the liberty of adding to the svn) to set the PRCL offset when I was locked on REFL165.  Here is a version of the plot, when I had an offset of +10 in the PRCL filter bank. There was so much noise on the PRCL input that I quit bothering to try and put in an excitation or ramp the offset value.  Note that I have since moved this offset to PRCL_A's offset instead, so taking this plot again should have PRCL_IN1 centered around zero.

I had trouble doing something similar for PRCL when I was locked on REFL55.  At first, the offset was so poor that POP110 was only about half the value it was when locked on REFL165, and it had a huge amount of RIN.  I tried just doing a z avg of the PRCL_B_IN1 (REFL55I) while locked on REFL165, and that said that REFL55I had an offset of +33.8 counts, so I tried an offset of -33.8 counts to get to zero.  But, that was still terrible for POP110 power.  As I increased the offset, eventually up to +30 counts, POP110 kept getting better and better.  I lost lock at that point (while trying to get 10 sec of histogram data), so I'm not sure that +30 is the final value.  I want to also get equivalent histograms with POP22 and POPDC (and maybe arm transmissions?) as the X-axis on these plots.  There's no excitation, so all of these can be collected at once.


By babysitting the ITM alignment (looking at the rough DC values of the optical lever error siganls), and doing a little adjustment of the ASC differential offset, I was able to keep lock a few times for more than 2 or 3 minutes while all 1f.  Not a whole lot longer than that though, even if I wasn't "poking" the interferometer other than maintaining alignment.

Attachment 1: PRCL_R165_offsetplus10.png
PRCL_R165_offsetplus10.png
  11212   Fri Apr 10 03:44:51 2015 JenneUpdateLSCSome small progress, may have DAC problem?

Small steps tonight, but all in the forward direction.

On one of my better locks, I saw a kind of weird phenomenon with the PRMI sideband powers versus the carrier powers:

For the last 100 seconds of this plot, I'm all 1f.  Alignment is being handled mostly by Q's DC coupled ITM oplevs, and the transmission QPD ASC loops, although I was trying to adjust the offsets in the ASC loops to improve transmission for a bit.

At the very end, the last 10 seconds or so, the POP110 power goes down, and sits at about half it's maximum value.  POP22 isn't quite as bad, in that it still touches the max, but the RIN is about 50%.  The carrier DC signals (TRX, TRY, POPDC) don't see this huge jump.  I don't think I was touching anything the last few tens of seconds.  I'm not sure yet how I can so significantly lose sideband power, without losing a similar amount of carrier power. 

The ring-ups at about -70sec in the CARM and DARM outs are the bounce mode. 

I tried looking at 2D histograms of different combinations of channels, for the time around -30 seconds where things looked pretty clean.  It looks like the offsets that Q put in last night (+1 for MICH_B and -3 for PRCL_B) are still about right.  The PRCL_IN1 and MICH_IN1 were centered around zero at the maximum power points.  CARM and DARM had small offsets, which I put into the DARM_B and CARM_B filter banks (0.0066 for DARM_B, and 0.027 for CARM_B), although these are small enough that I don't know that they really do anything.


As a break from locking for a little while, I tried to see if I could get the TT3 and TT4 DAC channels to work for me.  I had hoped it would be a quick and easy task, but I'm not seeing signal out.  Since it wasn't working, I decided to go back to locking for the night, and look into the DAC in the daytime.  I want to use one channel as the IN2 input of the CM board, and another as the external modulation input to the Marconi for transfer functions, so I need them to work. 

As a side note on the input to the Marconi situation, it occurred to me that instead of laying a new cable, I can borrow the POP55 heliax.  We don't have a POP55 diode right now, and the other end comes out across the hall from the Marconi, so it would be pretty easy to have a medium-length cable go from ITMX table to the Marconi.  Objections to this? 

Attachment 1: PRMI_sb_powers_9Apr2015.png
PRMI_sb_powers_9Apr2015.png
  11221   Wed Apr 15 20:54:18 2015 JenneUpdateComputer Scripts / ProgramsCDSutils upgrade bad

The SUS align/misalign scripts don't work after the new CDS utils upgrade. 

I don't know if it's looking for the _SWSTAT channel to confirm that the offset has been turned on/off, or if it is trying to set that channel, to do the switching, but either way, the script is failing.  Recall that our version of the RCG still has _SW1R and _SW2R, rather than the newer _SWSTAT for the filter banks. 

ezca.ezca.EzcaConnectError: Could not connect to channel (timeout=2s): C1:SUS-PRM_OL_PIT_SWSTAT

Q, can you please (please, please, pretty please) undo this upgrade, and then hold off on any further changes to the system for a few weeks?

  11222   Wed Apr 15 21:00:56 2015 JenneUpdateLSCDAC fine

The DAC was fine.  I realized tonight that the digital filter bank outputs were off, so I wasn't actually sending signals out.  Oooops.  blush

 

  11223   Wed Apr 15 23:29:08 2015 JenneUpdateComputer Scripts / ProgramsCDSutils upgrade undone

Q remotely reverted this change.  Scripts seem to work again.

Quote:

The SUS align/misalign scripts don't work after the new CDS utils upgrade. 

I don't know if it's looking for the _SWSTAT channel to confirm that the offset has been turned on/off, or if it is trying to set that channel, to do the switching, but either way, the script is failing.  Recall that our version of the RCG still has _SW1R and _SW2R, rather than the newer _SWSTAT for the filter banks. 

ezca.ezca.EzcaConnectError: Could not connect to channel (timeout=2s): C1:SUS-PRM_OL_PIT_SWSTAT

Q, can you please (please, please, pretty please) undo this upgrade, and then hold off on any further changes to the system for a few weeks?

 

  11225   Sun Apr 19 15:03:26 2015 JenneUpdateElectronicsLow noise pre-amps?

Does anyone know where the Busby or Rai low noise pre-amp boxes are? 

I think I need one in order to measure the noise of the Marconi.  Right now, I am trying to measure the amplitude noise, but I'm not seeing anything on the SR785 above the analyzer's noise level.

  11226   Mon Apr 20 16:18:29 2015 JenneUpdateElectronicsLow noise pre-amps: returned

The Rai box was in the Cryo lab, and the Busby box was in the TCS lab.  Neither had been signed out.  Lame.  Anyhow, thanks to Evan and Zach's memories of having seen them recently, they have been returned to the 40m where they belong.  (Also, I grabbed a spare Marconi while I was over there, for the phase noise measurement).

  11229   Tue Apr 21 01:17:13 2015 JenneUpdateModern ControlT-240 self-noise propagated through stack and pendulum

Going back to Wiener filtering for a moment, I took a look at what the T-240 noise level looks like in terms of pitch motion on one of our SOS optics (eg. PRM).

The self-noise of the T-240 (PSD, in dB referenced to 1m^2/s^4/Hz) was taken by pulling numbers from the Users Guide.  This is the ideal noise floor, if our installation was perfect.  I'm not sure where Kissel got the numbers from, but on page 13 of G1200556 he shows higher "measured" noise values for a T-240, although his numbers are already transformed to m/rtHz.

To get the noise numbers to meters, I use:  \left[ \frac{\rm m}{\sqrt{\rm Hz}} \right] = \frac{\sqrt{10^{\frac{[\rm dB/\sqrt{Hz}]}{10}}}}{(2 \pi f)^2}.  The top of that fraction is (a) getting to magnitude from power-dB and (b) getting to asd units from psd units.  The bottom of the fraction is getting rid of the extra 1/s^2.

 

Next I propagate this seismometer noise (in units of m/rtHz) to effective pendulum pitch motion, by propagating through the stacks and the transfer function for pos motion at the anchor point of the pendulum to pitch motion of the mirror (see eq 63 of T000134 for the calculation of this TF).   This gives me radians/rtHz of mirror motion, caused by the ground motion:

.

I have not actually calibrated the POP QPD, so I will need to do that in order to compare this seismometer noise to my Wiener filter results.

 

Attachment 1: T240selfnoise.png
T240selfnoise.png
Attachment 2: Limits.tar.gz
  11242   Fri Apr 24 01:16:30 2015 JenneUpdateASCBroken Xass?

I ran the "off" script for the Xarm ASS, followed by the "on" script, and now the Xarm ASS doesn't work.  Usually we just run the freeze/unfreeze, but I ran the off/on scripts one time. 

Koji, if you have some time tomorrow, can you please look at it?  I am sorry to ask, but it would be very helpful if I could keep working on other things while the ASS is taken care of.

Steve, can you please find a cable that goes from the LSC rack to the IOO rack (1Y2 to 1X2), or lay a new one?  It must be one single long cable, without barrels sticking it together.  This will help me actuate on the Marconi using the LSC rack's DAC. 

Thank you!!

  11243   Fri Apr 24 17:30:32 2015 JenneUpdateVACPressure watch script broken
Quote:

I made a script that checks the N2 pressure, which will send an email to myself, Jenne, Rana, Koji, and Steve, should the pressure fall below 60psi.

The script checking the N2 pressure is not working.  I signed into the foteee account to look at some of the picasa photos, and there are thousands of emails (one every 10 minutes for the past month!) with error messages.  Q, can you please make it stop (having errors)?

The error looks like it's mad about a "caget" command.  I don't have time to investigate further though.

  11254   Sun Apr 26 14:17:40 2015 JenneUpdateLSCPOXDC, POYDC unplugged for now

I have unplugged POXDC and POYDC from their whitening inputs.  They have labels on them which whitening channel they belong to (POY=5, POX=6) on the DCPD whitening board.

TT3_LR's DAC output is Tee-ed, going to the POYDC input and also to an SR560 near the Marconi.

TT4_LR's DAC output is Tee-ed, going to the POXDC input and also to the CM board's ExcB input.

  11255   Sun Apr 26 15:05:35 2015 JenneUpdateASCunBroken Xass?

Thank you both.

I have updated the .snap file, so that it'll use these parameters, as Rana left them.  Also, so that the "unfreeze" script works without changes (since it wants to make the overall gain 1), I have changed the Xarm input matrix elements from 1 to 0.1, for all of them.  This should be equivalent to the overall gain being 0.1.

  11256   Sun Apr 26 15:34:34 2015 JenneUpdateSUSPRM oplev centered

After last week's work on the BS/PRM oplev table, I think the PRM oplev got centered while the PRM was misaligned.  With the PRM aligned, the oplev spot was not on the QPD.  It has been centered.

  11258   Mon Apr 27 01:13:08 2015 JenneUpdateLSCPRCL angular FF not working, no locking :(

I'm sad.  And frustrated. 

The PRCL angular feed forward is not working, and without it I am having a very difficult time keeping the PRMI locked while the arms are at high power (either buzzing, or the one time I got stable high power partway through the transition).  Obviously if the PRMI unlocks once CARM and DARM are mostly relying on the REFL signals, I lose the whole IFO. 

Q and I had been noticing over the last few weeks that the angular feed forward wasn't seeming quite as awesome as it did when I first implemented it.  We speculated that this was likely because we had started DC coupling the ITM optical levers, which changes the way seismic motion is propagated to cavity axis motion (since the ITMs are reacting differently).

Anyhow, today it does not work at all.  It just pushes the PRM until the PRMI loses lock. I am worried that, even though Rana re-tuned the BS and PRM oplev servos to be very similar to how they used to be, there is enough of a difference (especially when compounded with the DC coupled ITMs) that the feed forward transfer functions just aren't valid anymore.

Since this prevents whole IFO locking, I spent some time trying to get it back under control, although it's still not working. 

I remeasured the actuator transfer function of how moving PRM affects the sideband spot at the QPD, in the PRMI-only situation.  I didn't make a comparison plot for the yaw degree of freedom, but you can see that the pitch transfer function is pretty different below ~20Hz, which is the whole region that we care about.  In the plot below, black is from January (PRMI-only, no DC-coupled ITMs) and blue is from today (PRMI-only, with DC-coupled ITMs, and somewhat different BS/PRM oplev setup):

Pitch_oldVsNew.pdf

I calculated new Wiener filters, and tried to put them in, but sometimes (and I don't understand what the pattern is yet) I get "error" in the Alternate box, rather than the zpk version of my sos filter.  It seems to go away if you use fewer and fewer poles for fitting the Wiener filters, but then the fit is so poor that you're not going to get any subtraction (according to the residual estimation plot that uses the fitted filters rather than the ideal Wiener filters). The pitch filters could only handle 6 poles, although the yaw filters were fine with 20.

The feed forward just keeps pushing the PRM away though.  I flipped the signs on the Wiener filters, I tried recalculating without the actuator pre-filtering, I don't know why it's failing.  But, I'm not able to lock the interferometer.  Which sucks, because I was hoping to finally get most of my noise coupling measurements done today.

 

Attachment 1: Pitch_oldVsNew.pdf
Pitch_oldVsNew.pdf
  11366   Fri Jun 19 16:54:20 2015 JenneUpdateComputer Scripts / ProgramsWiener scripts in scripts directory

I have put the Wiener filter scripts into  /opt/rtcds/caltech/c1/scripts/Wiener/  .  They are under version control. 

The idea is that you should copy ParameterFile_Example.m into your own directory, and modify parameters at the top of the file, and then when you run that script, it will output fitted filters ready to go into Foton.  (Obviously you must check before actually implementing them that you're happy with the efficacy and fits of the filters). 

Things to be edited in the ParameterFile include:

  • Channel names for the witness sensors (which should each have a corresponding .txt file with the raw data)
  • Channel name for the target
  • Folder where this raw data is saved
  • Folder to save results
  • 1 or 0 to determine if need to load and downsample the raw data, or if can use pre-downsampled data
    • This should probably be changed to just look to see if the pre-downsampled data already exists, and if not, do the downsampling
  • 1 or 0 to determine if should use actuator pre-weighting
  • Data folder for measured actuator TFs (only if using actuator pre-weighting)
    • Actuator TFs can be many different exported text files from DTT, and they will be stitched together to make one set of measurements, where all points have coherence above some quantity (that you set in the ParameterFile)
  • Coherence threshold for actuator data (only use data points with coherence above this amount)
  • Fit order for actuator transfer function's vectfit
  • 1 or 0 to decide if should use preweighting filter
  • zeros and poles for preweighting filters
  • 1 or 0 to decide if should use lowpass after Wiener filters (will be provided corresponding SOS coefficients for this filter, if you say yes)
  • Lowpass filter parameters: cuttoff freq, order and ripple for the Cheby filter
  • New sample rate for the data
  • Number of Wiener filter taps
  • Decide if use brute force matrix inversion or Levinson method
  • Calibrations for witnesses and target
  • Fit order for each of the Wiener filters

I think that's everything that is required.

  •  
  11507   Fri Aug 14 17:20:01 2015 JenneUpdatePEMGur interface box is wonky

IIRC, the Guralp box's 3rd set of channels do not have all of the modifications that were made on channels 1 and 2.

  11639   Wed Sep 23 12:51:03 2015 JenneUpdateLSCDRMI + ALS Arms

Nice!!

  11677   Fri Oct 9 11:24:06 2015 JenneUpdateLSCDRFPMI Progress

I hope the grappa was already cold, and ready to drink! 

  7677   Wed Nov 7 00:10:38 2012 Jenne UpdateAlignmentAlignment- POY and oplevs. photos.
Can we have a drawing of what you did, how you confirmed your green alignment as the same as the IR (I think you had a good idea 
about the beam going to the BS...can you please write it down in detail?), and where you think the beam is clipping? Cartoon-level, 20 
to 30 minutes of work, no more. Enough to be informative, but we have other work that needs doing if we're going to put on doors 
Thursday morning (or tomorrow afternoon?).

The ETMs weren't moved today, just the beam going to the ETMs, so the oplevs there shouldn't need adjusting. Anyhow, the oplevs I'm 
more worried about are the ones which include in-vac optics at the corner, which are still on the to-do list.

So, tomorrow Steve + someone can check the vertex oplevs, while I + someone finish looking briefly at POX and POP, and at POY in 
more detail.

If at all possible, no clamping / unclamping of anything on the in-vac tables. Let's try to use things as they are if the beams are getting to 
where they need to go.  Particularly for the oplevs, I'd rather have a little bit of movement of optics on the out-of-vac tables than any 
changes happening inside.

I made a script that averages together many photos taken with the capture script that Rana found, which takes 50 pictures, one after 
another. If I average the pictures, I don't see a spot. If I add the photos together even after subtracting away a no-beam shot, the 
picture us saturated and is completely white. I'm trying to let ideas percolate in my head for how to get a useful spot. 
  10528   Tue Sep 23 17:56:13 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

  10529   Wed Sep 24 08:39:32 2014 Jenne, EricQUpdateGeneralVent prep for SRC length change

Quote:

As Q mentioned in elog 10527, (prompted by Koji's email this afternoon) we are prepping the IFO for vent.  Here is a copy of the pre-vent checklist from the wiki, updated as we work:

 

Pre-vent checklists

 
  1. Center all oplevs/IPPOS/IPANG
  2. Align the arm cavities for IR and align the green lasers to the arms.
  3. Make a record of the MC pointing
  4. Align the beam at the PSL angle and position QPDs
  5. Reduce input power by adjusting wave plate+PBS setup on the PSL table BEFORE the PMC. (Using the WP + PBS that already exist after the laser.)
  6. Replace 10% BS before MC REFL PD with Y1 mirror and lock MC at low power.
  7. Close shutter of PSL-IR and green shutters at the ends
  8. Make sure the jam nuts are protecting bellows

Notes:

1 & 2:  Locked arms on IR, ran ASS.  Unlocked IFO, aligned PRM for good POP flashes, aligned SRM for symmetric AS flashes.  Aligned all oplevs.  Used PZTs to align Xgreen to arm. Used knobs to align Ygreen to arm.  With PS:L green shutter closed, Xgreen  = 0.520, Ygreen = 0.680.

3:  Moved MC servo output cable that goes to ADC from OUT2 (which we had been using for monitoring AO path signals) back to its usual OUT1 (which is MC_L).  This is used in the spot position measurement script.  Spots at:  [2.32, -0.50, 1.97, -1.11, 0.26, -1.86] mm.

4: Done -Q

5:  Removed a PD that was monitoring the light coming backwards through the Faraday that sits just after the laser, just in case (confirmed that beam dump behind PD was catching beam).  Other port of PBS just had regular black hole dump.  Adjusted half wave plate until we had ~90mW just before injection into the vacuum.

6: Completed. Locked MC manually at transmission of ~1150, but low power autolocker isn't working. This isn't a critical thing, and can be fixed at any point during the vent. -Q

7: Shutters closed. Ready for Steve to check nuts and begin venting! -Q

 

  8379   Mon Apr 1 09:05:09 2013 Jenne, GabrieleConfigurationLSCPOP22 configuration

On Friday we modified the POP22 set up: now the PD output goes to a bias tee. The DC output goes to the ADC board, while the RF output goes to an amplifier (Mini-circuits ZFL-1000LN+), to a band pass filter at 21.4 MHz and then to the ADC

  3093   Mon Jun 21 14:21:34 2010 Jenne, KiwamuUpdatePhotosInspection of Magnets for the TTs

Some pictures of "magnet inspection" from Picasa.

The coating of some magnets are chipped...

  1823   Mon Aug 3 22:54:53 2009 Jenne, Koji, ranaUpdateIOOMC_trans is now better, but not best

Jenne, Koji, Rana

After fixing up the Mode Cleaner a bit more (fiddling more with the MC_align sliders to get the alignment before locking, making sure that it is able to lock), we noticed that the MC Trans path could use some help. To align the MC, we put MC1 and MC3 back into the position where Rob left it on Thursday and then maximized the transmission with MC2. Then we went back and maximized with MC1/3 keeping in mind the Faraday. We got a good transmission and the X-arm had a transmission of 0.8 without us touching its alignment.

Upon looking at the AP table portion of the MC_trans path, we decided that it was all pretty bad.  The light travels around the edge of the AP table, then out the corner of the table toward the PSL table.  A periscope brings it down to the level of the PSL table, and then it travels through a few optics to the MC_trans QPD. 

The light was clipping on the way through the periscope, and so the MC_trans QPD was totally unreliable as a method of fine-tuning the alignment of the Mode Cleaner.  Ideally we'd like to be able to maximize MC_trans, and say that that's a good MC alignment, but that doesn't work when the beam is clipped.

 

Things done:

1. The first turning mirror on the AP table after the beam comes out of the vacuum was changed from a 1" optic to a 2" optic, because the spot size is ~4-6mm.  We were careful to avoid clipping the OMCT beam, by using a nifty U200 mount (C-shaped instead of ring-shaped). 

2.  We placed a lens with a RoC of 1m (focal length for 1064nm is ~2m), a 2" optic, between the first two mirrors, to help keep the beam small-ish when it gets to the periscope, to help avoid clipping.

3. Rana adjusted the angle of the upper periscope mirror, because even when the beam was centered on the steering mirror directly in front of the periscope and the spot was centered on the first periscope mirror, the beam wouldn't hit the bottom periscope mirror. 

4. We noticed that the bottom periscope mirror was mounted much too low.  It was mounted as if the optics after it were 3" high, which is true for all of the input optics on the PSL table.  However, for the MC_trans stuff, all the optics are 4".  We moved the periscope up one hole, which made it the correct height.

5. We removed the skinny beam tube which guided/protected the beam coming off the periscope after a steering mirror since it (a) wasn't necessary and (b) was clipping the beam. We cannot use such skinny tubes anymore Steve.

6. There was a lens just before the 2nd steering mirror on the PSL table portion, which we removed since we had placed the other lens earlier in the path.  2 lenses made the beam too skinny at the QPD.

7.  After this 2nd steering mirror, there had been a pickoff, to send a bit of beam at a crazy angle over to the RFAM mon, which we removed.  This results in a much brighter beam at the MC_trans QPD, and at the camera.  The QPDs readouts are now a factor of ~3.5 higher than they used to be.  These (especially the camera) could use some ND-filtering action.

8.  The steering optic directly in front of the MC_trans QPD is a beamsplitter, and instead of dumping the light which doesn't go to the MC_trans QPD, we used this to go over to the RFAM mon (instead of the pickoff which we had removed). 

9.  Koji fixed up the optics directly in front of the RFAM mon, accomodating the new position of the input light (now at a much more reasonable angle, and about 15cm farther back from the PD). Note the beam dump which is preventing the cables from the FSS board from entering the beam path. This included removing an ND filter wheel, so the RFAM mon values will all be higher now.  Koji also has the beam going to the PD going at a slight angle, so that the beam isn't directly reflected on itself, so that it can be dumped.

10. We aligned the beam onto the MC_trans QPD using the first steering mirror on the PSL table.

11. We also removed the giant wall of beam dumps separating the squeezing section of the table from the rest of the table.

Alberto will elog things about the RFAM mon, including different values of the PD output, etc.

 

Still on the to-do list:

A.  Replace the second steering mirror on the AP table after the MC_trans light leaves the vacuum with a 2" optic, since the lens we placed isn't tight enough to make the spot small there yet.  Us a U200A mount if possible, because they are really nice mounts.

B.  Put an ND filter in front of the MC_trans camera, because the image is too bright.

C.  Normalize the MC_trans QPD - the horz and vert are pretty much direct voltage readouts, with no normalization.  They should be divided by the DC value.  This lack of normalization results in higher sensitivity to input pointing.

D.  Long term, next time someone wants to optimize the MC_trans path, move all the optics, including the MC_trans QPD and the camera closer to the periscope on the PSL table.  There's no reason for the beam to be traveling nearly the full width of the PSL table when we're not manuvering around squeezing stuff.

E. Never, ever purchase these horrible U100 or U200 mounts with the full ring and the little plastic clips. They are the "AC28" version. Bad, bad, bad.

 

Image 1:  The new setup of the AP table, Mc_trans portion. 

Image 2:  New setup of the MC_trans part of the PSL table.

Attachment 1: P8030099_copy.JPG
P8030099_copy.JPG
Attachment 2: P8030102_copy.JPG
P8030102_copy.JPG
  7370   Mon Sep 10 18:42:33 2012 Jenne, Mike J.UpdateCamerasXY beam scan tomorrow

We tweaked the mirror on the AP table to go through the center of the lens in order to get a more circular beam, but it seemed ineffective. So we put an IR card in front of the lens and behind the lens to see if the beam was circular or ovacular, but could not tell. We also moved the camera to see, but still couldn't see a distinct circle or oval. So Mike and Q will do a beam scan tomorrow in both the X and Y directions to see if the beam is circular or not.

  1172   Wed Dec 3 20:10:09 2008 Jenne, RanaUpdatePEMComparing Wiener subtraction with different seismometers
Attached is a plot of MC_L, and then the residual MC_L after static Wiener filtering, using different combinations of our accelerometers and seismometers.

This is the same type of plot that Rana has included in the past few weeks, using Wiener filters calculated with c1wino.m

This data is from GPS 912312914, duration = 7200 sec, sometime during the night last night.

Unfortunately, it doesn't look like adding the Guralp seismometer to the Accelerometers and the Ranger did much, especially at low frequencies (all sensors = black curve). We'll have to investigate why this is true, and what we can do to get some low-frequency subtraction going on.

In the legend, "Residuals Accels, Guralp, Ranger" implies that the residual has been calculated using all of the sensors listed.
Attachment 1: Dec032008_c1wino_seisCombos.png
Dec032008_c1wino_seisCombos.png
  1173   Wed Dec 3 20:36:07 2008 Jenne, RanaUpdatePEMComparing Wiener subtraction with different seismometers
The Ranger has now been moved over to sit underneath the MC2 tank (it was previously close to the PSL rack). It
is still pointed in the +Y direction (towards ETMY, aka south).

New spectra attached - looks like the coherence is still there between the Guralp and the Ranger which are now
seperated by the MC length (~12 m). At LLO, I have witnessed a coherence of less than 0.3 above 1 Hz for these
distances. Curious.

L960019-00-F describes measurements done at SLAC on seismic coherence. The iLIGO LSC PDD
(http://www.ligo.caltech.edu/docs/T/T970122-00.pdf) discusses in sec 4.2 how this was incorporated into the LSC design.

When we get our next Guralp, it will be interesting to move them around and determine what the cross-spectrum
is between different points in the lab during typical times.

In the second attachment, I have plotted the square of the quantity used in the LSC PDD (S_xy) which I think is
what we now plot in DTT as 'Coherence'.

The third attachment shows the coherences among the TM SUSPOS_INs. I've turned off the oplev servos for this but
the OSEM damping is still on. Its not quite the same as the theory, but we could probably measure/tweak the
seismic velocity and then get better agreement.
Attachment 1: d.pdf
d.pdf
Attachment 2: sco.png
sco.png
Attachment 3: fly.pdf
fly.pdf
  9190   Thu Oct 3 01:24:31 2013 Jenne, RanaUpdateIOOPMC

The PMC transmission was around 0.78 all day, rather than the usual 0.83ish.  Rana went out to the PSL table and fixed up the PMC alignment.  This should not need to be done very often, so things to check before touching the alignment are FSS / PMC settings (digital stuff).  Make sure that the PC RMS (on the FSS screen) is low (at least below 2, preferably below 1), and that the FSS Fast monitor is near 5ish (not near 0 or 10).  

This is a capture of PMC REFL's camera after Rana was finished. If it doesn't look this good when you finish then you are not done. Never do PMC alignment without looking at the PMC REFL camera.

PMCR_1064822387.bmp

The attached trend shows 80 days of PMC REFL and TRANS. The bad alignment stuff started on Sep 21-24 time period. You know who you are.

Attachment 2: pmc80.png
pmc80.png
  9209   Sun Oct 6 22:52:09 2013 Jenne, RanaUpdateIOOinput beam to PMC aligned again

pmcr.pngafter

I wonder what's drifting between the laser and the PMC? And why is it getting worse lately?

  10157   Tue Jul 8 22:53:02 2014 Jenne, RanaUpdateElectronicsTransmon QPD / whitening

We need to work farther on checking out the end transmission QPD electronics situation. 

In bullet-point form, we need to:

* Ensure that the Weiss QPD head modifications have been made on these diodes.  (cf. Rai W's LLO elogs on QPDs)

* Ensure that the QPD biases are somewhere in the range of 10-15V, not the old 100V.  (Because we only need HV to make the capacitance low for RF use. Low voltage means less power dissipation in the head)

* Ensure the Rana/Rob modifications have been propagated to the whitening boards, so that we have full dynamic range.  (Steve is looking for the marked up paper schematics)

* Replace signal path resistors with low noise metal film resistors.

* Check QPDs / whitening boards for oscillation (with a scope probe), ensure that we chose an appropriate analog gain.

 

In thinking about the transimpedances that we want, we thought about the current that we expect.  We should get about 100 mW of light transmitted through the ETMs when we have full IFO lock.  There is a 50/50 BS to split the light between the QPD and the Thorlabs transmission diode, so we have about 50 mW incident on the QPDs, which is about 13 mW per quadrant.  With a sensitivity of about 0.15 Amps/Watt for silicon, this means that we're expecting to see about 2 mA of current per quadrant once we have the IFO fully resonant. We want this to correspond to about 5V, which means we want a transimpedance gain of around 2.5 kOhm. 

 

For the things that need checking, each quadrant has:

Photodiode  ------  Gain Switch 1 ----- Gain Switch 2  ------ Gain Switch 3 ------ Variable Gain Amplifier ------- Whitening stage 1 (z @ 4 Hz, p @ 40 Hz)  ------- Whitening stage 2 (z @ 4 Hz, p @ 40 Hz)

We want to check on the status of each of these switches, and whether they actually do what they say on the QPD Head screens.  Q has checked out and fixed the bit outputs for the whitening stages, but the rest still needs to be checked out.  Also note that the Switch 1, Switch 2 and Switch 3 are common to all 4 quadrants (i.e. enabling switch 1 on one quadrant enables it on all quadrants), but the variable gains and the whitening stages are individual for each quadrant.

  10408   Tue Aug 19 01:01:36 2014 Jenne, RanaUpdateGreen LockingYarm Green PDH

[ Rana, Jenne]

We remeasured the Yend PDH box.

When we first started, the green couldn't hold lock to the arm - it kept flickering between modes.  Changing the gain of the PDH box (from 7.5 to 6.0) helped.

We measured a calibration, from our injection point to our measurement point.

The concept was that we'd take the mixer output, and put that into an SR560, and put the swept sine injection into the other input port of the '560, and use A-B.  So, for this calibration, we left A unplugged, and just had the RF out of the 4395 going to input B of the '560.  The 600 Ohm output of the '560 went to the error point input on the PDH box (during normal operation the mixer output is connected directly to the error point input).  The SR560 was set to gain of 1, no filtering.  I don't recall if we were using high range or low noise, but we tried both and didn't really see a difference between them.

We had the 4395 take that calibration out, and then we measured the closed loop gain up to 1 MHz. (Same measurement setup as above, but we connected the mixer out to the input of the SR560 to close the loop, and made sure we were locked on a TEM00 green mode.) Rana used an ipython notebook to infer the open loop gain from our measurement.  Our conclusion is that we don't have nearly enough gain margin in our loop.  We found the PDH box gain knob at 7.5, and we turned it down to 6.0, but the loop is still pretty borderline. We used the high impedance active probe to measure the error point monitor, since we aren't sure that that point can drive a 50 Ohm load.

YPDH_OLG.pdf

We also measured the error point spectra and the control point spectra.  Unfortunately, the saved data from the analyzer (no matter what is on the screen) comes out in spectrum, not spectral density.  So, we need to check our conversion, but right now to get from Watts power to Volts, we do sqrt(50 ohm * data).  We then need to get to spectral density, and right now we're just dividing by the square root of the bandwith that is reported in the .par file. This last step is the one we want to especially check, by perhaps putting some known amount of noise (from an SR785?) into the 4395, and checking that our calibration math returns the expected noise spectrum.

What still needs to be done is to calibrate this into Hz/rtHz.  To do this, we were thinking that we should look at the error point on a 'scope while the cavity is flashing.

Anyhow, here is the uncalibrated error point spectrum.  Purple is a measurement up to 30kHz, with 30Hz bandwidth.  Blue is a measurement up to 300kHz with 300Hz bandwidth.  The gain peaking schmutz above 10kHz sucks, and we'd like to get rid of it.  We also see the same peak at ~150kHz that Q saw earlier today.  We were using the high impedance probe here too.

YPDH_noise.pdf

 We have the data for the control point (all the data files are in /users/jenne/ALS/PDHloops/Yend_18Aug2014), but we haven't plotted it yet.

Things that need doing:

* (JCD) Think about this box's purpose in life.  What kind of gain do we need?  Do we need more / less than we're currently getting? NPRO freq noise is 1/f and is 10kHz/rtHz at 1Hz (this is from a plot of an iLIGO NPRO from Rana's thesis, but it's probably similar). Talk to Kiwamu; the noise budget in the paper seems to indicate that we had some kind of boost on or something.  Also, if we need much more gain than we already have, we'll definitely need a different box, maybe the PDH2 box that they have over in WBridge.

* (EQ, priority 1) Measure and calibrate error point noise down to lower freq for both arms.  What could we win by putting in a boost? If the residual noise is high, maybe the laser isn't good at following arm, so beatnote isn't good length info for the arm, and we can't succeed.

* (EQ, priority 2) Measure TF of PDH box, and a separate measurement of the Pomona box that is between the mixer and the error point - is that eating a bunch of phase?  It's already an LC circuit which is good, but do we really want a 120kHz lowpass when our modulation frequency is roughly 200kHz?  Ask ChrisW - he worked on one of these with Dmass.

* (EQ, priority 2ish) Measure TF of Xend PDH loop (unless you already have one, up to ~1MHz).

* (JCD) Make DCC tree leaf for PDH box #17.  Take photos of box.

  10119   Wed Jul 2 11:32:44 2014 Jenne, TaraVUpdatePEMStatus of seismometer stations, Yend Guralp moved

[Jenne, TaraV]

We had a look this morning at the status of the seismometer array, so that we can get it all put together. While we were looking at the Guralp at the Yend, we noticed that it was pointing the wrong way.  The North-South nubbins were pointed East-West, so X and Y coming out of the seismometer were backward.

 

To fix the Yend's Guralp, we powered off the Guralp readout box, rotated the seismometer, re-leveled it, and then turned the power back on.  Now X from the seismometer lines up with the X data channel, and similarly for Y.

The Yend Guralp has all of the cabling needed, and is installed on the granite slab.  This seismometer doesn't need any more work for now.  When we get around to it, we'll need to do some kind of thermal insulation, but other than that, it's good to go.

The Xend will also have a Guralp (Zach still has it in the Gyro lab for now).  We have the long cable that should go from the readout box to the slab that we'll need to put into the cable tray.  The short cable from the slab's plate to the seismometer is already in place.  For this seismometer, we should just need to plop the instrument in place and lay the cable in the overhead cable trays.  We should also remove the now obsolete STS-2 cable while we're doing that.  So, the Xend seismometer station doesn't need too much work.

The corner station will need more work.  Zach made for us the long cable, although he still has it in the Gyro lab, so when we get the seismometer and cable back, we'll need to lay that cable in the overhead trays.  The short cable from the slab's plate to the seismometer does not exist yet.  We want to make sure that we can feed the finished cable and connector through the hole in the slab, and then we'll solder it up out here on the EE bench.  I think this is how Den was doing things.  If not, we'll have to do the soldering in-situ, which we don't want.  So, for the corner station, we need to make the short cable, lay the long cable, get the T-240 back from Zach and put it on the slab, re-install the readout box that Zach has, etc, etc.  We should also make sure that the spaghetti pot fits on the slab, underneath the piece of metal that's sticking out over the slab.  We think that it's the same amount of clearance that the Yend pot has, so it should be okay, but we'll check.  The O-ring seems to be sitting on the MC2 chamber, so we should remember that. 

Neither the Xend nor the corner station had the yellow dog clamps, so we'll have to figure out where Den / Steve have hidden them. 

 EDIT:  We have checked, and the Guralp connector, which is larger than the Trillium connector, fits through the hole in the slab (with some disassembly), so we can solder together the short cable out here on the EE bench, and install it separately.  Eeeeexxxxxcelllent.

  8990   Fri Aug 9 16:49:35 2013 Jenne, manasaUpdateElectronicsPost-vent alignment cont'd - RFPDs

Notes to the fiber team:

I am aligning beam onto the RFPDs (I have finished all 4 REFL diodes, and AS55), in preparation for locking. 

In doing so, I have noticed that the fiber lasers for the RFPD testing are always illuminating the photodiodes!  This seems bad!  Ack!  

For now, I blocked the laser light coming from the fiber, did my alignment, then removed my blocks.  The exception is REFL55, which I have left an aluminum beam dump, so that we can use REFL55 for PRM-ITMY locking, so I can align the POP diodes.

EDIT:  I have also aligned POP QPD, and POP110/22.  The fiber launcher for POP110 was not tight in its mount, so when I went to put a beam block in front of it and touched the mount, the whole thing spun a little bit.  Now the fiber to POP110 is totally misaligned, and should be realigned.

What was done for the alignment:

1. Aligned the arms (ran ASS).

2. Aligned the beam to all the REFL and AS PDs. 

3. Misaligned the ETMs and ITMX. 

4. Locked PRM+ITMY using REFL11.
The following were modified to enable locking
(1) PRCL gain changed from +2.0 to -12.
(2) Power normalization matrix for PRCL changed from +10.0 to 0.
(3) FM3 in PRCL servo filter module was turned OFF.

5. POP PDs were aligned.

  2284   Tue Nov 17 21:09:17 2009 Jenne, ranaUpdateGeneralLittle Thorlabs Photodiode

[Rana, Jenne]

We opened up the little Thorlabs battery operated PD to see what was inside.  Rana took some pictures, and I drew a schematic (attached).  It's just a diode, biased with a battery (albeit a crazy 22.5V battery).

---------------
Comment by KA: PD is Hamamatsu S1223-01 Si PIN diode.


What a crazy battery. The main point is that it looks like this can be used for reasonable purposes: uses a load resistor on the BNC connector and you can use some pre-amp (e.g. Busby box or SR560) to have a low noise PD readout. You can also use the SR560 in its A-B mode as an 'opamp'. Ground the A input and the use a pole at 1 Hz and make the Output go into the B input through some large series resistor. The BNC from the PD gets Teed into the B input as well.

Then this becomes a transimpedance circuit readout of the diode, using the current noise of the SR560 as the limit.

Attachment 1: ThorlabsPD.png
ThorlabsPD.png
  3137   Tue Jun 29 16:44:12 2010 Jenne, ranaUpdateMOPAMOPA is NOT dead, was just asleep

Quote:

Not dead. It just had a HT fault. You can tell by reading the front panel. Cycling the power usually fixes this.

MOPA is back onliine.  Rana found that the fuse in the AC power connector's fuse had blown.  This was evident by smelling all of the inputs and outputs of the MOPA controller. The power cord we were using for this was only rated for 10A and therefore was a safety hazard. The fuse should be rated to blow before the power cord catches on fire. The power cord end was slightly melted. I don't know why it hadn't failed in the last 12 years, but I guess the MOPA was drawing a lot of extra current for the DTEC or something due to the high temperature of the head.

We got some new fuses from Todd @ Downs. 

The ones we got however were fast-blow, and that's what we want  The fuses are 10A, 250V.  The fuses are ~.08 inches long, 0.2 inches in diameter. 

  10146   Mon Jul 7 21:36:33 2014 Jenne, ranaUpdatePSLPMC local oscillator is going wonky

The PMC local oscillator is going a little weird dyingWe need to check out why the level is fluctuating so much.

Here's a 6 month plot, where you can see that the lower level keeps getting lower (y-axis is dBm):

PMC_LO_failing.pdf

This LHO entry from 2008 shows where we first discovered this effect. As Rick Savage and Paul Schwinberg later found out, the ERA-5SM+ amplifier slowly degrades over several years and was replaced for both of the eLIGO interferometers. We have spares in the Blue box and can replace this sometime during the day.

Our PMC LO is made by this obsolete crystal oscillator circuit: D000419. There are many versions of this floating around, but they all have the ERA-5 issue.

  1090   Fri Oct 24 22:30:38 2008 Jenne,ranaUpdatePEMNoise from Guralp Seismometer
Attached is a Power Spectrum of the noise on the Vert1 channel of the Guralp seismometer. The noise is in the several hundreds of nV/rtHz up near 50Hz and higher, but is in the several microV/rtHz range at lower frequencies. Our high frequency noise is almost definitely below the noise of the ADC, but the lower frequencies, where we actually care, it's not as clear.

To Do list:
  • Measure the noise of the ADC - is the Guralp Box lower for all frequencies?
  • Use conversion factors to convert this measured noise into the minimum ground motion that we can measure. Is this at least a factor of 100 lower than our regular ground motion?

** UPDATE: This is actually the noise of the Guralp breakout box, not the Guralp itself. It is the noise measured on the output of the box
with the input shorted. The board is configured to have a gain of 20 (10 from the AD620 and 2x for differential drive). We also measured
directly at the AD620 output and all of this noise comes directly from that chip. If Jenne calculates that this noise is too high we would
have to find a replacement with a better low frequency floor (e.g. LT1012 or LT1007 depending on the Guralps source impedance).
Attachment 1: Vert1_Noise_24Oct2008.png
Vert1_Noise_24Oct2008.png
  5015   Thu Jul 21 23:36:51 2011 JennyUpdate Fitting beam waist with MATLAB

I am starting work on the PSL table at the 40m. My goal is to lock the laser coming from the nearby table to the FP cavity and get a measurement of the response to a temperature step on the surrounding can.

I have to mode match the beam to the cavity. Specifically, I have to mode match to the beam coming from the PMC through the EOM to the polarizing beam splitter. Yesterday David and I measured the beam width at various distances (from a particular lens through which the beam traveled), and I fit that data using MATLAB to find the beam's waist size and location. However, I'm not convinced that the fit is any good, since we only took measurements at five spots and they had large error bars.

 

z (mm) 2w_vert (mm) 2w_horiz (mm)
180 4.68 3.38
230 4.64 3.49
305 4.68 3.47
370 5.1 3.81
510 5.5 4.17

Here is the fit I obtained using fminsearch. The horizontal beam width measurements were smaller than the vertical width measurements, suggesting that the incoming beam was elliptical. I fit the data for each set of measurements separately and got two waist locations. The red trace is the fit for the horizontal width and the blue represents the vertical width of the beam. Averaging the two fitted waist locations and sizes gives

vert z_0= -1760 mm (waist location)

horiz z_0= -1540 mm (waist location)

vert w_0 = 0.286 mm (waist size)

horiz  w_0 = 0.275 mm (waist size)

avg z_0= -1650 mm

avg w_0 = 0.281 mm

 

twobeamfit2.jpg

Here is the code I used:

I defined the function spotsize.m and then made a function gaussbeam.m that called it with input parameters and returned the least squares error. I then wrote another function twobeamfits.m that ran fminsearch to minimize the least squares error and made the above plot. I've pasted the code below.

spotsize

function omega = spotsize(z_0, w_0, z)
lambda=0.001064;
omega=w_0*(1+(lambda*(z-z_0)/(pi*w_0^2)).^2).^(1/2);

 

gaussbeam

function sse = gaussbeam(params,xvals,yvals)

%This f'n takes as its inputs
%three parameters (w_0, z_0, and lambda),
%a vector of x-values (distances),
%and an associated vector of y-values (spotsizes),


%It then generates a vector of fitted y-values by applying
%an exponential approach function (single pole), with the given parameters,
%to the x-values.

%It then returns the sum of the squares of the entries of the difference
%between the fitted y-vector and the actual y-vector

z_0=params(1);
w_0=params(2);
fityvals=spotsize(z_0, w_0, xvals);

error=(fityvals - yvals);% .*xvals;
% sse stands for sum of squares error
sse=sum(error.^2);

 

twobeamfits

function [outputs] = twobeamfits(guesses, dists, vert, horiz)


%This f'n takes as its inputs
%two starting guess parameters (w_0 and z_0),
%a vector of distances (x-values),
%and two associated vectors of measured beam radii,

%the radius measured along the vertical axis

%and the radius measured along a horizontal axis (y-values).

%It then calls the gaussbeam f'n for each set of y-values and minimizes its output (sum of squares error)
%using the fminsearch f'n. It outputs the fit parameters it settles on.

%It then plots the input data, the fitted curves, and the residuals


fminopts=optimset('TolFun',1e-6,'MaxIter', 100000);
vertparams=fminsearch(@gaussbeam,guesses,fminopts,dists,vert);
fitvert=spotsize(vertparams(1), vertparams(2), dists);
resid1=(vert-fitvert)./vert;
spoterror=[.1, .1, .1, .1, .1]; %uncertainties, all in mm

fminopts=optimset('TolFun',1e-6,'MaxIter', 100000);
horizparams=fminsearch(@gaussbeam,guesses,fminopts,dists,horiz);
fithoriz=spotsize(horizparams(1), horizparams(2), dists);
resid2=(horiz-fithoriz)./horiz;


points=linspace(-2000,1000,1000);
figure(1)
hold off
clf
subplot(2,1,1)
hold on
errorbar(dists, vert, spoterror, 'x')
grid
errorbar(dists, horiz, spoterror, 'r*');
plot(points,spotsize(vertparams(1), vertparams(2), points));
plot(points,spotsize(horizparams(1), horizparams(2), points),'r');
xlabel('Distance z (mm)')
title('Gaussian Beam Fits')
ylabel('Spotsize w (mm)')
legend('Vertical Spotsize','Horizontal Spotsize','Vertical Fit',...
    'Horizontal Fit','Location','SouthEast')
hold off

subplot(2,1,2)
plot(dists,resid1,'x')
hold on
plot(dists,resid2,'r*');
xlabel('Distance (z)')
title('Residuals')
ylabel('Fractional Difference')
legend('Vertical Fit Residuals','Horizontal Fit Residuals',...
    'Location','SouthEast')
grid

outputs=[vertparams horizparams];

 

 

 

Later on I may repeat some measurements and try to gain more certainty in my fit. In the mean time I will use this beam profile for mode matching. 

 

  5036   Tue Jul 26 09:01:53 2011 JennyUpdateComputer Scripts / ProgramsMode matching

I found a mode matching solution to match the beam coming to the PSL table from the AP table so that I can lock the laser beam coming onto the PSL table to the reference cavity on the table. I determined that at the polarizing beam splitter, I want a beam with a q=(147+25.1i)mm (w0=58mm). This came from applying the ABCD matrices for three distances,

  • d1=693 mm,
  • d12=660.4 mm, and
  • d2=393.7 mm, separated
  • an f=229.1 mm planoconvex lens and
  • an R=300 mm curved mirror.

to a beam with q0 = 406.4i mm (w0=0.371 mm at the PMC).

I obtained the following mode matching solution, which I will try to implement on the PSL table:

The beam I have has waist 0.281 mm at -2.74 m (I set my origin at the polarizing beam splitter--the spot where I want my beam to match the beam coming from the PMC, so all waists are behind that point). These numbers  come from the beam-profiling and MATLAB-fitting I did (see 5015).

The solution I chose was: f = 1145.6 mm at -0.95 m and f = 572.7 mm at -0.62 m. This may need to be changed however, if I need to add in some beam steering, which would increase the path length traveled by the beam.

modematchparameters.png modematchpic.png

 

  5069   Sat Jul 30 10:01:35 2011 JennyUpdatePSLPSL table work

I've been working on the PSL table to put together a setup so that I can measure the reference cavity's response to a temperature step increase at the can surrounding it. My first step was to mode match the beam coming from the AP table to the cavity.

I implemented my mode matching solution. I ended up using a different one from the one I last elogged about. Here is the solution I used:

Two lenses: f = 1016.7.6 mm at -0.96 m and f = 687.5 mm at -0.658 m. (I set my origin at the polarizing beam splitter--the spot where I want my beam to match the beam coming from the PMC, so all waists are behind that point). Below is what it should look like.

modematchpic.pngmodematchinfo.png

What I did on the table:

  • Before placing lenses I aligned the beam and added a 1/2-wave plate between the two polarizing beam splitters to change the polarization of the beam from S to P.
  • I aligned the beam so that it reflected off of the cavity opening (monitoring the reflected power with a photodetector connected to an oscilloscope and tweaking the alignment to maximize the reflected signal). 
  • I then placed the lenses at -0.93 and -0.64 mm because the exact spots were blocked by optics being used in another setup.
  • I reasoned that since the fitting for the initial waist is so uncertain, the lens position being off by a few cm will not produce the dominating source of error. I am now driving the laser frequency using a lock-in as a function generator to drive the laser temperature at ~1 Hz. I'm then monitoring the power transmitted by the reference cavity with a camera connected to a TV monitor. I will use this setup to improve my mode matching.

Here's a picture of the PSL table with the lenses and mirror I added. The beam is redirected by a mirror and then a polarizing beam splitter. Past the beam splitter is another lens (f=286.5 mm), which was already in place from the mode matching of the beam from the PMC to the reference cavity.

modematch_setup_pic.png

Here is a block diagram of my intended experimental setup:

LIGO_block_diagram.png

I am going to try to lock the laser to the cavity given my preliminary mode matching and then go back and improve it later. My next step is to find a frequency range for dithering the voltage sent to the PZT. To do this I will:

  • Measure the transfer function (amplitude response) of the PZT using a photodiode. The power outputted by the laser varies with driving frequency.
  • Find a frequency region in which the amplitude response is low.
Attachment 3: LIGO_block_diagram.png
LIGO_block_diagram.png
ELOG V3.1.3-