40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 270 of 341  Not logged in ELOG logo
ID Date Authorup Type Category Subject
  9790   Tue Apr 8 23:04:14 2014 manasaUpdateLSCarm length measurements

Quote:

 Since we don't have an arm length precision measurement (i.e. better than centimeters), why not just do as Koji suggests and use the ALS to get the frequency spacing between a few red FSR and then we have the measurement solid ?

Arm lengths measured using ALS. Both the arms were estimated to have the same length (to the order of a centimeter) 37.51 m

How
I used ALS error signal to lock the arms and scanned the arm to find 4 consecutive IR resonances. From the beat note frequencies measured using the spectrum analyser during IR resonance, the FSR, and hence the length of the arms were calculated.

The estimated lengths are not very precise down to a mm given the resolution of the spectrum analyser. We have brought out the rubidium clock to use as reference for the spectrum analyser to challenge the measurements.

  9794   Thu Apr 10 10:52:15 2014 manasaSummaryIOOMC2_TRANS path in WFS servo

Quote:

Quote:

I've also turned on the MC2 TRANS path to gather some data over the weekend on how well or bad it works. Please turn it off on Monday.

 MC2_TRANS path in WFS servo turned OFF.

[From yesterday]

The MC had not been stable lately with WFS drifting constantly. I checked the servo and found that the MC_TRANS path was still running. It turned out that the autolocker script enables the TRANS path in the locking process. I have turned the MC_TRANS path servo inputs OFF and now it is no more a part of the WFS servo.

P.S. Jenne fixed the PMC alignment mostly in pitch to bring it up to 0.81 from 0.77. But the temperature fluctuations have still not got us to the sweet spot for optimum PMC trans.

  9804   Fri Apr 11 18:55:28 2014 manasaUpdateLSCarm length measurements

Arm lengths were measured using ALS

X arm length = 37.79 +/- 0.05 m

Y arm length = 37.81 +/- 0.01 m

Whats and whys

We want to measure the arm length with an accuracy of say a mm.

This would mean a measurement precision of 1e-3/40=25ppm. (1mm in 40m)

So the required measurement resolution on the spectrum analyser is 25ppm*4MHz=100Hz (assuming the cavity FSR is roughly 4MHz). 

Although the spectrum analyser does not limit the measurement precision, we are limited by the noise in ALS at 1000Hz rms. So we can use ALS only to measure arm length precise to the order of a few mm.

RXA: Not that we really need to right now, but even with an ALS noise of 1000 Hz, we can can do better just by averaging at each resonance point. And fitting a line as you have already done gets even better:

http://en.wikipedia.org/wiki/Propagation_of_uncertainty

 

The Spectrum analyser was reference locked to the rubidium clock @10MHz for these measurements.

The FSRs of the arms

X arm = 3.9671e+06 +/- 4.8535e+03 Hz

Y arm = 3.9648e+06 +/- 1.1064e+03 Hz

Attachments:

1&2. Plots representing the arm scans showing the beat frequency for which IR resonates in the arm vs the ALS offset (position of the ETM).

3. Data and code (zip file)

P.S. We had trouble scanning the arms using ALS. This was because the slow servo was not enabled. Hence ALS was losing its PDH lock everytime we scanned past a couple of FSRs.

Attachment 1: Xarm.png
Xarm.png
Attachment 2: Yarm.png
Yarm.png
Attachment 3: 40mCavLength.zip
  9836   Mon Apr 21 22:53:16 2014 manasaUpdateLSCALS noise

Quote:

Last night, as well as tonight, the ALS seems not quite as robust as it was earlier in the week.

I have just taken noise spectra, and ALS is definitely more noisy than usual. 

These plots are with the arms held in CARM and DARM mode, with servo gains of 8. I was seeing the beginnings of gain peaking at a gain of 10, so I turned it back to 8.  Our ALS in-loop RMS is usually something like a few hundred Hz, but I'm seeing over 1kHz, so I have a factor of 4 or 5 too much noise.  Why?!?!?

I have noticed that ALS noise has been at 1KHz rms since LSC arm lock servos have been used to lock arms using ALS error signals. May be this has not been given much attention.

But looking more closely at the ALS noise (better dtt resolution for noise power spectrum) , there seems to be too much noise suppression at <1Hz and not much happening at around 10Hz.

Attachment 1 (data files at /users/manasa/data/140421/)

 

So I made a bunch of transfer function measurements for ALS and phase tracker servo. Koji will be using these and redesigning the servo filters so that we can get more suppression at 10Hz.

Other than this I also found that the Y arm showed more high frequency noise as compared to the X arm. (Edit by manasa: Thinking back now, this could be related to the onset of 60Hz noise at the Y end elog 9838. But still has to be looked at after fixing TRY)

Attachment 2

Tip: Once the arms are ALS locked, enabling the SLOW_SERVO helps hold the lock stably. 

P.S. I realigned the Y green to the arm and brought GTRY to 0.93

To do:

Find out what makes Y arm in-loop noise at high frequency higher than X arm.

Attachment 1: ALSX_FreeInLoop.jpg
ALSX_FreeInLoop.jpg
Attachment 2: ALSXY_inLoop.jpg
ALSXY_inLoop.jpg
  9841   Tue Apr 22 21:54:50 2014 manasaUpdateLSCTRY 60Hz noise

Quote:

Quote:

 

P.S. I realigned the Y green to the arm and brought GTRY to 0.93

This evening, I was not able to successfully transition CARM from ALS to 1/sqrt(trans) signals.  The TRY time series looked odd, so I took a spectra, and we have huge 60Hz noise in TRY. 

Manasa, can you please take a look, and see if you can figure out what is going on?  We need TRY so that we can transition to 1/sqrt(trans) signals for CARM.  Thanks!!

 I went to the Y end to look at the TRY 60Hz noise situation this morning. While looking at TRY noise on dtt, I found that just lifting the cable away from the cable bunch that runs out of the table suppressed the noise drastically. 

Attachment 1

I removed the unwanted bnc connector in the path of the already long TRY cable running from the PD to the 1Y4 rack and isolated it from the bunch. TRY became less noisy.

But the noise was back again earlier in the evening and it looks like the noise is very much related to the TRY cable. TRY cable might have moved from its sweet spot while I was around checking cable connections yesterday.

I couldn't find a spare to replace it right away today (We need a BNC to 4 pin lemo).

Attachment 1: 60HzTRY.jpg
60HzTRY.jpg
  9843   Wed Apr 23 19:58:00 2014 manasaUpdateLSCTRY 60Hz noise

[Steve, Manasa]

To find noise source

1. Swapped the power cable of the PD and checked that it is connected to the right power source.

2. Changed the aluminium base of the post holding the diode so that the diode is floating

3. Grounded the table and the rack

4. Routed the cable on the other side of the beam tube to isolate it from other cables.

After all the above, we still found that shaking the cable was making TRY noisy.

I pulled out the PD whitening board to replace the 4 pin lemo connector with a bnc connector so that we can swap the cable with a new one. So there is no TRY right now.

 

  9844   Wed Apr 23 23:48:30 2014 manasaUpdateLSCY end whitening board

The MON outputs of the Y end QPD whitening board were hot earlier today while pulling it out of the crate. After swapping the 4 pin lemo connector with an isolated panel mount bnc connector, I stuck the board back into the crate and this immediately kicked the ETMY suspension. Jenne and I went to the Y end to look at what was going on. We removed the board from the crate after smelling something burning. The MON output ports of the whitening board were super hot this time. There is no sign of any components melting on the board (comparing the board with its pictures that were taken earlier) and a tester board stuck into the crate lights up just fine.

So the back panel is still ok. We need to troubleshoot or replace the whitening board.

Edit, JCD:  The attached photos are from right after I replaced the "Rgain" resistor, elog 9823.  What they show is that it looks like some of the melting / burning may have already been happening before I pulled the board, and I just never noticed :(  In particular, look at the resistors on the main board above the blue "G" sticker.  There isn't a difference that I can tell between this photo from last week, and today's situation. 

 

 IMG_1378.JPG

Attachment 1: IMG_1378.JPG
IMG_1378.JPG
Attachment 2: IMG_1379.JPG
IMG_1379.JPG
  9869   Mon Apr 28 15:47:57 2014 manasaSummaryIOOMC2_TRANS QPD Servo trend

Quote:

We turned on the MC2_TRANS paths for both PIT/YAW tonight.

I turned off the BLP200 and turned on the RLP7 (RLP always are better than BLP). G_PIT = -0.111, G_YAW = 0.111. On Monday, let's let Steve look at the trends and determine if this centering servo is bad or good.

The MC was showing slow but periodic alignment drifts and eventually unlocked around noon. I looked up the alignment trend (Attach: 2 day trend)

MC_TRANS_PIT_ERR and MC_TRANS_Y_ERR show that the MC_TRANS servo slowly drifted the IMC alignment causing it to lose lock from time to time (mostly in yaw).

To confirm that the drift was NOT due to off-centering in the MC2_TRANS QPD, I turned off the WFS servo, moved MC2 to recenter the trans beam on the QPD, and re-enabled WFS servo.

MC_TRANS path in WFS is still left enabled.

Attachment 1: MC_TRANSservoApr28.png
MC_TRANSservoApr28.png
  9877   Wed Apr 30 00:40:55 2014 manasaConfigurationLSCY arm IR lock troubleshooting

[Koji, Manasa]

The Y arm locks stably for IR PDH now.  

The reason for ETMY getting kicked during lock acquisition was finally found to be related to the limiter value set in the Y arm servo. We reduced the limiter value unintentionally and found that the lock acquisition stayed smooth. The limiter value was stepped in 1000s from 7000 and eventually found that the ETMY suspension was kicked when we try to acquire lock with the limiter value was set at 11000. 

 

The limiter for X arm at 11000 is not causing any trouble at the moment.

In the process, we did a bunch of things through the evening to troubleshoot IR locking of the Y arm.

Earlier today running the IFO configure script did not restore the arms to lock and both the ETMs needed to be aligned to lock the arms. The arms stayed locked for 15 minutes and the Y arm lost lock eventually leaving the ETMY in a misaligned state. 

The state of the Y arm was similar to what Jenne has explained in ELOG where the ETMY was kicked during lock acquisition and would move to a misaligned state.

To trouble shoot, there were several things that were done. A few of them might not have any direct correlation to the locking issue but could just be a coincidence.  

1.  The trigger time for the filters in the arm filter modules were set such that they switch on after the SUS violin filters. Arm FM trigger time = 3 s (previously set at 0.1s) and SUS violin trigger time = 1s. This reduced the number of lock loss events.

2. There was some drop in transmission when the bounce filter of Y arm (FM6) turned ON. This was fixed by changing its ramp time (initially set at 1s). The filter has been modified to turn on immediately upon arm lock acquisition before the other triggered filters in the filter module turn on.

3. The QPD and SUS signal cables running to the rack were checked to be intact. Koji found some of them to be loose. But this had no evident correlation with the arm locking problem.

4.The oplev and PD alignment was checked at the Y end. The high gain trans PD for Y arm was checked for good alignment by looking at TRY. It was found that the EXIT light at the Y end is injecting some noise to the transmission PD. 

5. The ETMY was given offsets in PIT, YAW and POS and the OSEM sensor values were checked to see if the suspension is behaving well. It was behaving well.

  9879   Wed Apr 30 14:21:50 2014 manasaUpdateCDSfb restarted

c1sus and c1isey were not talking to fb. The usual mxstream restart did not help.

Restarted fb

>>ssh fb

>>telnet fb 8087
shutdown

All lights on the FE status screen are green now.

Note that Steve did an mxstreamrestart earlier today because the same machines c1sus and c1isey were not talking to fb.

  9880   Wed Apr 30 16:07:59 2014 manasaUpdateLSCALS X noise post servo modification

I. The Y arm stayed stable through last night and I have saved the arm lock settings to IFOconfigure.

II. ALS X arm noise measurements

I looked at the before and after noise of ALSX.

Settings:
Phase tracker gain = 85
Xarm servo gain = -17

The rms in loop noise has dropped from 3KHz to 500 Hz.

Attachment 1: Phase tracker OLTF

Attachment 2: Free running noise and in loop noise

Attachment 3: Out of loop noise (measured with arms locked using PDH for IR)

Attachment 4: ALS arm servo OLTF

xml data files can be found in /users/manasa/data/140430/

Attachment 1: ALSX_PToltf.jpg
ALSX_PToltf.jpg
Attachment 2: ALSX_FreeInloop.jpg
ALSX_FreeInloop.jpg
Attachment 3: ALSX_ool.jpg
ALSX_ool.jpg
Attachment 4: ALSX_OLTF.jpg
ALSX_OLTF.jpg
  9981   Wed May 21 11:11:01 2014 manasaUpdateIOOMC tuned

I found MC unlocked this morning. I looked at the 2 day trend of the MC suspensions and found MC2 suspensions have been misaligned.

I used Rana's ezcaservo trick to recover MC lock. This brought the MC_REFL down to 0.7 counts. I did the rest of the alignment by moving the MC2 suspension sliders only. MC_REFL is down to 0.45-0.5 counts and TRANS_SUM is at ~16300.

Also, I found the WFS servo was left turned OFF. I re-enabled them as well.

Attachment 1: MC_SUS2days.png
MC_SUS2days.png
  9983   Wed May 21 13:20:34 2014 manasaUpdateLSCALS X noise from angular motion of mirrors

Quote:

[Rana, Jenne]

9.  Arm cavity alignment.  Significant DC effect.

    * When the alignment of one of the arm cavity mirrors is changed, the DC value of the beatnote signal changes. 

           * ITMX moved in yaw, we see a 7kHz/15urad DC shift in the BEATX_FINE_PHASE_OUT_HZ time series.

          * ETMX moved in yaw, we see an 8kHz/5.5urad DC shift in the time series.  We aren't sure why this is about a factor of 3 times larger effect (same shift for smaller misalignment) than the ITM.

    * We want to do a Yuta-style analysis to see what the angle to length coupling looks like, so that we can measure the angular motion of our cavity mirrors and put the expected noise into our ALS noise budget.  Perhaps this will help us understand the low frequency difference between our in-loop beatnote error signal and our in-loop PDH error signals (red vs. maroon on the ALS noise budget posted above Pianosa). 

    * I've asked Manasa to take some transfer functions in the morning, so that we can start to have an idea of what is going on with this.

Attached is the measurement of the transfer function from ITMX oplev error in yaw to the ALSX error signal.

The arm was locked to the IR using POX and the green beat frequency (between X arm trans in green and PSL green) in this case was 27MHz.

The transfer function looks mostly flat between 1Hz - 30Hz at 700-800 Hz/urad. The DC shift that Jenne measured from the time series is ~500 Hz/urad.

So far I have not been able to measure the TF below 1Hz without the arm losing its lock. Updates will follow.

Data xml file can be found in /users/manasa/data/140521/

Attachment 1: ALSX_OLYerrITM.png
ALSX_OLYerrITM.png
  9988   Thu May 22 00:30:40 2014 manasaUpdateLSCALS X noise from angular motion of mirrors

Below are the transfer functions measured between the angular (pit, yaw) motion of X arm mirrors and the ALSX error signal. The measurements were again made for 1Hz-30Hz.

The transfer functions are mostly flat.

ITMX P - 200-300 Hz/urad (beat freq = 45 MHz)

ITMX Y - 700-800 Hz/urad (beat freq = 27MHz)

ETMX P - 500-600 Hz/urad (beat freq = 56 MHz)

ETMX Y - 1000-2000 Hz/urad (beat freq = 62.5MHz)

Data xml files can be found in /users/manasa/data/140521/

Attachment 1: ALSX_OLPerrITM2.png
ALSX_OLPerrITM2.png
Attachment 2: ALSX_OLYerrITM.png
ALSX_OLYerrITM.png
Attachment 3: ALSX_OLPerrETM.png
ALSX_OLPerrETM.png
Attachment 4: ALSX_OLYerrETM2.png
ALSX_OLYerrETM2.png
  9990   Fri May 23 11:58:28 2014 manasaUpdateGreen LockingY arm green alignment tuned

The Y arm green transmission had come down to 0.3 and the green steering mirrors on the Y end table required some minor alignment adjustments to bring back transmission to around 0.75 counts.

  9999   Wed May 28 14:13:06 2014 manasaUpdateIOOMC relocked

Quote:

MC wouldn't relock, it looked misaligned in pitch and yaw on MC camera.

I've touched the alignment, and gotten the reflection below 0.5, but it unlocks periodically, spot positions aren't great, and turning on WFS throws it out of alignment. ughhhhh


The IMC has not been happy since the weekend and were left with WFS disabled because of the bad alignment state that the MC has been left at.

I realigned the MC mirrors and brought down MC_REFL to 0.42 and MC_TRANS_SUM came up to ~ 17400 counts.

I measured the spot positions after alignment. MC1 and MC3 are slightly off in pitch :

spot positions in mm (MC1,2,3 pit MC1,2,3 yaw):
[2.0535418031770249, 0.84870716159663184, 1.9759940800847962, -1.6706240175650202, 0.089441353070240759, -1.0339963871771678]

I reset the WFS filterbank offsets and engaged the MCWFS servo. Atleast now the MC is not being thrown out of lock with WFS enabled. I have NOT touched the alignment to the WFS PDs.

  10000   Wed May 28 17:51:48 2014 manasaUpdateLSCX green broadband PD NOT working

Quote:

Grr.  I am very frustrated.  After lunch I redid alignment for both X and Y green systems (Yarm both at the end and on the PSL table, Xarm just on the PSL table).  After that realignment work, I cannot find a beatnote for the Xarm!!! 

At this point, I still hadn't touched anything on the X path (except the PZT input steering mirrors, remotely from the control room).  The beatnote was about the same size as it was on Friday, around -27dBm.  I went onto the PSL table and did the same alignment procedure that I had just done for the Yarm:  Remove the green trans PD and the accompanying lens so that I get far-field spots on the wall, and then steer the PSL green and the X green spots until they are nicely overlapped at both the camera (near-field) and on the wall.  I looked at the DC output of the beat PD, and centered the beam on the diode.  I put back the thorlabs DC transmission PD and the lens, and centered the beam on that.  However, after this work, I cannot find a beatnote for the X arm!  I still see the nice big Ygreen beatnote, and I have the PSL and Xend temperatures where they usually are (  abs(FSS Slow) < 0.1, and X end Slow around 10,090. )  I scanned -10,000 counts, and +5,000 counts from there, and still don't find a beatnote!

I went back inside, and I don't see an RF signal coming into the beatbox from the Xarm.  It's not the cable's fault though, since I then hooked the RF output of the beat PD to a 'scope, and still didn't see any beatnote.  The DC path of the PD is definitely seeing things, because when I switch the 'scope over to the DC output of the Xbeat PD, and I block/unblock the beam, I see the voltage step up and down as expected. 

I have not pulled out the Xgreen broadband PD, but unless someone else has a good idea of what to check, that might be one of the next things to do. 

Ideas of things I could try:

* Put the X broadband PD on the Y beatnote path to see if I see the same Y beatnote (use the port where the Y green trans PD is, since it has the coaligned beams, and a lens).

* Open the PD and see if anything on the RF path is fried.

* Move the Y PD over to the X path, to see if it sees the beatnote.

* ????

I made my attempts trying to figure out what was wrong.

Checking if we are at the right X end laser temperature: 
I aligned the arms and found the Y beatnote.I blocked the light falling on the X beat PD so that the RF analyser was only looking at the output from the Y beat PD. AT the RF analyser, I found the strong Y-PSL beatnote, the X-Y beat note and a weak  X-PSL beatnote. This confirmed that we have the X end laser at the right temperature to be able to detect the beatnote. Unblocking the light on the X beat PD did not bring in any additional peaks. 

Checking the RF cabling from the X beat PD to the beat box:
I swapped the RF cables such that the signal from the Y beat PD output was going to the X input on the beatbox. I could still see the beatnote on the RF analyser. This confirmed that there aren't any broken RF cables along the X path.

Checking X green PSL alignment:
I replaced the X beat PD with the Y beat PD to check if the alignment of X&PSL green are alright. I could find the X beat note this way without any alignment tweaking.

I suspect we probably have some RF component burnt in the X beat PD. Do we have any spares lying around? There is a Koji's box with a PD having the same serial number.

IFO status report for anyone who is looking to do some locking tonight : 
The Y beat PD is back along the Y path and I have confirmed the presence of Y-PSL beat note after replacing the PD.
The X beat PD has been removed and now rests on the electronics bench for checking. 

While aligning the arms today, I noticed that enabling LSC would cause misalignment of the ETMY suspension. I haven't tried to find out what has been causing this. Could be something similar to what was noticed with the ETMX suspension a couple of weeks ago elog9969 

  10003   Thu May 29 08:43:34 2014 manasaUpdatePEMAnt season already in

Ant season has set in. I spotted and killed  a few ants around the optics and the enclosure of the PSL table yesterday. TIme for our pest control crew to get busy!

  10042   Mon Jun 16 12:58:50 2014 manasaSummaryIOORingdown recap

A recap of the ringdown measurements made at the 40m in mid 2012, the hardware that was installed for the same and results from the measurements.

IMC ringdown:

Hardware installed 
A trans PD was installed (elog 7122).
This PD does not exist in the trans path anymore.

Measurements
The polarity in the MC servo was flipped with the MC WFS disabled and the PD trans signal was used to look at the cavity ringdown. 
Ringdown time = 13 us
Cavity finesse from the measurement = 453 (inconsistent with actual finesse). 

Attachment: Ringdown measurement and fits

PMC ringdown:

Hardware installed
The AOM was installed before the PMC. The AOM was driven by the driver installed on the PSL table. (RF power ~1.5W @ 80MHz @1.0V modulation input). An RF switch was installed to control the AOM driver input. ZASWA-2-50DR+ was installed.
Note: The AOM was used by the ISS crew after this. So the RF switch has been removed and the AOM is no more a part of the ringdown setup.

Measurements
No measurements were made as we could not obtain relevant TTL signals to control the switch remotely.

Attachment 1: Ringdown_815.pdf
Ringdown_815.pdf
Attachment 2: MCringdown_cum.pdf
MCringdown_cum.pdf
Attachment 3: cum_plot.png
cum_plot.png
  10048   Tue Jun 17 12:04:40 2014 manasaUpdateComputer Scripts / ProgramsMC autolocker NOT running, FB needs some attention

MC autolocker and Ottavia

I assume that the MC was left with a fully functioning autolocker enabled and running on ottavia last night.

But as of this morning, the MC autolocker is NOT running alright. The MC was in an unlocked state and the autolocker has been doing nothing to the servo sliders.  I think this was the state of MC since last night as seen on the stripchart.

Since the autolocker has been left to run on ottavia, I tried to look at the cronlogs to see if it running the autolocker script at all. I looked at the list on ottavia and it has the MCautlocker on it cronjobs list and yet doing nothing.

Later, I did a softreboot on ottavia when I could not ssh into it from rossa or pianosa. ssh to ottavia now works just fine.

I am leaving Ottavia at this and returning to the more important job of fixing the MC. I locked the MC manually and am now working on the alignment.

 

Framebuilder

Also, the CDS FE status screen had red lights blinking as if it required an 'mxstream restart'. I did the same and it did not fix the problem. So I tried to restart fb using the usual 'telnet fb 8087'; but could not restart fb that way.

Attached: FE status screen

Attachment 1: FE_red.png
FE_red.png
  10078   Fri Jun 20 09:46:49 2014 manasaUpdateIOOMC WFS servo turned ON

The IMC stayed locked last night, but with  a high REFL ~3.0. I found the WFS servo OFF; so went ahead and enabled it. (Did somebody disable it for reasons not elog'd?)

MC returned to a happy state. But the WFS offsets are quite large. So I tweaked the alignment and got MC REFL down to ~0.45 and MC TRANS SUM to ~16500 counts. MC WFS offsets also dropped significantly after this without any need to touch the alignment to the WFS PDs.

  10134   Mon Jul 7 11:02:22 2014 manasaConfigurationGeneralIFO status post earthquake

Quote:

All suspension damping restored. There had to be an earth quake.

PMC was relocked.

MC did not need any fixing to its alignment. I had to lock it manually and autolocker is set running now. So that should take care of things

The arms were aligned and ASS'd for IR PDH.

Green light PDH locks to the arms alright.

  10140   Mon Jul 7 16:39:09 2014 manasaUpdatePSLPMC ringdown setup

I moved stuff on the PSL table to accommodate the PMC ringdown setup.

I used the beam that leaks from the steering mirror at the PMC transmission that was dumped to a razor blade dump. I installed a Y1 to steer the beam to the ringdown PD. Power in the beam 75mW.

Results are in here elog 

Attachment 1: PMC_ring.png
PMC_ring.png
  10142   Mon Jul 7 16:52:02 2014 manasaUpdateElectronicsRF cables need to be rerouted

The RF cables have been routed incorrectly. The cables run to the module from the front of the rack. We cannot close the doors to the racks if they are to remain this way.

I have asked Nichin to reroute the cables properly.

  10164   Wed Jul 9 16:33:05 2014 manasaUpdatePSLPMC ringdown setup

Quote:

Quote:

I moved stuff on the PSL table to accommodate the PMC ringdown setup.

I used the beam that leaks from the steering mirror at the PMC transmission that was dumped to a razor blade dump. I installed a Y1 to steer the beam to the ringdown PD. Power in the beam 75mW. 

 I am guessing that 75 mW will burn / destroy any Thorlabs PD. I hope that mW is supposed to be uW.

 It was ~7.5mW and measured ~2V at the PD output (given its range 0-5V ) on the oscilloscope . So PD is safe !

  10168   Wed Jul 9 21:05:31 2014 manasaUpdateGeneralAOM and PSL Ringdown

After the fits, here are the numbers!

Component Measured Expected
AOM 85.1 ns 200 ns (spec sheet) 
PMC 164.6 ns  Finesse/(2*pi*FSR)  = 163.4 ns

* We have a huge difference to the AOM switching time that was measured. The spec sheet mentions acoustic velocity in the material to be 4.2 mm/us and the well matched diameter in the AOM to be 1100 um. This would give a switching time ~ 200 ns. We could probably be having a much smaller beam size in the AOM for the measured switching time.

* The PMC  parameters that I had been referring to from the wiki were actually wrong and which was the reason for the mismatch that I was finding. I modified the wiki according to the found references to the actual measurement here: PMC parameters The measured values now and then match pretty well.

* Since the AOM does not change the power of the output beam by very much, what we see is actually a step response. Also, we have a lot of noise in the data obtained at the PD. 

RXA: some more comments...

  1. The fact that the AOM can only modulate the power by a tiny bit means that it is very mis-aligned or that the driver is broken.
  2. You need to take into account the AOM step time in the calculation of the PMC step time. Its not a step response if the input step is not a step, but a exponential.
  3. I wouldn't trust that old John Miller entry for the PMC Finesse. As you can see from his elog, even he didn't trust it.
  4. As we were discussing before, making a little step is not the same as a full ringdown. cf. G000413 and T900007

 

Attachment 1: data_code.zip
Attachment 2: PSL_ringFit.pdf
PSL_ringFit.pdf
Attachment 3: AOMringFit.pdf
AOMringFit.pdf
  10171   Thu Jul 10 00:38:20 2014 manasaUpdateGeneralAOM and PSL Ringdown

Quote:

RXA: some more comments...

  1. The fact that the AOM can only modulate the power by a tiny bit means that it is very mis-aligned or that the driver is broken.
  2. You need to take into account the AOM step time in the calculation of the PMC step time. Its not a step response if the input step is not a step, but a exponential.
  3. I wouldn't trust that old John Miller entry for the PMC Finesse. As you can see from his elog, even he didn't trust it.
  4. As we were discussing before, making a little step is not the same as a full ringdown. cf. G000413 and T900007

 

I think we should revisit the AOM alignment because the last time it was aligned, PMC trans dropped from 0.84 to 0.15 (a little more than 80%) for 0-1V modulation input to the AOM driver [elog]. The drop in power right now is ~10-15% only.

I could not find any elogs of AOM alignment touchups after Oct 2012.
But can the ISS team throw some light on the status of AOM when they were installing the ISS servo before we decide on touching the AOM alignment? [elog

  10203   Tue Jul 15 17:34:01 2014 manasaUpdatePSLproposing AOM re-alignment

I am going to tweak the alignment of the beam into the AOM (before the PMC) tomorrow morning. If anybody has any objections to this, please raise a red flag.

Proposed alignment procedure:

1. Reduce PSL power to say 10% 

2.  Since the AOM is not on any sort of a mechanical stage, I will have to just play around carefully until I see a maximum power rejection into first order.

I am assuming that moving the AOM is not going to affect the input pointing because all these activities are happening before the PMC. So as long as I have the output beam from the AOM aligned to the PMC at the end, everyone should be happy.

  10219   Wed Jul 16 19:38:37 2014 manasaSummaryPSLAOM alignment issues and removed from beam path

AOM removed from the beampath and PMC relocked. 

AOM alignment:

1. Measured the initial power after PMC as 1.30W and reduced it down to 130mW.
2. Checked the power in the AOM zero order transmission before touching it. For 0-1V modulation input, the power dropped from 125uW to 98.3uW.
3. Steered the mirror right before the AOM to increase AOM zero order transmission and then carefully moved the AOM around to obtain maximum power attenuation. I repeated this a few times and the maximum attenuation that I could obtain was 125uW to 89.2uW (~30% attenuation).
Although this is not the right way to align the AOM, we do not have much options with the current setup as there is not enough separation between the zero order and first order beams and the AOM is on a fixed rigid mount.
4. I tried to dump the first order beam from the AOM and it wasn't satisfactory as well. There is barely any separation between the zero order and first order beams.

PMC relocking:

1. SInce the alignment to the PMC was disturbed by moving the AOM and the steering mirror in front of it, the PMC alignment was lost.
2. I could not relock the PMC at low power or high power. Rana had to come to rescue and fixed the alignment so that we could see flashes of PMC on the trans camera (This was done by aligning refl beam to the PMC REFL PD while giving a triangular ramp to the PMC PZT voltage).
Also I should not have tried to lock the PMC at high power as I could have been steering the beam at high power to the edges of the PMC mirrors that way and burning stuff easily.
3. Before fine tuning the alignment, I decided to remove the AOM from the beam path as there needs some work done on it to make it useful.
4. I removed the AOM from the beam path and relocked the PMC. 
5. PMC is relocked with 0.79 counts in TRANS and I measured the power after PMC 1.30W

Attachment: picture showing AOM removed from the beampath.

Attachment 1: AOMremoved.jpg
AOMremoved.jpg
  10470   Mon Sep 8 12:11:36 2014 manasaUpdateComputer Scripts / Programspreparing vac system to reboot

Quote:

FYI: in that rack, the +15V pulls ~0.5 A more than -15V usually. I think this is due to some RF amplifiers which are powered by this (e.g. the AOM that Manasa set up). The Sorensen's can source ~30A in principle, so we should make sure to set the current limit appropriately so as to not overheat them when there is a short.

Was this power supply not fused for all of its connections? I remember that this was connected to at least one un-fused connection in the past year.

 +15V supply powers the following (from what I see):

1. PMC and MC boards on the rack.

2. RF amplifiers on the rack for the beat signals from the green beat PDs.

3. Beatbox itself.

The beatbox was the one that had an un-fused connection last year. I re-did it properly to go through a fuse quite sometime ago.

I dont see any other un-fused connections now from the +15V supply right now.
 

P.S. AOM driver takes a 0 to +28V power supply and not connected to the +15V

  10531   Wed Sep 24 11:02:38 2014 manasaUpdateLSCMoving SRM

I looked at the CAD layout and it seems like we will clearly be clipping POY if we move SRM by 7.5cm. Since POY is not visible at low power, we cannot be sure about the clipping.

We should have a plan B before we move everything. I suggest we move a combination of SRM and SR2 to get the desired SRC length.
Moving SR2 will require extra effort to walk the beam unclipped through all the 6 output steering mirrors that follow; but there will be little room for error if we use irides to propagate the beam through the first 4 mirrors that are in the BS and ITMY chamber.

  10567   Mon Oct 6 10:04:58 2014 manasaUpdateGeneralUnexpected power shutdown

We had a unexpected power shutdown for 5 sec at ~ 9:15 AM.

Chiara had to be powered up and am in the process of getting everything else back up again.

Steve checked the vacuum and everything looks fine with the vacuum system.

  10569   Mon Oct 6 10:28:18 2014 manasaUpdateGeneralUnexpected power shutdown

Quote:

We had a unexpected power shutdown for 5 sec at ~ 9:15 AM.

Chiara had to be powered up and am in the process of getting everything else back up again.

Steve checked the vacuum and everything looks fine with the vacuum system.

 The last time we had a power failure IFO recovery elog

  10573   Mon Oct 6 18:15:12 2014 manasaUpdateGeneralUnexpected power shutdown: end green alignment

After Q brought back the IR, I went to check the green situation.

1. The end lasers had to be turned ON. 
2. The heaters for the doubler crystals had to be enabled. The heaters are at the set values.
3. The X arm PZTs for the steering mirrors had to be powered up (Set voltage 100V and current 6.7mA)
4. I aligned the green to the already IR-aligned arms.

Green PSL alignment has to be done after Q finishes his work on the MC WFS.

  10575   Tue Oct 7 10:09:07 2014 manasaUpdateGeneralChiara not responding

Chiara doesn't seem to be responding and I guess something happened 7 hrs ago.

I tried to hook up chiara to a monitor to reboot or atleast look for error messages; but it is not even detecting the external monitor (Tried changing monitors and vga cables; still see nothing).

I tried to ssh into it and only received errors :
NFS lookup failed for server XXX.XXX.XXX.XXX : error 5 (RPC: Timed out)
ssh: chiara: host/servname not known

Steve had the vacuum checked and everything seems fine with the status of the vacuum system atleast.

  10586   Thu Oct 9 10:52:37 2014 manasaUpdateGeneralPower outage II & recovery

Post 30-40min unexpected power outage this morning, Steve checked the status of the vacuum and I powered up Chiara.

I brought back the FE machines and keyed all the crates to bring back the slow machines but for the vac computers.

c1vac1 is not responding as of now. All other computers have come back and are alive.

  10610   Wed Oct 15 17:09:49 2014 manasaUpdateGeneralDiode laser test preparation

[EricG, manasa]

The He-Ne laser oplev setup was swapped with a fiber-coupled diode laser from W Bridge. The laser module and its power supply are sitting on a bench in the east side of the SP table. 

  10629   Tue Oct 21 18:40:46 2014 manasaUpdateGeneralEnd laser fiber setup

 [Manasa, Diego]

This is our first time touching tables for Frequency Offset Locking. 

The goal was to couple the 1064nm that leaks after the SHG crystal and couple it into the fiber before we run it along the length of the arm. 

The fiber has been mounted at the end but there is no light coupled into the fiber as yet.

In the process, the following were done:

1. ETMY oplev servo disabled. This was enabled after the work.
2. NPRO laser power was reduced so that nothing gets burnt accidently while putting things on the table. This was also reset after the work.

The arms could be locked to green and IR after the work. So I am hoping today's work will not affect locking.

  10638   Fri Oct 24 10:08:24 2014 manasaUpdateGeneralY AUX laser - fiber coupled

The Y end aux laser light leaking after the doubling crystal has been coupled into the 70m long PM fiber. 

Input power = 250mW;  Output after 70m = 20mW

The poor efficiency is partially due to the ellipticity of the beam itself and partially due to the compromise I had to make using a single lens to couple the light into the fiber (given the limitations in space). But 20mW should be more than sufficient for a beat note setup.

Light propagates as follows after the doubling crystal:

Doubler ---> Harmonic Separator (45deg) ---> Lens (f=12.5cm) --> Steering mirror (Y1) --> Fiber collimator ( Thor labs CFC-2X-C) --> FIber end

I will update photos of the setup shortly.

I have left the 70m fiber in its spool sitting at the Y end and blocked the light before the last Y1 steering mirror in the above setup. So it should be safe.

Other:

Through the course of the work, I disabled the ETMY oplev and enabled it before closing the enclosure. I also reduced the AUX laser power and brought it back up after the work.
I did a check to see if the arms are locking in both IR and green and they did.
 

  10640   Mon Oct 27 12:17:46 2014 manasaUpdateGeneralY AUX laser coupling telescope design

Since I obtained a poor coupling efficiency from the earlier setup, I went back to calculate the coupling efficiency of the current setup.

For the current setup, I took the average of the x and y waist of the input beam and calculated the distance at which the input beam diameter would match the (fiber +collimator) beam diameter.

Average waist = 40.2um @-3.3mm from face of doubling crystal

(Fiber PM980 + Collimator f=2.0mm) beam waist = 205um

Distance(z) at which the input beam waist is 205um = 11.9cm

The closest available lens was f = 12.5cm. So I used it to couple the input beam by placing it at z ~12.5cm on a micrometer stage.

Since this gave only 10% coupling, I went back to calculate (using 'a la mode') the best possible coupling that can be obtained taking into consideration the ellipticity of the beam.

The maximum obtainable coupling (mode overlap) is 14.5%  which is still poor.

 

Redesign

Taking into account the ellipticity of the input beam, the available lenses and the space restrictions (lens can be placed only between z= 8 to 28cm), I calculated the best possible coupling efficiency (using 'a la mode').

The maximum possible mode overlap that can be obtained is 58.6% (matlab code and plot attached)

>>auxmode

modematching = 0.58632 

Optimized Path Component List:

    label    z (m)     type    parameters         

    -----    -----     ----    ----------         

    L1       0.0923    lens    focalLength: 0.0750

 

Attachment 1: AUXmode.zip
Attachment 2: AUXmode.png
AUXmode.png
  10645   Tue Oct 28 11:45:21 2014 manasaUpdateSUSETMX - observation

I looked at what are the situations that make ETMX lose alignment.

This is not occur all that often this morning; less than 10 times in may be the last 4 hours of poking the X arm. I found that the bad behavior of ETMX also exists in certain other cases apart from the case when we enable LSC.

(I) Even the MISALIGN and RESTORE scripts for the suspensions make the suspension behave bad. The RESTORE script while in the process of  bringing back the suspension to the place where it was, kicks it to some place else sometimes (even with LSC disabled)

(II) The suspension also gets kicked while realigning ETMX manually using sliders at 10^-3 (pace of 2-3 steps at a time).

I am suspecting something wrong right at the coil inputs and gains of the suspension.

Also, I recollect that  we haven't done a check on the X arm LSC limiters and filters ramping times like it was done for the Y arm ( Elog 9877 ). We should do this check to be sure that we are not seeing a mixed puddle of problems from 2 sources.

  10650   Wed Oct 29 11:45:11 2014 manasaUpdateGeneralY AUX laser - fiber coupled (52%)

Quote:

Redesign

Taking into account the ellipticity of the input beam, the available lenses and the space restrictions (lens can be placed only between z= 8 to 28cm), I calculated the best possible coupling efficiency (using 'a la mode').

The maximum possible mode overlap that can be obtained is 58.6% (matlab code and plot attached)

>>auxmode

modematching = 0.58632 

Optimized Path Component List:

    label    z (m)     type    parameters         

    -----    -----     ----    ----------         

    L1       0.0923    lens    focalLength: 0.0750

 

I used the above configuration and was able to obtain ~52% coupling.

Input power = 250mW
Output power with absorptive ND 1.0 = 13 mW

I used the absorptive ND filter before the lens to keep the coupled output power within the range of fiber power meter and also avoid scattering of enormous amount of uncoupled light all over the table.

I have attached the screenshot of the out of loop ALS noise before opening the table (BLUE) and after closing down (MAGENTA). The beat note frequency and amplitude before and after were (14.4MHz/-9.3dBm) and (20.9MHz/-10 dBm).

Attachment 1: 31.png
31.png
  10651   Wed Oct 29 18:07:28 2014 manasaUpdateGeneralDiode laser test preparation

I ran 3 BNC cables from the SP table to 1X7 rack so that we can have 16 bit channels for the Ontrak PD that will be used to test oplev lasers. The BNC cables are plugged to the Ch 29, 30 & 31 that were already created for this purpose (elog 10488)

  10657   Fri Oct 31 11:46:15 2014 manasaUpdate Rattling HEPA : Eventually stops

The PSL HEPA stopped working while it was running at 80%. I have closed the PSL enclosure.

Steve is working to fix this.

  10666   Tue Nov 4 14:46:00 2014 manasaUpdateGreen LockingMissing beatnotes

Summary: Cannot find beatnotes between the arms and PSL.

I wanted to measure the ALS out of loop noise before putting stuff on the PSL table for frequency offset locking.

But I was not able to find the beat notes between the arms and PSL green. All I could find while scanning through the end laser temperatures is the beatnote between the X and Y green.

EricQ says that he spent some time yesterday and could not find the beatnotes as well.

Debugging and still could not find:

1. Checked the FSS slow actuator. This was close to zero ~0.003

2. Checked the green alignment on the PSL table. Everything seems fine.

3. Checked the actual PSL laser temperature. It was 31.28deg and not very far from when it was last set at 31.33deg elog.

4. Also checked the end laser temperatures. Both the lasers are ~40deg (where I could see the beatnote between the arms). Based on the plot here and  here , we are very much in the regime where there should be a beatnote between the PSL and the arms.

  10670   Wed Nov 5 11:37:29 2014 manasaUpdateGeneralLight from Y end reaches PSL table

[Steve, Diego, Manasa]

Since the beatnotes have disappeared, I am taking this as a chance to put the FOL setup together hoping it might help us find them.

Two 70m long fibers now run along the length of the Y arm and reach the PSL table.

The fibers are running through armaflex insulating tubes on the cable racks. The excess length ~6m sits in its spool on the top of the PSL table enclosure.

Both the fibers were tested OK using the fiber fault locator. We had to remove the coupled end of the fiber from the mount and put it back in the process. So there is only 8mW of end laser power at the PSL table after this activity as opposed to ~13mW.  This will be recovered with some alignment tweaking.

After the activity I found that the ETMY wouldn't damp. I traced the problem to the ETMY SUS model not running in c1iscey. Restarting the models in c1iscey solved the problem.

 

  10671   Wed Nov 5 17:50:29 2014 manasaUpdateGeneralPSL and AUXY beatnote in IR found

Found the IR beatnote between PSL and Y end laser.

Since our goal was to find the beatnote ASAP to recover ALS, I ignored the fine details in alignment. I will revisit the setup to make some improvements in the near future.

1. Coupled the PSL IR beam leaking after the doubler into the fiber. We have only 10% coupling into the fiber at the PSL table right now (6mw); but this will be improved once I get a suitable translation stage for the telescope.

2. PSL IR --> PM980 fiber --->50-50 fiber beam splitter ---> 50-50 fiber beam combiner
  AUX Y ---> PM980 fiber ---> 50-50 fiber beam combiner

The output port of the fiber beam combiner is connected to the fiber coupled broadband RF PD.

3. The RF output of the PD when connected to a spectrum analyzer shows a beatnote of -50dBm. The small amplitude of the beatnote is due to the laser power being attenuated before coupling into the fiber to keep the PD safe.

Attached is photo of how the setup is put on the PSL table. We will put all the stuff in a box once the X setup is also in place.

Attachment 1: PSLsetup.jpg
PSLsetup.jpg
  10702   Wed Nov 12 15:14:09 2014 manasaUpdateGeneralX end AUX laser fiber setup

 I looked at the endtable for possible space to setup optics in order to couple the X end laser into a PM fiber.

Attached is the layout of where the setup will go and what are the existing stuff that will be moved.

ETMXtable.png

  10715   Fri Nov 14 11:07:59 2014 manasaUpdateCDSNot able to run models on FE machines

Quote:

PRM, SRM and the ENDs are kicking up.  Computers are down.  PMC slider is stuck at low voltage.

Still not able to resolve the issue.

Except for c1lsc, the models are not running on any of the FE machines . I can ssh into all the machines but could not restart the models on the FE using the usual rtcds restart <modelname>

Something happened around 4AM (inferring from the Striptool on the wall) and the models have not been running since then.

 

Attachment 1: CDSissue.png
CDSissue.png
  10730   Fri Nov 21 11:41:24 2014 manasaUpdateGeneralX end fiber insulated and on cable tray

Quote:

Quote:

[Steve, Diego, Manasa]

Since the beatnotes have disappeared, I am taking this as a chance to put the FOL setup together hoping it might help us find them.

Two 70m long fibers now run along the length of the Y arm and reach the PSL table.

The fibers are running through armaflex insulating tubes on the cable racks. The excess length ~6m sits in its spool on the top of the PSL table enclosure.

Both the fibers were tested OK using the fiber fault locator. We had to remove the coupled end of the fiber from the mount and put it back in the process. So there is only 8mW of end laser power at the PSL table after this activity as opposed to ~13mW.  This will be recovered with some alignment tweaking.

After the activity I found that the ETMY wouldn't damp. I traced the problem to the ETMY SUS model not running in c1iscey. Restarting the models in c1iscey solved the problem.

 

 AP Armaflex  tube 7/8" ID X 1" wall insulation for the long fiber in wall mounted cable trays installed yesterday.

The 6 ft long sections are not glued. Cable tied into the tray pressed against one an other, so they are air tight. This will allow us adding more fibers later.

 Atm2: Fiber PSL ends  protection added on Friday.

 

[Steve, Manasa] 

Two 70m long fibers are now running through armaflex insulating tubes along the X arm on the cable racks. The excess length of the fiber sits in its spool on top of the PSL enclosure. 

Fibers were checked after this with the fiber fault locator (red laser) and found OK.

ELOG V3.1.3-