40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log, Page 337 of 337  Not logged in ELOG logo
New entries since:Wed Dec 31 16:00:00 1969
ID Date Author Typeup Category Subject
  16942   Thu Jun 23 15:05:01 2022 Water MonitorUpdateUpgradeWater Bottle Refill

22:05:02 UTC Jordan refilled his water bottle at the water dispenser in the control room.

  16943   Fri Jun 24 12:13:16 2022 JCUpdateIOOWFS issues

[Yuta, JC]

It seems that early this morning MC got very misaligned. Yuta was able to align the Mode Cleaner again by individually adjusting the MC1 MC2, and MC3. Once transmission reach ~12000, we went ahead and turned on WFS. Oddly enough, the transmission began plummeting and MC fell out of lock. After this, Yuta reset the WFS offsets and realigned the WFS QPDs. We then locked MC and turned on WFS once again, but the same issue happened. After fiddeling around with this, we found the if we set C1:IOO-MC2_TRANS_PIT_OUTPUT and C1:IOO-WFS1_YAW_OUTPUT equal to 0, WFS does not cause this issue. Is there a proper to reset WFS, aside from only zeroing the offsets?

Attachment 1: WFS.png
WFS.png
  16944   Fri Jun 24 13:29:37 2022 YehonathanUpdateGeneralOSEMs from KAGRA

The box was given to Juan Gamez (SURF)

Quote:

I put the box containing the untested OSEMs from KAGRA near the south flow bench on the floor.

 

  16945   Fri Jun 24 17:16:59 2022 PacoUpdateALSXAUX cable in control room

[JC, Paco]

We took the long BNC cable that ran from ETMX to ETMY and ran it from ETMX into the control room instead. This way Cici and Deeksha can send small voltage signals to the AUX PZT and read back using the beatnote pickoff that is usually connected to the spectrum analyzer.

  16946   Sat Jun 25 14:29:48 2022 AnchalUpdateIOOWFS issues

This issue is very weird and still unresolved. Without WFS loops, we'll have to realign IMC often and we might loose IMC alignment completely during weekends or long weekends.

I tried following things today but nothign worked:

  • Blocked WFS PDs and reset DC offsets (sitemap>C1IOO>C1IOO_WFS_MASTER>! Actions>Correct WFS DC Offsets).
  • Switched off MC chamber lights.
    I felt that they might be on, but later I feel that wasn't the case. Anyways, this didn't help.
  • Algined IMC manually using cavAlign tool with MC2-MC3 and then tweaking MC1 and MC3 a little bit. Reach 13.6k in C1:IOO-MC_TRANS_SUM. Then I unlocked IMC with autolocker off, centered beam on WFSs (they were pretty off even though we have been centering them this week), and then reset RF offsets (sitemap>C1IOO>C1IOO_WFS_MASTER>! Actions>Correct WFS DC Offsets). This did not help either.
  • The fact that IMC started misbehaving since Thursday onwards was bugging me that maybe the FE models did not come online properly, that maybe some RTS link is broken in IOO model which is causing the feedback loop to not work. So I went ahead and restarted all models, that didn't help either.
    • Now we have a restartAllModels.sh script which restarts all cds system and restores state to just before restarting. It also makes sure that watchdogs are engaged safely particularly for new suspesnions where alignment offsets are ramped.

We need to investigate this as first priority. Maybe some cable is loose, some PD power supply not working etc. Until we fix this, people should align IMC to > 12000 transmission counts whenever they have a spare 5 min. We need to work in place of WFS for sometime.

  16947   Sat Jun 25 20:23:59 2022 KojiUpdateIOOWFS issues

I could run the WFS servo (6dofs) for more than 15min by flipping the sign for the MC2 Pit and WFS1 Yaw. (See attachments)

This may mean that the sign of the loops / the input matrix / the output matrix, as well as the sensors and actuators, have the problem.
Isn't it the time to measure the sensing/actuation matrices? Maybe Tomislav already has the data?

I have reverted the changes as you may need more careful investigation.

Attachment 1: Screen_Shot_2022-06-25_at_20.23.21.png
Screen_Shot_2022-06-25_at_20.23.21.png
Attachment 2: Screen_Shot_2022-06-25_at_20.29.24.png
Screen_Shot_2022-06-25_at_20.29.24.png
  16948   Sat Jun 25 22:18:41 2022 TomislavUpdateASCSimulation and reality comparisons

In the attachment please find plots comparing controller output, local damping output, and error signals.

Input noises of the simulation are seismic noise, osem noise, input power fluctuations, sensing noises of WFSs and QPD, and air turbulence noise for WFSs. There is also optical torque noise (radiation pressure effect). 

The procedure to get optical gains and sensing noises:
Having the actuator response A rad/cnts @ 3 Hz. I was shaking MC1/2/3 in pitch with B cnts @ 3 Hz and getting WFS1/2 QPD signals of C cnts @ 3 Hz, which means WFS1/2 QPD optical gain is D cnts/rad = C / (A * B) cnts/rad. So, if WFS1/2 QPD IN1 has a noise spectrum (at higher freqs) of E cnts/rtHz, that corresponds to E/D rad/rtHz of sensing noise for WFS1/2 QPD.

Actuator response [rad/cts] I was getting shaking mirrors at 3 Hz and measuring amplitudes of OSEM output (knowing the geometry of the mirror). I scaled it to DC. From here I was getting ct2tau_mc (knowing the mirror's moment of inertia, Q, and natural pitch frequencies). OSEM calibration factors [cts/rad] I was getting from the input matrix and geometry of the mirror.

The flat noise at higher frequencies from the local damping and controller output channels is presumably quantization/loss of digits/numerical precision noise which I don't include in simulations for now?!

Regarding air turbulence, in KAGRA it has been reported that air turbulence introduces phase fluctuations in laser fields that propagate in air. According to Kolmogorov’s theory, the PSD of phase fluctuations caused by air turbulence scales as ∝ L*V^(5/3)*f^(−8/3). Here, L is the optical path length and V is a constant wind speed. Since it is not obvious how can one estimate typical V in the beam paths I was taking this excess noise from the error signals data between 10 Hz and 50 Hz, extrapolated it taking into account ∝ f^(−8/3) (not for frequencies below 2 Hz, where I just put constant, since it would go too high). I expect that I won't be able to get a parameterized model that also predicts the absolute value. The slope is all I can hope to match, and this I already know. QPD chamber is much smaller (and better isolated?) and there is no this excess noise.

Regarding other things in simulations (very briefly): beam-spots are calculated from angular motions, length change is calculated from beam-spots and angular motion, cavity power depends on length change and input power, and torque on the mirrors depends on beam-spots and cavity power. From other things, local-sensor basis conversion (and vice versa) is worth noting.

Attachment 1: sens_output_comparison_23_6_new.png
sens_output_comparison_23_6_new.png
Attachment 2: contr_out_comparison_23_6_new.png
contr_out_comparison_23_6_new.png
Attachment 3: local_damp_out_comp_23_6_new.png
local_damp_out_comp_23_6_new.png
  16949   Mon Jun 27 12:32:45 2022 yutaUpdateIOOWFS issues fixed

[Anchal, Yuta]

We found that MC1 local damping loop signs were revereted to the state before our standardization on June 7th (40m/16898), but the WFS output matrix was not reverted.
This caused the sign flip in the feedback to MC1, which caused the IMC WFS issue.
This probably happened when we were restarting the models after RTS modeling (40m/16935). We might have used wrong snap files for burt-restoring.

We went back to the snapshot taken at 09:19 June 21, 2022 and now the IMC WFS is working,

  16950   Mon Jun 27 13:25:50 2022 CiciUpdateGeneralCharacterizing the Transfer Loop

[Deeksha, Cici]

We first took data of a simple low pass filter, and attempted to perform a fit to both the magnitude and phase in order to find the Z of the components. Once we felt confident in our ability to measure tranfer functions, we took data and plotted the transfer function of the existing control loop of the AUX laser. What we found generally followed the trend of, but was lower than, 10^4/f, which is what we hoped to match, and also had a strange unexplained notch ~1.3 kHz. The magnitude and phase data both got worse after around 40-50 kHz, which we believe is because the laser came out of lock near the end of the run. 

Edit: 

[Attachment 2 and 3] are the frequency response of the low pass filter, curves fitted using least squares in python.

[Attachment 1 and 4] is the same measurement of OLTF of the actual AUX circuit, and the control diagram pointing out the location of excitation and test point.

Attachment 1: TF_measurement_b.png
TF_measurement_b.png
Attachment 2: transfer_function_mag_fit.png
transfer_function_mag_fit.png
Attachment 3: transfer_function_phase_fit.png
transfer_function_phase_fit.png
Attachment 4: control_flow.png
control_flow.png
  16951   Mon Jun 27 13:39:40 2022 DeekshaUpdateElectronicsSetting up the MokuLab

[Cici, Deeksha]

On Friday Cici and I set up the Mokulab to take readings of our loop. The aim is to characterise the PZT, in a similar manner as before, by exciting the circuit using our input noise (a swept sine) and recording the corresponding changes in the output. We used the MokuLab to observe the beat note created by the signals of the AUX and PSL, as well as the ASD of the output signal. The MokuLab simplifies the entire process.

Pictured : The beat note as observed by Cici

Attachment 1: WhatsApp_Image_2022-06-24_at_5.21.28_PM.jpeg
WhatsApp_Image_2022-06-24_at_5.21.28_PM.jpeg
  16952   Mon Jun 27 18:54:27 2022 yutaUpdateLSCModulation depths measurement using Yarm cavity scan

[Yehonathan, Yuta]
EDITED by YM on 22:11 June 27, 2022 to correct for a factor of two in the modulation index

Since we have measured optical gain in MICH to be an order of magnitude less compared with Yehonathan's FINESSE model (40m/16923), we measured the power at AS55 RF PD, and measured the modulation depths using Yarm cavity scan.
We found that 50/50 beam splitter which splits AS55 path into RF PD and RF QPD was not included in the FINESSE model. Measured modulation index were as follows:

TEM00 peak height: 0.6226 +/- 0.0237
RF11 peak height: 0.0067 +/- 0.0007
RF55 peak height: 0.0081 +/- 0.0014
RF11 modulation index: 0.208 +/- 0.012
RF55 modulation index: 0.229 +/- 0.020
RF11 modulation index: 0.104 +/- 0.006
RF55 modulation index: 0.114 +/- 0.010

Here, modulation depth m is defined in E=E_0*exp(i*(w*t+m*sin(w_m*t))), and m m/2 equals to square of the intensity ratio between sidebands and TEM00.

Power measurement at AS55 RF PD:
 - ITMY and ITMX single bounce reflection was measured to be 50-60 uW at the front of AS55 RFPD.
 - In the FINESSE model, it was expected to be ~110 uW with 0.8 W input to PRM (0.8 W * 5%(PRM) * 50%(BS) * 50%(BS) * 10%(SRM) * 10%(AS2) gives 100 uW)
 - In AP table, AS55 beam was split into two paths with 50/50 beam splitter, one for AS55 RF PD and one for AS WFS and AS110. This will be included in the FINESSE model.

Modulation depth measurement using Yarm cavity scan:
 - Aligned Yarm using ASS, and unlocked Yarm to get the 2sec scan data of C1:LSC-TRY_OUT_DQ, C1:LSC-POY11_I_ERR_DQ, C1:LSC-AS55_I_ERR_DQ.
 - TRY data was used to get TEM00 peak heights
 - POY11/AS55 data was used to find RF11/RF55 sideband peaks, and height was measured at TRY (see attached).
 - If we define m to be E=E_0*exp(i*(w*t+m*sin(w_m*t))), the amplitude of TEM00 I_00 is proportional to J_0(m) and the amplitude of upper/lower sideband I_f1 is proportional to J_1(m), where J_n(m) is the bessel function of the first kind.
 - m can be calculated using 2*sqrt(I_f1 / I_00).
 - Results were shown above. Error is calculated from the standard deviation of multiple measurements with multiple peaks,
 - The code for doing this lives in https://git.ligo.org/40m/measurements/-/blob/main/LSC/YARM/modulationIndex.ipynb

Discussion:
 - Power at AS55 account for the factor of 2, In the FINESSE model, modulation index of 0.3 was used (could be m=0.3/2 or m=0.3; needs check). These combined can explain a factor of 3 at least (or 6).
 - Gautam's measurement in Jan 2021 (40m/15769) gives almost double modulation index, but I'm not sure what is the definition Gautam used. It agrees with Gautam's measurement in Jan 2021.

Attachment 1: YarmModIndex.png
YarmModIndex.png
  16953   Tue Jun 28 09:03:58 2022 JCUpdateGeneralOrganizing and Cleaning

The plan for the tools in 40m

As of right now, there are 4 tool boxes. X-end, Y-end, Vertex, and the main tool box along the X-arm. The plan is the give each toolbox a set of their own tools. The tools of X-end, Y-end, and Vertex toolboxes will be very similar containing the basic tools such as pliers, screwdrivers, allen ball drivers. Along with this, each tool box will have a tape measure, caliper, level, and other measuring tools we find convinient. 

As for the new toolbox, I have done research and found a few good selections. The only problem I have ran into with this is the width of the tool box corresponding with the prices. The tool cabinet we have now is 41" wide. The issue I have is not in finding another toolbox of the same width, but for a similar price we can find a 54" wide tool cabinet. Would anyone be objected to making a bit more space for this?

How the tools will stay organized.

I the original idea I had was to use a specified color of electrical tape for each tool box. Then to wrap the corresponding tools tools with the same color tape. But it was brought to my attention that the electrical tape would become sticky over time. So, I think the using the label maker would be the best idea. with the labels being 'X' for X-end, 'Y' for Y-end, 'V' for vertex, and 'M' for main toolboxes.

An idea for the optical tables:

Anchal brought it up to me that it is a hassle to go back and forth searching for the correct sizes of Hex Keys and Allen Wrenches. The idea of a pouch on the outside of each optical table was mentioned so I brought this up to Paco. Paco also gave me the idea of a 3D printed stand we could make for allen ball drives. Does anyone have a preference or an idea of what would be the best choice and why? 


A few sidenotes: 

Anchal mentioned to me a while back that there are many cables that are laying on the racks that are not being used. Is there a way we could identify which ones are being used? 

I noticed that when we were vented that a few of the chamber doors were leaning up against the wall and not on a wooden stand like others. Although, the seats for the chamber doors are pretty spacious and do not give us much clearance. For the future ones, could we make something more sleek and put the wider seats at the end chambers?

The cabinets along the Y-Arm are labelled, but do not correspond with all the materials inside or are too full to take in more items. Could I organize these? 
 

  16954   Tue Jun 28 14:24:23 2022 yutaUpdateBHDBHD DC PD signals now also sent to c1lsc to circumvent IPC error

[JC, Yuta]

To circumvent IPC error sending BHD DC PD signals from c1sus2 to c1lsc, DB9 cable from BHD DC PD box sent to c1sus2 is now split and sent also to c1lsc.
They are now available in both

c1sus2 ADC1
C1:X07-MADC1_EPICS_CH16 (DC PD A) and CH17 (DC PD B)

c1lsc ADC1
C1:X04-MADC1_EPICS_CH4 (DC PD A) and CH5 (DC PD B)

Next:
 - Add battery powered SR560 to decouple c1sus2 and c1lsc to avoid the ground loop

Attachment 1: C1LSC.JPG
C1LSC.JPG
Attachment 2: C1SUS2.JPG
C1SUS2.JPG
Attachment 3: Screenshot_2022-06-28_16-03-16_BHDDCPDcopied.png
Screenshot_2022-06-28_16-03-16_BHDDCPDcopied.png
  16957   Tue Jun 28 17:07:47 2022 AnchalUpdateCalibrationAdded Beatnote channels in demodulation of c1cal

I added today demodulation of C1:LSC-BEATX/Y_FINE_I/Q in the c1cal demodulation where different degrees of freedom can be dithered. For McCal (formerly soCal), we'll dither the arm cavity for which we can use any of the DOFs (like DARM) to send the dither to ETMX/ETMY. Then with green laser locked as well, we'll get the calibration signal from the beatnotes in the demodulaed channels. We can also read right after the mixing in c1cal model and try differnt poles for integration .

I've also added medm screens in the sensing matrix part of LSC screen. These let you see demodulation of beatnote frequency signals.

  16958   Tue Jun 28 18:19:09 2022 TomislavUpdateElectronicsElectronics noise

I measured electronics noise of WFSs and QPD (of the WFS/QPD, whitening, ADC...) by closing PSL and measuring the error signal. It was needed to put the offset in C1:IOO-MC_TRANS_SUMFILT_OFFSET to 14000 cts (without offset the sum of quadrants would give zero, and 14000 cts is the value when the cavity is locked). For WFS that are RF, if there is intensity noise at low frequencies, it is not affecting the measurement.

In the attachment please find the power spectrum of the error signal when the PSL shutter is on and off.

Attachment 1: electronics_noise_spectra.png
electronics_noise_spectra.png
Attachment 2: error_signal.png
error_signal.png
  16960   Tue Jun 28 22:27:11 2022 YehonathanUpdateBHDMeasurement of input and output electronics noise

{Yuta, Yehonathan}

For MICH noise budgeting we measure the input electronics noise which includes the AS55 RFPD, preamp, demod board, the whitening, and the AA filters, and the ADC noises. To do so we simply close the laser shutter and take the spectrum of C1:LSC-AS55_I_ERR_DQ and C1:LSC-AS55_Q_ERR_DQ shown in attachment 1.

Next, we measured the output electronics noise which includes the DAC, dewhitening and AI filters, and coil driver noises. We disabled the BS watchdog and went to 1X4 rack. We measured the spectrum of one of the lemo outputs on the BS coil driver module using an SR785. Attachment 2 shows the spectrum together with the SR785 dark noise.

Attachment 1: input_noise_spectrum.pdf
input_noise_spectrum.pdf
Attachment 2: output_noise_spectrum.pdf
output_noise_spectrum.pdf
  16961   Tue Jun 28 23:10:34 2022 YehonathanUpdateBHDMeasurement of AS55 demod board conversion factor

{Yuta, Yehonathan}

We measured the AS55 demod board conversion from the amplitude of a 55MHz signal to a demodulated signal. We hooked the unused REFL55 LO into the PD input port on the AS55 demod board.

The REFL55 LO was measured to be 1.84 Vpp. The IQ outputs were: I = 0.86 Vpp, Q = 2.03 Vpp giving an amplitude of 2.205 Vpp. The overall conversion factor is sqrt(0.86**2+2.03**2)/(1.82/2)=2.422.

We also set to measure the loss in the RF cable from AS55 PD to the demod board on 1Y2. REFL55 was connected with a long BNC cable to the input of the cable under test. REFL55 at the input was measured to be 1.466 Vpp and 1.28 Vpp at the output signifying a transmission of 87.6%.

  16963   Wed Jun 29 18:53:38 2022 ranaUpdateElectronicsElectronics noise

this is just the CDS error signal, but is not the electronics noise. You have to go into the lab and measure the noise at several points. It can't be done from the control room. You must measure before and afte the whitening.

Quote:

I measured electronics noise of WFSs and QPD (of the WFS/QPD, whitening, ADC...) by closing PSL and measuring the error signal. It was needed to put the offset in C1:IOO-MC_TRANS_SUMFILT_OFFSET to 14000 cts (without offset the sum of quadrants would give zero, and 14000 cts is the value when the cavity is locked). For WFS that are RF, if there is intensity noise at low frequencies, it is not affecting the measurement.

In the attachment please find the power spectrum of the error signal when the PSL shutter is on and off.

 

  16965   Thu Jun 30 18:06:22 2022 PacoUpdateALSOptimum ALS recovery - part I

[Paco]

In the morning I took some time to align the AUX beams in the XEND table. Later in the afternoon, I did the same on the YEND table. I then locked the AUX beams to the arm cavities while they were stabilized using POX/POY and turned off the PSL hepa off temporarily (this should be turned on after today's work).

After checking the the temperature slider sign on the spectrum analyzer of the control room I took some out-of-loop measurements of both ALS beatnotes (Attachment #1) by running diaggui /users/Templates/ALS/ALS_outOfLoop_Ref_DQ.xml and by comparing them against their old references (red vs magenta and blue vs cyan); it seems that YAUX is not doing too bad, but XAUX has increased residual noise around and above 100 Hz; perhaps as a result of the ongoing ALS SURF loop investigations? It does look like the OLTF UGF has dropped by half from ~ 11 kHz to ~ 5.5 kHz.

Anyways let this be a reference measurement for current locking tasks, as well as for ongoing SURF projects.

Attachment 1: als_ool_06_2022.png
als_ool_06_2022.png
  16969   Fri Jul 1 12:49:52 2022 KojiUpdateIOOMC2 seemed misaligned / fixed

I found the IMC was largely misaligned and was not locking. The WFS feedback signals were saturated and MC2 was still largely misaligned in yaw after resetting the saturation.
It seemed that the MC WFS started to put the large offset at 6:30AM~7:00AM (local).
MC2 was aligned and the lock was recovered then the MC WFS seems working for ~10min now.

Attachment 1: C1-MULTI_FBDB3F_TIMESERIES-1340668818-86400.png
C1-MULTI_FBDB3F_TIMESERIES-1340668818-86400.png
Attachment 2: C1-LOCKED_MC_5E4267_TIMESERIES-1340668818-86400.png
C1-LOCKED_MC_5E4267_TIMESERIES-1340668818-86400.png
ELOG V3.1.3-