40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Apr 18 20:17:17 2014, Jenne, Update, LSC, ALS noisy ALS_1kHzRMSnoise.pdfALS_oolNoise.pdf
    Reply  Mon Apr 21 22:53:16 2014, manasa, Update, LSC, ALS noise ALSX_FreeInLoop.jpgALSXY_inLoop.jpg
       Reply  Tue Apr 22 01:11:42 2014, Jenne, Update, LSC, TRY 60Hz noise TRY_60Hz_noise_21Apr2014.pdf
          Reply  Tue Apr 22 21:54:50 2014, manasa, Update, LSC, TRY 60Hz noise 60HzTRY.jpg
             Reply  Tue Apr 22 22:49:10 2014, rana, Update, LSC, TRY 60Hz noise 
                Reply  Wed Apr 23 19:58:00 2014, manasa, Update, LSC, TRY 60Hz noise 
                   Reply  Tue May 6 18:32:14 2014, steve, Update, LSC, TRY 60Hz noise hunt ETMY-ISCT_EISOL.jpg
                      Reply  Wed May 7 14:01:36 2014, steve, Update, LSC, TRY 60Hz noise hunt 
                         Reply  Thu May 8 17:25:17 2014, steve, Update, LSC, TRY 60Hz noise hunt 
                         Reply  Fri May 16 16:08:12 2014, steve, Update, LSC, Isolating base plates ISObaseplates.jpg
                Reply  Wed Apr 23 23:48:30 2014, manasa, Update, LSC, Y end whitening board IMG_1378.JPGIMG_1379.JPGIMG_1378.JPG
                   Reply  Thu Apr 24 14:23:09 2014, not manasa, Update, LSC, Y end whitening board 
                      Reply  Thu Apr 24 23:55:31 2014, Koji, Update, LSC, Y end whitening board P4245550.JPG
                         Reply  Fri Apr 25 10:43:57 2014, Koji, Update, LSC, (Fixed) Y end whitening board D990399-B_40m.pdfP4245552.JPGP4245553.JPGP4245551.JPG
                            Reply  Thu Dec 11 18:12:46 2014, ericq, Update, LSC, (Fixed) Y end whitening board 
                               Reply  Thu Dec 11 22:44:23 2014, rana, Update, LSC, QPD screens 
          Reply  Thu Apr 24 00:11:35 2014, Jenne, Update, LSC, Yend shutter back. 
       Reply  Sun Apr 27 20:26:19 2014, Koji, Update, LSC, Phase Tracker servo characterization ALSX_PTTF.pdfALSY_PTTF.pdf
          Reply  Sun Apr 27 21:30:59 2014, Koji, Update, LSC, ALS servo characterization ALSX_OLTF.pdfALSY_OLTF.pdf
             Reply  Mon Apr 28 10:24:10 2014, Koji, Update, LSC, error signal characterization ALSX_SPE.pdfALSY_SPE.pdf
                Reply  Mon Apr 28 10:34:51 2014, Koji, Update, LSC, new ALS servo design ALSX_OLTF_new2.pdfALSY_OLTF_new2.pdf
                   Reply  Mon Apr 28 10:48:48 2014, Koji, Update, LSC, new ALS servo design: comparison ALSX_OLTF_new.pdfALSY_OLTF_new.pdf
                      Reply  Mon Apr 28 10:59:54 2014, Koji, Update, LSC, New ALS servo design: expected error signals ALSX_SPE_new.pdfALSY_SPE_new.pdf
                         Reply  Mon Apr 28 11:08:11 2014, Koji, Update, LSC, New ALS servo design: expected error signals 140421_ALS_servo.zip
Message ID: 9861     Entry time: Sun Apr 27 21:30:59 2014     In reply to: 9860     Reply to this: 9862
Author: Koji 
Type: Update 
Category: LSC 
Subject: ALS servo characterization 

The measured openloop TF of the ALS servo for each was characterized by a ZPK model.

The openloop TF can be modeled by:

1) Filter TF obtained from foton
2) Actuator response with appropriate assumption
3) Phase tracker closed loop TF
4) Delay caused by the digital control
5) anything else

For 1) ZPK models of the servo filter was obtained from foton. It turned out that the TF of FM5 doesn't match with the ZPK model in foton.
Therefore the TF was exported and fitted with LISO. This seems to be related to the pole frequency (3kHz) which is too close to Nyquist frequency (8kHz).

FM(:,1)  = zero1(f,5).*pole1(f,0.001)*5000;
FM(:,2)  = zero1(f,1).*pole1(f,0.001)*1000;
FM(:,3)  = zero2(f,4.5,1.4619).*pole1(f,0.001).*pole1(f,0.001)*20.2501*1e6;
FM(:,4)  = zero2(f,35,2).*pole2(f,3,3).*zero1(f,3000).*pole1(f,1).*pole2(f,3000,1/sqrt(2)).*pole1(f,700).*zero1(f,10).*zero1(f,350).*136e1;
FM(:,5)  = zero1(f,1).*pole1(f,4.010e3).*pole2(f,17.3211e3,1.242).*zero2(f,18.865e3,100e3);
FM(:,6)  = zero2(f,3.2,0.966775).*pole2(f,3.2,30.572);
FM(:,7)  = zero2(f,16.5,2.48494).*pole2(f,16.5,78.5807).*zero2(f,24.0,2.22483).*pole2(f,24.0,7.03551);
FM(:,8)  = 1;
FM(:,9)  = zero2(f,7.50359,1.07194).*pole2(f,1.43429,0.717146)*27.5653;
FM(:,10) = 1;

dc_gain = 14;

FM1/2/3/5/6/7/9 are used for the control.

For 2), a resonant freq of 0.97 with Q of 5 was assumed.

The model for 3) was obtained by the previous entry.

Now the measured TF was divided by the known part of the model 1) ~ 3) and empirically fitted in LISO.

### XARM ###
pole 392.5021429051 698.1992431753m
zero 42.3128869460k 31.0954443799m
pole 589.2716424428 2.8325268375
factor 8.3430140244
delay 34.7536691023p

### YARM ###
pole 416.2463334253 743.2196174175m
zero 97.9161062704M 114.6703921876m
pole 626.0463515310 2.7671041771

factor 9.0045911761
delay 34.0945727358p

These compensation TF have weird TF. Probably the frequency response of the delay and the analog AA/AI filters without the high frequency data
led the LISO make up this. I'm requesting Masayuki to provide the AA/AI data to make the estimation more reasonable.
For the servo modeling, this is sufficient and we'll go a head.

The results of the OLTF modeling are attached.

Attachment 1: ALSX_OLTF.pdf  54 kB  Uploaded Mon Apr 28 10:10:53 2014  | Hide | Hide all
Attachment 2: ALSY_OLTF.pdf  54 kB  Uploaded Mon Apr 28 11:11:12 2014  | Hide | Hide all
ELOG V3.1.3-