In the process of figuring out what we can do to fix our PRM motion problem, I am looking at the PRM oplev.
Eventually (as in, tomorrow), I'd like to be able to simulate some optic motion as a result of an impulse, and see what the oplev loops do to that motion. (For starters, I'll take the impulse response of the OSEM loop as my time series that the oplev loop sees).
One thing that I have done is look at the oplev model that Rana put together, which is now in the noisebudget svn: /ligo/svncommon/NbSVN/aligonoisebudget/trunk/OpLev/C1
This script plots the open loop gain of the modeled oplev:

This should be compared to the pitch and yaw measured transfer functions:


In the YAW plot, there are 2 transfer functions. The first time around, the UGF was ~2.5Hz, which is too low, so I increased the gain in the C1:SUS-PRM_OLYAW filter bank from -3 to -9.
The shapes of the measured and modeled transfer functions look reasonably similar, but I haven't done a plot overlay. I suspect that the reason I don't see the same height peak as in the model is just that I'm not taking a huge number of points. However, if the other parts of the TF line up, I'll assume that that's okay.
I want to make sure that the modeled transfer function matches the measured ones, so that I know I can trust the model. Then, I'll figure out how to use the time series data with the simulated loop. Ideally, I'd like to see that the oplev loop can fully squish the motion from the OSEM kicks. Once I get something that looks good (by hand-tweaking the filter shape), I'll give it a try in the actual system. We should, as soon as I get the optimal stuff working, redo this in a more optimal way. Both now, and after I get an optimal design, I'll look at the actual step and impulse responses of the loop, to make sure there aren't any hidden instabilities.
Other thoughts for the night:
Rana suggests increasing the gain in some of the oplev QPD heads (including PRM), so that we're getting more than a few hundred counts of power on each quadrant. Since our ADCs go to 32,000 counts, a few hundred is very small, and keeping us close to our noise limits.
Also, just an observation, but when I watch the REFL camera along with POP and AS, it's clear that the PRM is getting kicked, and I don't have the ETMs aligned right now, so this is just PRMI flashes. There is also a lot of glow in the BS chamber during flashes (as seen on the PRM face video camera). |