Quote: 
There are several things at this point that we know we need to look into:
* Simulate an arm sweep, up to many orders of the sidebands, to see how close to the carrier resonance any sideband resonances might be. If something like the 4th order sideband resonates, and then beats with a 1st order sideband, is that signal big enough to disturb our 3f locking of the PRMI / DRMI? We want to be holding the arms off resonance with ALS closer to the carrier than any "important" sideband resonances (where the definition of "important" is still undetermined). (Simulation)

I have done a sweep of CARM, while looking at the fields inside of one arm (I've chosen the Xarm), to see where any resonances might be, that could be causing us trouble in keeping the PRMI locked as we bring the arms into resonance.
Since Gabriele pointed out to me that we're using the 3x55MHz signal for locking, we should be most concerned about resonances of the higher orders of 55, and not of 11. So, on this plot, I have up to the 6th order 55 MHz sidebands, which are 332 MHz. Although the Matlab default color chart has wrapped around, it's clear that the carrier is the carrier, and the +4f2, which is the same blue, is not the giant central peak. So, it's kind of clear which trace is which, even though the legend colors are degenerate. Also, the main point that I want to show here is that there is nothing going on near the carrier, with any relevant amplitude. The nearest things are the plus and minus 55 MHz sidebands themselves, and they're more than 50 nm away from the carrier.
Recalling from elog 9122, the PRFPMI and DRFPMI linewidths are about 40pm. 50pm away from the resonant point is ~1/10 the power, and 100pm away from the resonant point is ~1/100 the power. So, 50 nm is a looooong ways away.
Just for kicks, here is a plot of all the resonances of the 1f and 2f modulation frequencies, up to 30*f1, which is the same 6*f2:
The resonances which are "close" to the carrier are the 9th order 11 MHz sidebands, and they're 280pm from the carrier, so twice as far as we need to be, to get our arm powers to ~1/100 of the maximum, and, they're a factor of ~1e4 smaller than the carrier. 