40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 9332     Entry time: Sun Nov 3 00:05:52 2013
Author: Charles 
Type: Summary 
Category: ISS 
Subject: ISS Update - Bout' time 

Right near the end of summer, I had an ISS board that was nominally working, but had a few problems I couldn't really sort out. Since I've been back, I've spent a lot of time just replacing parts, trying different circuit topologies and generally attempting to make the board function as I hoped it might in all those design stages. Below is a brief list of some of the problems I've been fixing as well as the first good characterization of the board transfer function that I've been able to get.

We'll start with some of the simple problems and proceed to more complicated ones.

  • The 5V reference I was using to obtain an error signal from some arbitrary DC photodiode readout was only producing ~2.5 V. 
    • Turns out I just need a FET type op-amp for the Sallen-Key Filter that I was using to clean up any noise in the reference output, as the leakage current in a AD829 was causing a significant voltage drop. I put in an OPA140 and everything worked marvelously.
  • The way I set up input grounding (i.e. send a ~0 amplitude signal through the board as an input) passed a few Amps through one of my chips causing it to burn out rather fantastically.
    • There isn't a good way to fix this on the current board (besides just getting rid of the functionality altogether) so my solution so far has just been to redesign that particular sub-system/feature and when we implement the second version of the ISS, the input grounding will be done correctly
  • One of the ICs I'm using, specifically the AD8436 RMS-to-DC converter, causes some super strange oscillations in -5V power line. When this chip is soldered onto the board, the -5V supply jumps between -3V and -10V rather sporadically and the DC power-supply used to provide that -5V says that board is drawing ~600 mA on that particular power line.
    • To date, I don't really have any idea what's going with this chip, and I've tried a lot of things to remedy the problem. My first thought was that I had some sort of short somewhere so I took the chip off the board, cleaned up all the excess solder and flux around the chip's footprint and then meticulously soldered a new chip on (when I say meticulously, it took over an hour to solder 20 little feet. I really really didn't want to short anything accidentally as the chip only comes in a package with ridicously small spacing between the leads). Lo and behold, nothing happened. I still saw the same oscillations in power supply and the board was still drawing between >500 mA on that line. Just to be sure, I soldered on a third chip taking the same amount of care and had the same problems.
    • I went over the schematic in Altium that we used to order the board, and unless the manufacturer made a mistake somewhere, there aren't any incorrectly routed signals would cause, say, two active devices to try setting the voltage of a particular node to different values.
    • I got some QSOP-to-DIP package converters so that I could mess around with the AD8436 on a breadboard to make sure it functioned correctly. I set up an identical circuit to the one on the PCB and didn't see any oscillations in the power supply, both for +-5V and +-15V as the chip can handle both supply voltages. I'm not really sure how to interpret this...
    • I'm still actively trying to figure this particular problem out, but I'm shooting in the dark at this point. 
  • Initial attempts to measure the transfer-function of the board were wrought with failure.
    • I figured out, with Nic's help, that the board needs the 'loop closed' with a significant broadband attenuator (to simulate the plant optics discussed in elog 9331) in order to not have constant railing of the high gain op-amp filter stages. Even after I did this, the measured transfer functions were not at all consistent with simulation. I wasn't sure if it was just a part issue, a design issue or a misunderstanding/bad data collection on my part so I just redesigned the whole servo and stuffed the board with entirely new components from around the 40m. Turns out the newly designed servo behaved more properly, as I will show below.

The above list encompasses all the issues I've had in making the ISS board function correctly. No other major problems exist to my knowledge.

I was able to measure both the open- and closed-loop transfer functions of the servo with the SR785. The results are shown below.

full-op-loop.png

The transfer function with the boosts on caps at a particular value set by op-amp railing, i.e. below 100 Hz, the op-amps are already putting out their max voltage. This is the usual physical limitation when measuring the transfer function of an integrator. We can also see that the measured phase follows the simulated phase above ~300 Hz. The 'phase matching' at low frequency is again do to the op-amp railing in the servo output..

The closed-loop gain is shown below,

full-cl-loop.png

The measured closed-loop gain with the boosts on again matches the LISO simulation quite well except at low frequency where we are limited by op-amp railing. We compare the measured closed-loop transfer function to the desired noise suppression stipulated in my previous elog 9331,

req-vs-meas.png

 And we might hopefully conclude that my servo functions as desired. One should note that the op-amp railing seen in these measurements is not indicative of limitations we might face in some application of the ISS for the following reason. These transfer functions were measured with a 100 mV excitation signal (it is necessary to keep this signal amplitude large enough so that the inherent signal-to-noise ratio of the excitation source is large enough for accurate measurement) which leads to somewhat prompt railing of the op-amps. When the ISS operates to actually stabilize a laser, the input error signal will be much smaller (on the order of a few 10's of mV or less) and will decrease significantly assuming correct operation of the ISS. This means we won't see the same type of gain limitations.

 

What now, you ask?

Aside from the problem with the AD8436 chip, the ISS board seems to be functioning correctly. The transfer functions we have measured are correct to within the component tolerances and all of the various subsystems are behaving as they were designed to. Moving toward the goal of having this system work in situ for the CTN experiment, I need to do the following things,

  • Design a housing for the board -> order said housing and the front panel previously designed
  • Make sure the power supply daughter PCB boards are compatible with the ISS board and can provide power correctly
  • Talk to Evan and Tara about integrating the ISS with their experiment and make sure my board can do everything it needs to in that context.

So close, or so I say all the time 

 

ELOG V3.1.3-