I have made some minor changes to the model, made all the MEDM screens, and linked monitors on these to the appropriate channels. I have borrowed heavily from the C1ASS MEDM screens (particularly for the small filter modules-it was convenient to just copy and paste an existing module, and edit the channel names using EMACS/GEDIT), and have edited these to suit the needs of this servo. Some features:
- The feedback signal (only the output of the servo to the PZTs, plus any contribution from the on-screen sliders, and not including the LO output) is monitored with both a slow (using CDS_EPICS_OUTPUT block from the CDS_PARTS library) and fast channel (using Test Point from the same library). The idea is that it would be useful to know the output to the PZTs such that if coarse adjustment ever needs to be done at the endtable, the PZTs can be restored to the middle of its operating range by means of the sliders.
- Sliders are incorporated into the master screen for adjusting the output to the PZTs. There are text-input fields below the sliders as well, which control the same channel.
- I have removed the 4 remaining excitation points to the DAC set up in C1SCX, and have relocated them to channels 12-15 of the DAC in C1ASX.
I think I am now ready to take some measurements and try and optimize this servo. There is no green transmission at the PSL table at the moment, so not much can be done, though the first step would be to take the power spectrum of the error signal, which would help me decide the appropriate frequencies for the LOs. I would then have to add the appropriate filters to the model. The last, and most difficult step, would be the measurement of the output matrix, though Koji has given me some ideas about how this measurement can be done. I also have a template script ready, though I will only finalise this after optimising the servo and running it a couple of times manually.
Attached are screenshots of the MEDM screens.

|