I recalibrated the QPD today as I had shifted its position a little. I then identified the linear range of the QPD and performed a preliminary calibration of the Piezo tip-tilt within this range.
Details:
-I recalibrated the QPD as I had shifted it around a little in order to see if I could move it to a position such that I could get the full dynamic range of the piezo tilt within the linear regime of the QPD. This proved difficult because there are two reflections from the mirror (seeing as it is AR coated for 532nm and I am using a red laser). At a larger separation, these diverge and the stray spot does not bother me. But it does become a problem when I move the QPD closer to the mirror (in an effort to cut down the range in which the spot on the QPD moves). In any case, I had moved the QPD till it was practically touching the mirror, and even then, could not get the spot motion over the full range of the PZTs motion to stay within the QPD's linear regime (as verified by applying a 20Vpp 1Hz sine wave to the PZT driver board and looking at the X and Y outputs from the QPD amplifier.
-So I reverted to a configuration in which the QPD was ~40cm away from the mirror (measured using a measuring tape).
-The new calibration constants are as follows (see attached plots):
X-Coordinate: -3.43 V/mm
Y-Coordinate: -3.41 V/mm
-I then determined the linear range of the QPD to be when the output was in the range [-0.5V 0.5V].
-Next, at Jenne's suggestion, I decided to do a preliminary calibration of the PZT within this linear range. I used an SR function generator to supply an input voltage to the PZT driver board's input (connected to Channel 1 of the piezo). In order to supply a DC voltage, I set a DC offset, and set the signal amplitude to 0V. I then noted the X and Y-coordinate outputs, being sure to run through the input voltages in a cyclic fashion as one would expect some hysteresis.
-I did this for both the pitch and yaw inputs, but have only superficially analysed the latter case (I will put up results for the former later).
Comments:
-There is indeed some hysteresis, though the tilt seems to vary linearly with the input voltage. I have not yet included a calibration constant as I wish to perform this calibration over the entire dynamic range of the PZT.
-There is some residual coupling between the pitch and yaw motion of the tip tilt, possibly due to its imperfect orientation in the holder (I have yet to account for the QPD's tilt).
-I have not included a graphical representation here, but there is significantly more pitch to yaw coupling when my input signal is applied to the tip-tilts pitch input (Channel 2), as compared to when it is input to channel 1. It is not clear to me why this is so.
-I have to think of some smart way of calibrating the PZT over its entire range of motion, keeping the spot in the QPD's linear regime throughout. One idea is to start at one extreme (say with input voltage -10V), and then perform the calibration, re-centering the spot to 0 on the QPD each time the QPD amp output reaches the end of its linear regime. I am not sure if this will work, but it is worth a shot. The other option is to replace the red laser with a green laser (from one of the laser pointers) in the hope that multiple reflections will be avoided from the mirror. Then I will have to recalibrate the set up, and see if I can get the QPD close enough to the mirror such that the spot stays within the linear regime of the QPD. More investigation needs to be done.
Plots:
QPD Calibration Plots:

Piezo tilt vs input voltage plots:
Yaw Tilt Pitch Tilt
|