I have modeled the PRMI sensing matrix as I bring the Xarm into resonance. In optickle, I have the PRMI on sideband resonance, the ETMY is artificially set to have a transmission of 1, and the ETMX has it's nominal transmission of 15ppm. I start with the ETMX's microscopic position set to lambda/4 (antiresonant for IR in the arm), and take several steps until the ETMX's microscopic position is 0 (resonant for IR in the arm).
Xarm antiresonant:
Modeled sensing matrix, units = W/m, Offset = 2.66e-07, phase in degrees
MICH Mag MICH Phase PRCL Mag PRCL Phase
AS55 3.348E+04 142.248 5.111E+03 70.571
POX11 3.968E+01 -66.492 1.215E+04 54.312
REFL11 3.231E+05 24.309 9.829E+07 144.311
REFL165 9.946E+03 -159.540 4.540E+05 -64.710
REFL33 1.963E+04 -168.530 1.573E+06 -2.744
REFL55 1.160E+06 -6.755 5.429E+07 86.895
Xarm resonant:
Modeled sensing matrix, units = W/m, Offset = 0, phase in degrees
MICH Mag MICH Phase PRCL Mag PRCL Phase
AS55 1.647E+06 57.353 3.676E+06 -81.916
POX11 3.927E+02 -118.791 2.578E+04 -102.158
REFL11 7.035E+05 61.203 1.039E+08 167.149
REFL165 1.602E+04 -144.586 5.971E+05 -49.802
REFL33 2.157E+04 171.658 1.940E+06 -9.133
REFL55 1.822E+06 7.762 6.900E+07 101.906
For REFL55, the MICH magnitude increases by a factor of 1.6, while the PRCL magnitude increases by 1.3 . The MICH phase changes by 15 degrees, while the PRCL phase also changes by 15 degrees. Just eye-balling (rather than calculating), the other REFL PDs look to have similar-ish magnitude and phase changes. Certainly none of them are different by orders of magnitude.
Movies forthcoming. |