We would like to increase the UGF of the PRC loop so as to allow more suppression of the PRC signal and less pollution of the MICH signal (remember that the PRC/MICH optical gain ratio is huge).
We were already losing phase because of delay in the LSC - SUS digital link. In addition to that, a major source of delay is the analog anti-aliasing (on the LSC error signals before they enter the ADC) and the analog anti-imaging (between the SUS DAC and the coil driver).
IN addition to these, the other major sources of phase lag in the system are the FM5 filter in the LSC-PRC filter bank, the digital upsampling and downsampling filters, and the DAC sample and hold.
In the near term, we want to modify these analog filters to be more appropriate for our 64 kHz ADC/DAC sample rate. Otherwise, we are getting the double phase lag whammy.
Staring at the schematics for the AA (D000076-01) and the AI (D000186-A), we determined a plan of action.
For the AA, we want to remove the multi-pin AA chip filter from Frequency Devices, Inc. and replace it with a passive LC low pass. Hopefully, these chips are socketed. Rana will design an appropriate LC combo and elog; we should make the change on a Wednesday afternoon so that we have enough soldering help.
For the AI, the filter is a dual bi-quad using discrete components and LT1125 opamps. Not so clear what to do with these. The resistors are all the noisy thick film kind and maybe should be replaced. Koji will find some online design tool for these or do it in LISO. Changing the TF is easy; we can just scale the capacitors. But we also want to make sure that the noise of the AI does not destroy the noise reduction action of the dewhitening board which precedes it.
Jenne should figure out how low the noise needs to be at the input to the coil driver.
P.S. the matlab code which defines these filters
>> [z,p,k] = ellip(4,4,60,2*pi*7570,'s');
>> misc.ai = zpk(z,p,k*10^(4/20)) * zpk([],-2*pi*13e3,2*pi*13e3);
>>
>> % Fudged Anti-Imaging Filter
>> [z,p,k] = ellip(8,0.001,80,2*pi*7570,'s');
>> misc.aa = zpk(z,p,k*10^(0.001/20)) * zpk([],-2*pi*32768,2*pi*32768); |