40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 8448     Entry time: Fri Apr 12 10:33:42 2013
Author: Charles 
Type: Summary 
Category: ISS 
Subject: DC-Coupled ISS Servo Design 

General ISS Design

Signals through the ISS are directed as follows:  an error signal is obtained by summing the ~5 V signal from the PD with a -5 V signal from a high precision voltage regulator (which is first filtered with an ~ 30 mHz low-pass Sallen-Key filter).  It is this signal that is processed/amplified by the servo. The output from the servo is then used to drive an AOM (it is not known exactly how this is done and whether or not any preamplifier/extra circuitry is necessary). The resulting modulation, hopefully, reduces fluctuations in the laser intensity incident on the PD, lowering the relative intensity noise.

Servo Design

Almost the entirety of my focus has been directed toward designing the servo portion of the ISS. Speaking in general terms, the currently proposed design consists of stages of active op-amp filters, but now the stages will have internal switches that allow them to switch between ‘flat’ gain buffers and more complicated filters with our desired behavior. Consider some Example Filter Stages where I have demonstrated a typical switching filter with the switch open and closed. When the switch is closed, the capacitor is shorted and we simply have a variable gain buffer (variable in the sense that its gain can be tuned by proper choice of the resistances) with no frequency dependence. When the switch is open, the capacitor introduces a pole at ~100 Hz and a zero at ~1 kHz.

CircuitLab has decent analysis capabilities and attached are plots generated by CircuitLab. The first plot corresponds to a frequency analysis of the voltage gain of op-amp U1 and the ‘flat’ ~20 dBV gain filter with the switch closed and the capacitor shorted. The second plot is the same frequency analysis, but now with op-amp U2 and the filter with the switch open and the capacitor introduced into signal processing. This particular combination of resistors and capacitors produce a DC gain of 60 dBV, a pole at ~100 Hz, a zero at ~10 kHz and high frequency behavior of ~constant gain of 20 dBV. In this simulation, the gain-bandwidth product of the simulated op-amp (the standard op-amp CircuitLab uses) was artificially increased in order to see more ideal behavior in the higher frequency domain.

Switches like the above can be used to add boosts to some initial filter state (which could be like the above or possibly a simple integrator to achieve high DC gain) and change it into a more complex and more useful filter state advantageous for desired noise suppression. Cascades of these switching filters could be used to create very complicated transfer function behavior. No general servo has yet been designed as the exact details of the intensity noise requirements are still being determined.

With regards to the implementation of the switches, some ‘smart’ signal will be used to trigger a switch opening and the boost being introduced to the signal processing. The switches will be opened (open corresponds to adding the boost) in a manner that maintains stability of the servo circuit. Essentially, some sort of time delay or power monitor induced signal (power from the PD output) will be used to modify the servo's behavior.

AOM

How exactly the signal will drive the AOM for correct noise suppression is unknown currently.

 

Attachment 1: Example_Switching_Filter_Transfer_Function_-_Switch_Closed.png  59 kB  Uploaded Fri Apr 12 11:38:07 2013  | Hide | Hide all
Example_Switching_Filter_Transfer_Function_-_Switch_Closed.png
Attachment 2: Example_Switching_Filter_Transfer_Function_-_Switch_Open.png  70 kB  Uploaded Fri Apr 12 11:38:12 2013  | Hide | Hide all
Example_Switching_Filter_Transfer_Function_-_Switch_Open.png
ELOG V3.1.3-