40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 8359     Entry time: Tue Mar 26 20:20:10 2013
Author: Charles 
Type: Update 
Category: ISS 
Subject: ISS Design Plans - Servo Noise Analysis 

In order to allow other individuals besides myself to consider the proposed design of the ISS, I have created a publicly available CircuitLab drawing, which can be found here: CircuitLab Drawing. For simplicity, I have used ideal op-amps without voltage rails or their associated power supplies. In the actual implementation of the ISS, we will most likely also have trim resistors to ensure a zero offset for each op-amp. We interpret the PD as a voltage source for simplicity and I will use an actual summing amplifier in place of the summing junction used in the diagram.

The diagram linked above is simply a naive copy of a design by Rich Abbott so there are most likely mistakes and/or unnecessary elements, but it is a work in progress. I began discussing, with Jamie, the relative use of the first few filter stages in the servo. As far as my understanding goes, the first 'stage' was part of cascade of op-amps that served to convert a differential input from the PD into a single DC signal referenced to ground. Indeed, the first stage of my diagram (U1) is simply a unity-gain low-pass filter with f~5 MHz. Additionally, the second filter 'stage', U2, is also a unity-gain low-pass filter although it introduces a phase shift of 180 deg as the input to the second stage is on the inverting input of the op-amp. These characteristics were determined using LISO and examining the transfer function.

Noise analysis was also performed for the above circuit. The noise from various elements is examined at the output of the servo (labeled as 'outU6' in my LISO file). In the attached diagram, we see the voltage noise at the output from each op-amp as well as the sum of all the various noises, which includes resistor noise and current noise from the inputs of each op-amp. These are LISO's standard considerations and it is also worthwhile to note that the result is not referred to the circuit input, but as we have the transfer function of the whole servo, referring the noise to the input is trivial.

I have also included the following output for the sake of completeness.

from 1 Hz onwards noise by OP:I+ (U3) dominates.

from 38.6812 Hz onwards noise by R(R24) dominates.

from 115.478 Hz onwards noise by R(R11) dominates.

 

 

Attachment 1: ISS.pdf  27 kB  | Hide | Hide all
ISS.pdf
ELOG V3.1.3-