40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
 40m Log Not logged in Message ID: 8006     Entry time: Tue Feb 5 19:32:47 2013
 Author: yuta Type: Summary Category: General Subject: PR2/PR3 flipping and PRC stability

We are considering of flipping PR2 and/or PR3 to make PRMI stable because PR2/PR3 seems to be convex.
I calculated dependency of the PRC stability on the PR2/PR3 curvature when PR2/PR3 flipped and not flipped.
Flipping looks OK, from the stability point of view.

Assumption:
``` PRM-PR2 distance = 1.91 m  PR2-PR3 distance = 2.33 m  PR3-ITM distance = 2.54 m  PRM RoC = +122.1 m  ITM RoC = Inf```
``` theta_inc PRM = 0 deg  theta_inc PR2 = 1.5 deg  theta_inc PR3 = 41 deg ```          (all numbers from elog #7989)

Here, RoC means RoC measured from HR side. RoC measured from AR side will be -n_sub*RoC, assuming flat AR surface.
I also assumed mirror thickness to be negligible.

Method:
1. I used Zach's arbcav and modified it so that it only tells you your cavity is stable or not.
(It lives in `/users/yuta/scripts/mode_density_PRC/stableornot.m`)

2. Swept PR2/PR3 RoC (1/RoC from -0.005 to 0.005 1/m) to see the stability condition.

Results:
1. Stability condition of the PRMI when PR2 and PR3 is not flipped is depicted in the graph below. Black region is the unstable region. We all know that current PRMI is unstable, so we are in the black region. 2. Stability conditions of PRMI with one of the PR2/PR3 flipped are depicted in the graphs below. If we flip one of them, PRMI will likely to be stable, but if the flipped one is close to flat and the RoC of the other one is  >~ -250 m (more convex than -250 m), PRMI will remain unstable.  3. Stability condition of PRMI with both PR2 and PR3 flipped is depicted in the graph below. If we flip both, PRMI will be stable. Discussion:
1. Flipping one of PR2/PR3 seems OK, but I cannot guarantee. TMS measurement insists RoC of PR2 to be ~ -190 m, if we believe PRM RoC = +122.1 m (elog #7997). We need more precise measurement if we need to be sure before flipping. I prefer PR2 flipping because PR3 flipping gives us longer path in the substrate and larger astigmatism. Also, PR3 RoC is phase-map-measured to be ~ -600 m and PR2 RoC seems to be more convex than -600 m from the TMS measurement.

2. Flipping both is good from stability point of view. We need calculation of the loss in the PRC (and mode-mismatch to the arms). Are there any requirements?

3. If we are going to flip PR3, are there any possibilities of clipping the beam at PR3? We need to check.

4. I need to calculate whether mirror thickness and AR surface curvature are negligible or not.

Conclusion:
I want to flip only PR2 and lock PRMI.

By the way:
I don't like matlab plots.

ELOG V3.1.3-