40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 7887     Entry time: Wed Jan 9 19:32:24 2013
Author: Riju 
Type: Update 
Category:  
Subject: Photodiode transimpedance 

Summary:

Today I have tested the MC transmission-end RF photodiode PDA255 for transimpedance and dark noise using Jenne's Laser and AG4395A network/spectrum analyzer. The dark noise voltage distribution for the transmission and reflection PDs of MC and the analyzer has been compared.

Motivation:

I am to do the input mode cleaner cavity mode scan. The electronic and shot noise of the components used , particularly photodiode noise, will affect the peak position  of the modes, indicating the uncertainty in the measured frequencies of the modes. That will in turn give the uncertainty in the measured change of radius of curvature of the mirrors in presence of the laser beam, from which we will be able to calculate the uncertainty in the mirror-absorption  value.

Method:

For PD transimpedance measurement I used Jenne's laser along with AG4395 network analyzer. The RF out signal of AG4395A had been divided by splitter with one output of the splitter going to R channel of the network analyzer and the other to the laser. The splitted laser beams - splitted with beam splitter - fall on two photodiodes - one reference(Newfocus1617? PD, the DC and RF transimpedance values were taken from its datasheet ) and the other on PDA255. The outputs of these two photodiodes go to channel B and A respectively of the network analyzer. The measured transimpedance data had been collected using the GPIB connection. It had been ensured that the PD under test is not going to saturation, for that the source power level was kept to -40dBm. transimpedance measurements were compensated by the ratio of DC photocurrent.

For dark noise measurement the output of the PD was connected to the A channel of the AG4395A, when there was no light falling on it. The response is collected using GPIB. The attenuation of channel A was made 0dB. ( AG4395A was kept in Spectrum analyzer mode in Noise Format).

Results:

The plots corresponding to the measurements are attached.

Discussion:

The comparison for the dark noise voltage levels of the MC transmission PD (PDA255) with MC REFL PD has been made with analyzer dark noise voltage. It is shown in the attachment (I will upload the dark noise current comparison too....since the output darknoise depends on the gain of the circuit, it is important to divide this voltage spectra by transimpedances.)

Attachment 1: PDA255.pdf  10 kB  | Hide | Hide all
PDA255.pdf
Attachment 2: PDA255_z.pdf  3 kB  | Hide | Hide all
PDA255_z.pdf
Attachment 3: darknoiseVpda255.pdf  5 kB  | Hide | Hide all
darknoiseVpda255.pdf
Attachment 4: darknoiseApda255.pdf  5 kB  | Hide | Hide all
darknoiseApda255.pdf
Attachment 5: darknoise_comparison.pdf  8 kB  | Hide | Hide all
darknoise_comparison.pdf
ELOG V3.1.3-